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ABSTRACT. Let w; be weight functions on R, (i=1,2,3,4). In this work, we
define CWE%5:%0% . (R) to be vector space of (f, g) € (L%, x L%,) (R) such
that the 7—Wigner transforms W (f,.) and Wx (., g) belong to L7, (R?) and
L, (R?) respectively for 1 < p,q,7,s < 0o, 7 € (0,1). We endow this space

with a sum norm and prove that CW{f’l({Zféf@,w4 (R) is a Banach space. We

also show that CWEL%7 . (R) becomes an essential Banach module over
(LE, x L&,z) (R). We then consider approximate identities.

wi

1. INTRODUCTION

In this paper S (R) denotes the space of complex-valued continuous functions
on R rapidly decreasing at infinity, respectively. The space L? (R), (1 < p < 00)
denotes the usual Lebesgue space. Let w be weight function on R, i.e., positive
real valued, measurable and locally bounded function which satisfy w (z) > 1,
w(r+y) <w(z)w(y) forall z,y € R. Fora > 0, a weight w (z,t) = (1 + |z| + [¢|)*
which is defined on R? is called weight of polynomial type. The weighted Lebesgue
space is defined by LP, (R) = {f: fw e LP(R)} for 1 < p < oo. It is known that
L%, (R) is a Banach space under the norm | f[|, , = [|fwl[,,[9]. For any function f :
R — C, the translation, modulation and dilation operators T, M, and Dy are
given by Tof (t) = f(t — ), Myuf (t) = 2™ (t) and D, f (t) = |s| * f (%) for
all z,w € R, 0 # s € R, respectively. The parameters in wavelet theory are “time”
x and “scale” s. Dilation operator Dy preserves the shape of f, but it changes the
scale, [7].

Given any fixed 0 # g € L? (R)(called the window function), the short-time
Fourier transform (STFT) of a function f € L? (R) with respect to g is defined by

Vof (z,w) = /f(t) g (t — z)e2mitw gy,
R
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for z, w € R. The short-time Fourier transform is written as convolution V, f (z,w) =
e 2mew (f % M,g*) (x), where g* (t) = g (—t). It is easy to see that V,f (z,w) =
6*2““"“’Vf g (—x,—w). If g is a compact supported function with its support centered
at the origin, then the short-time Fourier transform V, f (z,.) is the Fourier Trans-
form of a segment of f centered in a neighborhood of z, [7]. Let 7 € (0,1) and let
0 # g € L? (R) be any fixed window function. The 7—short-time Fourier transform

of a function f € L? (R) with respect to g is given by Vi f(z,w) =V f (— f)

1-77 71
for z, w € R, [1,2,10]
The cross-Wigner distribution of f, g € L? (R) is defined to be

W(f,9)(z,w)= /f (:r + ;) g (a: - ;)G_Q’Tit‘”dt
R

for z, w € R. If f = g, then W (f, f) = W/ is said the Wigner distribution of
f € L?(R). The Wigner distribution is a quadratic time-frequency representation
and it measures how much of the signal energy during the any time period which
is concentrated in a frequency band. In this way, information about the energy
density in the time-frequency plane is taken. It also gives the joint probability
density function of the position and momentum variables, [7]. Let 7 € [0, 1] and let
f,g bein L? (R), the 7—Wigner transform is given by

W, (f,9) (z,w) = /f (z+7t)g(z—(1—7) t)e_zmt“’dt, r,wER
R

[1,2,10]. Let (X, ||.|| x) be a Banach space and let (Y |.||y) be a Banach algebra. If
X is an algebric Y —module, and ||yz| v < ||ylly ||z|lx forally € Y, z € X, then X
is called a Banach Y-module, [12]. If a net (eq),c; in a Banach algebra (E, ||.| )
satisfies (lliénleam = z for all # € E, then (eq),; is called a left approximate

identity. Also if a net (eq),; in a Banach algebra (F, ||| ;) satisfies lirr}mea =z
) (¢S

for all z € E, then (eq),; is called a right approximate identity. If a net (eq),¢;
is a left approximate identity and right approximate identity, then (e ), is called
an approximate identity. Moreover if there exists C' > 0 such that ||eq ||, < C for
all a € I, then (eq),; is said a bounded approximate identity, [3].

2. MAIN RESULTS

Definition 2.1. Let w; (i = 1,2, 3, 4) be weight functionson Rand let 1 < p,q,7,s <
oo, 7 € (0,1). The space C’W” T o, (R) consists of all (f,g) € (LB, x L% ) (R)

Wi ,wW2 7‘"—’3 wa w1

such that their binary 7—Wigner transforms (W (f,.), W (., g)) arein (Lf, x L%,
(RQ). It is easy to see that

10 D owzyes, o, = 105 0lig, rs, + 0OV () Wr (o) g s

o p,q,7,8,T 3 1-
is a norm on the vector space CWE 457 | (R). Also, there exist sum and maxi

mum norms on the spaces (L¥, x LZ ) (R) and (L], x L%,) (R?).

