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Abstract 

In this study, a methodology has been developed for the detection of mucilage with the help of remote sensing (UA) techniques by 

considering the current mucilage formation in the Sea of Marmara. For this purpose, mucilage formation from10.03.2021 to 

06.06.2021 was determined by classification of Sentinel-2 (MSI) satellite images using Random Forest (RF) algorithm on Google 

Earth Engine (GEE) platform. Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), the 

Modified Normalized Difference Water Index (MNDWI) and the Automated Water Extraction Index (AWEI) indexes were used for 

classification. In the classification study, 5 different date ranges were determined by considering the availability of satellite images 

and cloud ratio. In the first date range (10.03.2021-30.03.2021), the first mucilage image was detected in the Dardanelles Strait. In 

the following dates, the spread of mucilage towards the Gulf of Izmit and the Gulf of Gemlik in addition to the Dardanelles was 

determined. Finally, in the images dated between 17.05.2021-06.06.2021, it was seen that the density of mucilage increased in the 

Dardanelles Strait, Izmit Gulf, Gemlik Gulf, Erdek Kapıdağ Peninsula and the north of the Marmara Island. The area covered by 

mucilage as of the last date range was calculated as 12,741.94 ha, and this value shows that 1.07% of the Sea of Marmara is covered 

with mucilage. With this developed methodology, it has been seen that mucilage formation can be detected quickly within minutes 

and with high accuracy from satellite images anywhere in the world. 

Keywords: Marmara Sea, Mucilage, Google Earth Engine, Remote Sensing 

Introduction 

The Sea of Marmara is an important and strategic inland 

sea that connects the Asian and European continents. It 

also connects the Black Sea to the Aegean and 

Mediterranean Seas via the Istanbul and Dardanelles 

Straits. The Sea of Marmara is one of the most important 

seas of Turkey in terms of economy, logistics and 

strategy, as it has a coast to the mega city of Istanbul. In 

the Sea of Marmara, an East-West direction current is 

observed instead of circular movements arising from the 

Earth's rotation (koriolis) power. This current carries the 

Black Sea waters, whose salinity varies between 1.8% 

and 2.0%, towards the Mediterranean. In the Sea of 

Marmara, an undercurrent is observed in the West-East 

direction due to the change in salt rates. This 

undercurrent causes the formation of two different water 

layers in the Sea of Marmara (Besiktepe et al., 1994; 

Artüz, 2002). 

These currents observed in the Sea of Marmara, the 

increase in pollution in the sea due to the continuous 

development of the surrounding provinces and the rise in 

sea temperature have led to an increase in the biological 

activity in the Sea of Marmara in recent years. Plankton, 

which is formed as a result of this biological activity, 

increases excessively due to the decrease in the number 

and species of fish in the sea and causes the formation of 

mucilage on the sea surface (Balkıs-Ozdelıce et al., 

2021; Savun-Hekimoğlu and Gazioğlu, 2021). Mucilage 

is also known very broadly as sea snow, clumped mass, 

foam accumulation, flocculation and mucus 

agglomeration (Özalp, 2021). It is known that the 

formation of mucilage in the sea is mainly caused by 

planktonic organisms and filamentous algae 

(Schiaparelli et al., 2007). Observation and follow-up of 

mucilage formed and lost over time is important for 

marine organisms and biological life (Artüz, 2002). 

Mucilage, also known as sea saliva, whose appearance 

by fishermen in the Sea of Marmara dates back to the 

1990s, has been observed intensively in March-May 

2021 (Tufekçi et al., 2010). 

It is a very practical method to use remote sensing (RS) 

technology to observe possible changes in sea waters 

from the very beginning (Ateş et al., 2020). RS 

techniques are a unique method for monitoring possible 

changes in the world, thanks to the satellites providing 
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images with different spectral, radiometric and temporal 

resolutions in large areas. Various classification 

algorithms are available for processing images and 

obtaining final products in RS studies. Maximum 

Likelihood Classification (MLC), Random Forest (RF) 

and Support Vector Machines (SVM) (Haque and Basak, 

2017; Wang et al., 2018) for supervised classification 

and K–Means algorithm and Iterative Self-Organizing 

data analysis algorithm (ISODATA) are the most 

preferred algorithms for unsupervised classification 

(Martinez, 2003; Çelik and Gazioğlu, 2020). In addition 

to the classification process, various indexes are used to 

distinguish the target class from other classes. The 

Normalized Difference Vegetation Index (NDVI) (Rouse 

et al., 1974) is used to distinguish vegetation from other 

details, and the Normalized Difference Water Index 

(NDWI) is used to distinguish water surfaces from soil 

and other terrestrial surfaces (McFeeters, 1996). 

Especially in urban areas and shallow waters, modified 

NDWI (MNDWI), which uses short wave infrared SWIR 

band instead of near infrared NIR band, is preferred to 

distinguish the water surface from shaded areas (Xu, 

2006). The two separate Automatic Water Extraction 

Index water extraction indices have been developed, 

AWEI_nsh and AWEI_sh, which automatically extract 

water surfaces for shaded and non-shaded surfaces 

(Feyisa et al., 2014; Simav et al., 2015; Gazioğlu, 2018). 

Images obtained from various satellite platforms can be 

used in RS studies. Sentinel constellation satellite images 

with Sentinel 2-A and Sentinel 2-B satellites offer 5-day 

temporal resolution. In addition, Sentinel satellite images 

provide spatial resolution ranging from 10 m to 60 m 

with 13 spectral bands. Observation of large areas is 

sometimes not possible on a single satellite image scene. 

For this purpose, it is possible to create a mosaic by 

combining multiple satellite images. Google Earth 

Engine (GEE) is a very useful platform for processing 

and analysis of created mosaic images. GEE is a RS 

platform that enables the use of many researchers in 

different fields such as global environmental 

observations, climate changes, drought, deforestation, 

agriculture, etc. It works in a cloud environment, and can 

process hardware-independent big data (Ülker et at., 

2018; Gorelick et al., 2017). Many studies have been 

carried out to examine water surfaces using GEE. Pekel 

et al. (2016) analyzed the 32-year water dynamics from 

1984 to 2015 on a global scale with GEE using more 

than three million Landsat images. Huang et al. (2018) 

used GEE to map lakes in China for determining 

maximum and minimum water coverage, and monitoring 

water surface changes. Nguyen et al. (2019) performed a 

fully automatic water surface extraction for New 

Zealand using AWEI values from Landsat-8 OLI images 

on the GEE platform. Jena et al. (2020) and Bi et al. 

(2020) used the GEE platform to detect seasonal 

variation of water surfaces. 

Fig. 1. Sea of Marmara 

The use of bands with different spectral properties and 

the use of indices obtained by algebraic processes 

applied to these bands in monitoring the changes in the 

water will distinguish the formations on the water 

surface from the clean water. When the literature on 

imaging sea mucilage, identification of it on water 

surfaces, determining its boundaries and coverage area is 

examined, it is seen that there is no study other than 

Zibordi and Hooker (2000) who were optically observed 

mucilage in the Adriatic Sea. In this study, it is aimed to 

determine the mucilage seen in the Marmara Sea 

quickly, to determine its spread and to calculate and map 

the area it covers on the sea. For this purpose, the 

formation and distribution of mucilage in the Sea of 

Marmara from 10.03.2021 to 06.06.2021 were examined 

with the JavaScript coding language on the GEE 

platform using RF algorithm and various indexes over 

Sentinel-2 images. With the help of the written code, 
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mucilage formation can be detected within minutes, 

completely in the cloud environment, regardless of the 

hardware and software used. In this way, the tracking, 

spread, progression or reduction of the mucilage on the 

see surface will be determined and will guide the 

stakeholders and decision makers in the mucilage control 

work. 

Materials and Methods 

Study Area 

The study area, which is surrounded by the provinces of 

Istanbul, Kocaeli, Bursa, Çanakkale, Tekirdağ, Yalova 

and Balıkesir, and the only inland sea in the world within 

the borders of the same country, is the Sea of Marmara. 

The Sea of Marmara is in a strategic location that 

connects the Black Sea to the Aegean and the 

Mediterranean, and also serves as a bridge to the 

European and Asian continents. The Sea of Marmara is 

approximately 240 km long, 70 km wide and has an area 

of approximately 11,870 km
2 
(Gazioğlu, et al., 2002). 

While the surface of the Marmara Sea carries the 

currents from the Black Sea, the deeper waters carry the 

Aegean and Mediterranean currents (Artüz et al., 2007). 

The map of the Sea of Marmara is shown in Figure 1. 

Table 1. Spectral bands and resolutions of Sentinel-2A/2B (MSI) datasets 

Sentinel - 2A/2B (MSI) 

Band Wavelength (nm) Resolution (m) 

2A 2B 

B2 (Blue) 496.6 492.1 10 

B3 (Green) 560.0 559.0 10 

B4 (Red) 664.5 665.0 10 

B8 (NIR) 835.1 833.0 10 

B11 (SWIR-1) 1,613.7 1,610.4 20 

B12 (SWIR-2) 2,202.4 2,185.7 20 

Table 2. Classification date ranges and number of satellite images used 

Date range Satellite Platform Number of Images 

10.03.2021-30.03.2021 2A/2B 1/10 

20.03.2021-06.04.2021 2A/2B 4/10 

10.04.2021-05.05.2021 2A/2B 12/7 

15.04.2021-20.05.2021 2A/2B 21/14 

17.05.2021-06.06.2021 2A/2B 6/9 

Data Sources 

In this study, images from the European Space Agency 

(ESA) Sentinel-2A (MSI) and Sentinel-2B (MSI) 

constellations were used. The band information, spectral 

and spatial resolutions of the images used are shown in 

Table1. 

Within the scope of the European Commission's 

program, the Sentinel-2A and Sentinel-2B constellations 

started their operations on 23 June 2015 and 7 March 

2017, respectively. The satellites continue their 

movements in an orbit at an altitude of approximately 

786 km from the ground. By using the two satellites 

together, the temporal resolution is reduced to five days. 

Sentinel satellite images provide 12-bit radiometric data 

in 13 spectral bands with spatial resolution ranging from 

10m to 60m. The satellite images used in the study are 

geometrically corrected images in UTM zones with 

WGS84 datum. Radiometrically corrected Level (L2A) 

images (Bottom-Of-Atmosphere (BOA) reflectance) can 

be obtained free of charge from Sentinels Scientific Data 

Hub (https://scihub.copernicus.eu/dhus/#/home). 

In the study, 5 different date ranges and a total of 94 

satellite images were used. The number of images, date 

ranges and satellite platforms are given in Table 2. 

Methods 

This study was carried out on the GEE platform, using 

the JavaScript coding language. In the first step of the 

study, satellite images were filtered according to cloud 

rate and date ranges (1). Then, the median values of the 

selected satellite images were calculated (2). Then, band 

indexes of NDVI, NDWI, MNDWI and AWEI_nsh were 

calculated (3). In the final stage, supervised 

classification was performed with the RF algorithm (4). 

The work flow diagram of the study is given in Figure 2. 

Acar et al.,  / IJEGEO 8(4):  423-434 (2021) 
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Fig. 2. Work flow diagram 

Healthy plants strongly reflect near infrared and absorb 

most of the red light. The NDVI index was developed 

based on this feature of the plants by using the algebraic 

relationship of the NIR and RED bands. After applying 

NDVI index, new pixel values of the image scene range 

between -1 and +1. As the value approaches +1, the 

vegetation is interpreted as dense and healthy, and as it 

approaches -1, the plant density is low and unhealthy 

(Yılmaz et al., 2021). NDWI index is designed to 

maximize reflectance of water by using green 

wavelengths, minimize the low reflectance of NIR by 

water features, and take advantage of the high 

reflectance of NIR by vegetation and soil features. As a 

result, water features have positive values and thus are 

enhanced, while other non-water details such as 

vegetation and soil usually have zero or negative values 

and therefore are suppressed (Qiao et al., 2012).  

MNDWI index was designed by using SWIR band 

instead of NIR band in order to minimize the effect of 

vegetation that may occur in shallow waters as well as 

shadows that may occur in urban areas (Yang et al., 

2018). 

AWEI index has been developed to improve the 

classification accuracy in the areas containing shadow 

and dark surfaces. This index uses green, SWIR, and 

NIR bands and defined coefficients to increase the 

contrast between water and dark surfaces. In this way, 

two separate equations have been developed to 

distinguish between water and non-water pixels and to 

predict the water surface with high accuracy. With these 

two separate equations, the index used for shaded areas 

(AWEI_sh ) and the index used for non-shadow areas 

(AWEI_nsh) are calculated (Feyisa et al., 2014). In this 

study, due to the large water surface of the Marmara Sea, 

the shadow effect was ignored, so the AWEI_nsh index 

was used. 

The indexes and formulas used in the study are given in 

Table 3. 
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Table 3. The used Indexes and related equations 

Indexes Abrivations Equations Referances 

Normalized Difference 

Vegetation Index 

NDVI 𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷

(Rouse et al., 1974) 

Normalized Difference 

Water Index 

NDWI 𝐺𝑅𝐸𝐸𝑁 − 𝑁𝐼𝑅

𝐺𝑅𝐸𝐸𝑁 + 𝑁𝐼𝑅

(McFeeters, 1996) 

Modifed Normalized 

Difference Water Index 

MNDWI 𝐺𝑅𝐸𝐸𝑁 − 𝑆𝑊𝐼𝑅1

𝐺𝑅𝐸𝐸𝑁 + 𝑆𝑊𝐼𝑅1

(Xu, 2006) 

Automated Water 

Extraction Index 

AWEI_nsh 4𝑥(𝐺𝑅𝐸𝐸𝑁 − 𝑆𝑊𝐼𝑅1) − (0,25𝑥𝑁𝐼𝑅
+ 2,75𝑥𝑆𝑊𝐼𝑅2) 

(Feyisa et al., 2014) 

The RF algorithm used in the study makes predictions 

based on decision trees. According to the sample 

datasets, individual decision trees come together to form 

decision forests. In the RF algorithm, decision forests try 

to find the best classification result by iterating 

(Breiman, 2001). 

In decision trees; j, tree estimation, is calculated by 

Equation (1) (Biau and Scornet, 2016). 

𝑚𝑛 (𝑥; 𝛩𝑗 , Ɗ𝑛) =  ∑
1𝑥𝑖∈𝐴𝑛(𝑥;𝛩𝑗,Ɗ𝑛)𝑌𝑖

𝑁𝑛(𝑥; 𝛩𝑗 , Ɗ𝑛)
𝑖∈Ɗ𝑛

∗ (𝛩𝑗)

(1) 

Where; Ɗ𝑛
∗ (𝛩𝑗) represents the set of data points before

the trees are formed, and 𝐴𝑛(𝑥; 𝛩𝑗 , Ɗ𝑛) x represents the

pixels. 𝑁𝑛(𝑥; 𝛩𝑗 , Ɗ𝑛),  𝐴𝑛(𝑥; 𝛩𝑗 , Ɗ𝑛) is the number of

contained points (Biau and Scornet, 2016). 

Equation (2) is used to estimate forests (Biau & Scornet, 

2016). 

𝑚𝑀,𝑛(𝑥; 𝛩1 , … … , 𝛩𝑀 , Ɗ𝑛) =
1

𝑀
∑ 𝑚𝑛(𝑥;𝑀

𝑗=1 𝛩𝑗 , Ɗ𝑛)    (2)

where, M denotes the number of trees in the forest. 

Results 

The formation and distribution of mucilage in the Sea of 

Marmara were determined for five different time 

intervals using satellite images processed on the GEE 

platform. While determining the date ranges, attention 

was paid to ensure that the cloud ratios in the images are 

at most 5% and represent the entire sea surface. Then, 

masking process was applied to images with 5% or less 

cloud ratio. All these images were stored in the GEE 

environment by creating an ImageCollection. In order to 

use the created ImageCollection for classification 

purposes, it is necessary to obtain a single image 

representing the region. For this purpose, all images are 

brought together by creating a mosaic. Overlapping 

images are also included in the combined images. To 

overcome this situation, the individual median values of 

all bands in the image are calculated and the 

ImageCollection is reduced to a single image. 

Based on the image, three different classes representing 

land, water and mucilage were determined on the GEE 

platform. In addition to the existing bands, NDVI, 

NDWI, MNDWI, AWEI_nsh indexes were also 

calculated and included in the classification to separate 

water from mucilage. 

Histograms of the reflections of the indices and bands on 

water and mucilage surfaces are shown in Figure 3 and 

Figure 4, respectively. When the histograms for the 

water surface in Figure 3 are examined, it is seen that the 

values in B2, B3, B4 and B8 vary between 200-360 nm, 

140-300 nm, 40-200 nm, and 8-160 nm, respectively. 

The lowest reflectance was obtained in the B8 (NIR) 

band. The NDVI value of the calculated indices ranges 

from -0.60 to 0, which is an expected range for water 

surfaces. According to the results, NDWI and MNDWI 

are highly correlated with close calculated reflection 

values. The NDWI and MNDWI values take a value 

between -1 and +1. Positive values represent the water 

surface, while negative values represent other surfaces 

(McFeeters, 1996; Xu, 2006). The values of the 

AWEI_nsh index vary between 230 and 790 at the water 

surface. 
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Fig. 3. Histograms of pixel values for the water surface 

Fig. 4. Histograms of pixel values for the mucilage surface 
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The reflection values on the mucilage surface for B2, 

B3, B4 and B8 given in Figure 4 vary between 140-

2,800 nm, 180-3,300 nm, 100-3,200 nm and 20-3,300 

nm respectively. The reflectance values of the RGB and 

NIR bands are close to each other and higher compared 

to the values obtained for water surface. The calculated 

NDVI values vary between -0.30 and +0.23, NDWI 

values vary between -0.20 and +0.50, MNDWI values 

vary between +0.23 and +0.95 and AWEI_nsh values 

vary between +90 and 11,200.There is a clear difference 

between the index values of NDVI and AWEI_nsh for 

the mucilage and water surfaces. 

Kappa statistical test was applied to determine the 

accuracy of classifications. In the Kappa statistical test, 

the overall accuracy is equal to the accuracy of the entire 

classification. The overall accuracy value is obtained by 

dividing the sum of the diagonals of the classified pixels 

by the total number of reference pixels (Cohen, 1960). 

The classification accuracy values obtained are given in 

Table 4. The overall accuracy value was over 90%. 

While the lowest accuracy value was 98.39%, the 

highest value was calculated as 99.95%. These high 

accuracy values indicate that the classification was 

successful and the mucilage was detected with very high 

precision.

Table 4. Classification accuracies 

Time intervals Overall accuracy (%) Kappa statistics (K) 

10.03.2021-30.03.2021 98.39 0.709 

20.03.2021-06.04.2021 99.95 0.959 

10.04.2021-05.05.2021 99.74 0.986 

15.04.2021-20.05.2021 99.95 0.981 

17.05.2021-06.06.2021 99.71 0.978 

The classification result maps generated using the RF 

algorithm on the GEE platform are shown in Figure 5a-e 

for five different dates. In Figure 5a, the region where 

mucilage is most concentrated is the Dardanelles Strait. 

It was seen on the classified images that there is a small 

amount of spread on the Anatolian coasts of the 

Marmara Sea. According to Figure 5b, there is no 

significant change in the density of mucilage in the 

Dardanelles, but it spreads in the Sea of Marmara, on the 

shores of Tekirdağ and to some extent in the Izmit Bay. 

In the map in Figure 5c, it is seen that mucilage spreads 

between the coasts of Tekirdağ and Marmara Island, 

around the   Gemlik Bay, in the center parts of the Sea of 

Marmara, on the shores of Istanbul and at the entrance of 

the Izmit Bay. According to the map in Figure 5d, 

mucilage was still existing in the Dardanelles between 

15.04.2021 and 20.05.2021 and intensified by moving 

from the Marmara Island to the central parts of the sea. 

In addition, it has been observed that there are spreads in 

the Izmit Bay, the Gemlik Bay, the shores of the 

Anatolian side of Istanbul and to some extent on the 

shores of the European side. There is also increases in 

mucilage cover, which appeared in small amounts on 

previous dates. 
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Fig. 5. a) mucilage map dated 10.03.2021-30.03.2021, b) mucilage map dated 20.03.2021-06.04.2021, c) mucilage 

map dated 10.04.2021-05.05.2021, d) mucilage map dated 15.04.2021-20.05.2021 map e) mucilage map dated 

17.05.2021-06.06.2021 

In order to determine the ratio of the area covered by the 

mucilage, the total surface area of the Sea of Marmara 

was calculated as 1,187,150 ha by assuming the 

Bosporus and the Dardanelles as approximate borders. 

The areas covered by the mucilage in this region are 

given in Table 5 in chronological order. As can be seen 

from Table 5, the mucilage area obtained from the 

images from 10.03.2021 to 30.03.2021 is 2,064.50 ha. 

This value corresponds to 0.17% of the whole Marmara 

Sea. The mucilage covered area was calculated as 

2,018.76 ha from the images gathered from 20.03.2021 

to 06.04.2021, which is the second time interval. 

Although there is a slight decrease compared to the 

previous month, this difference represents a minor 

change due to the similarities in the spectral reflection 

between the classes. When the classification accuracies 

given in Table 5 are examined, a slight decrease in the 

image classification accuracy of 10.03.2021-30.03.2021 

dated images, which explains that this difference is 

significant. The mucilage area obtained from the images 

dated from 10.04.2021 to 05.05.2021 increased 

approximately 1.5 times compared to the previous month 



Acar et al.,  / IJEGEO 8(4):  423-434 (2021) 

432 

as 2,960.01 ha. The mucilage covered area obtained 

from the images dated from 15.04.2021 to 20.05.2021 

was calculated as 8,041.10 ha. The amount of increase in 

this date range is about 3 times more than the previous 

one. Finally, the mucilage covered area obtained from 

the images between the dates 17.05.2021 and 06.06.2021 

reached to the maximum level with a value of 12,741.94 

ha. According to the last calculations, it was determined 

that 1.07% of the Marmara Sea is covered with 

mucilage. 

Table 5. Mucilage covered areas and percentages by time intervals 

Classification dates Area (ha) Percentage (%) 

10.03.2021-30.03.2021 2,064.50 0.17 

20.03.2021-06.04.2021 2,018.76 0.17 

10.04.2021-05.05.2021 2,960.01 0.25 

15.04.2021-20.05.2021 8,041.10 0.68 

17.05.2021-06.06.2021 12,741.94 1.07 

The mucilage area variation calculated for the defined 

time intervals is given in Figure 6. It has been observed 

that the area of mucilage has grown approximately 6 

times faster during the period between the first week of 

March and the last week of June.

Fig. 6. Variation of mucilage formation areas 

Conclusion 

In this study, the distribution and spatial variation of 

the mucilage coverage, which started to form in the 

Marmara Sea since the winter months of 2021, were 

determined on the GEE platform with the help of 

satellite images for the dates from 10.03.2021 to 

06.06.2021 by  using UA techniques. The time 

intervals have been determined to cover the entire Sea 

of Marmara by keeping the cloud ratio to be below 5% 

for each image scene. Classification studies have been 

carried out on a total of 94 satellite images. RGB 

bands, NIR band, NDVI, NDWI, MNDWI and 

AWEI_nsh indexes are calculated and included in the 

classification processes. It was observed that the 

reflectance values of the mucilage in these calculated 

band indices and in the bands used were significantly 

different comparing to the water surface class. These 

differences made it easier to distinguish the water 

surface from other details. Thus, the detection of target 

mucilage formations was easily done with RF 

classification techniques, which is a powerful machine 

learning algorithm. According to the classification 

results, mucilage was detected in the Dardanelles in the 

first images. In the following dates, it spread to the 

Izmit Bay and the Gemlik Bay, which are quite far 

from the Dardanelles. In the latest classification 

images, it was seen that the mucilage density increased 

in the Dardanelles Strait, Izmit Bay, Gemlik Bay, 

Erdek Kapıdağ Peninsula and the north of the Marmara 

Island. Between mid-May and the first week of June, it 

was observed that the mucilage coverage increased 

rapidly and the area covered by the sea surface reached 

12,741.94 ha. If no precautions are taken, it is foreseen 

that the biological activities will accelerate, and this 

increase will continue due to the increase in 

temperature with the effect of the summer season. 

With this study, important results were obtained in the 

detection of mucilage on the GEE platform. With the 

developed methodology and written code, mucilage on 

the sea surface and other similar details will be 

detected quickly in the cloud environment, independent 

of software and hardware. In addition, this approach 

can be used not only in the Sea of Marmara, but also in 

any sea or ocean of the world. This study has a unique 

value in terms of its design for mucilage and its results. 
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