Theorem 2.2. (C’Wp arst (R )’||"‘CW5i723§7&)2‘w4) is a Banach space.

W1,wW2,wWs,wq

Proof. Assume that ((f,, gn))nGN is a Cauchy sequence in CW2:4s7  (R). Clearly

W1,wW2,wWs,wq

((fn, g"))nEN and (W (fn, ), Wr (., gn)))neN are Cauchy sequences in (L{'ﬁ,1 x LY )
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(R) and (L7, x L%,) (R?), respectively. Since (L?, x Lg ) (R)and (L7, x L%, ) (R?)
are Banach spaces, there exist (f, g) € (LE, x L% ) (R) and (h, k) € (L[, x L5,) (R?)
such that |[f, — fll,., — 0, lgn — 9lly0, — 0, [Wr(fn,.) —All,,, — 0 and
Wz (-;9n) = Kl ,, — 0. This implies W7 (fn,.) — hl, — 0 and

W (-, gn) — kll;, — 0. Then (W5 (fn,.), Wr (., 9n)))nen has a subsequence

(W, (fnk, s Wi (4, 9n,)))p, en Which converges pointwise to (h, k) almost every-
where. Also it is easy to show that | f,, — f|, — 0 and ||gn, — g[|, — 0. On the
other hand, if we use the Hélder inequality, then for any u € S (R) we find

‘WT (fnk7u) (wi) - W: (f’u) (x’w)‘ =

= /fnk (x + Tt) m672mwtdt _ /f (CC + Tt) mefzm‘twdt
R R

<[]t = D e+ ) a0 27|t
(2.1]1;

1\ [ 1
<(2)7 (1) Wk = Al

where % + i = 1. Then by (2.1), we obtain
|WT(f,u)(x,w)— ( )‘S|W7(fnk’u) (m,w)—WT(f,u)(x,w)|—|—
+ Wr (frysw) (2,0) = h(z,0)] <

(22 s(l)(li) k= Sl Nl W (g ) a,0) = )

e

for any u € S (R). By using the inequality (2.2), it is easily seen that W, (f,.) =h
almost everywhere. So the equivalence classes of W, (f,.) and h are equal. Using a
similar method, we find that W (., g) = k almost everywhere. Then the equivalence
classes of W (., ¢g) and k are equal. Hence

1 90) = (o Dllowsazie, o, = 10U = F190 = 0) g, rs, +
F IOV (= £, Wr (o = g xps, — 0

and (f,g) € CWpers ~(R). That means CWEL™57 (R) is a Banach space.

W1,W2,wW3,Wq w1 W2>W3;W4

Theorem 2.3. Let w; (i =1,2,3,4) be weight functions of polynomial type. Then
(S x 8) (R) is dense in CWp,q,rs T (R).

wW1,W2,ws,wq

Proof. Take any (f,g) € (S x S)(R). Then (W, (f,.),W-(.,g9)) € (5 x5)(R?).
Since w; (i =1,2,3,4) are weight functions of polynomial type, we have (f,g) €
(L2, x L2,) (R) and (W (f,.), W, (.,9)) € (L, x Lg,) (R?). That means (f,g) €

w1

Ccwpars T - (R). Hence we have (S x S) (R) C CWP’(” 57 s (R).

w1,W2, UJS w4 w1 ,wW?2 W&7UJ4

Now take any (f,g) € CWE4-5" | (R). Then we have ( f, Lr x L% ) (R)

€ (
and (W, (f,.),W-(.,9)) € (L%, x Lg,) (R?). Since (S x S) (R) = (L2, x Lg,) (R)
and (S x S) (R?) = (L7, x Lg,) (R?), there exist ((hn, kn ))nEN C (8% S)(R) and
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((Hp, Kn))pen C (S x S) (R?) such that

(23) ||(f7g) - (hnakn)HLalezz —0
and
(2.4) W= (£, Wr (.9) = (Hoy Kl ery = 0-

Then by (2.4), we have ||W.(f,.) — Hyl||, — 0 and ||W.(.,9) — K|, = 0. So
(Hp)pen and (Kp),, oy have subsequences (Hy, ), o and (Ky, ), cywhich converge
pointwise to W, (f,.) and W (., g) almost everywhere, respectively. Then, we easily
show that

(2'5) ”WT (fa ) - H"kHﬂws — 0, HWT ('79) - Ky
Using Hoélder inequality, we have for any u € S (R)
(W (hp,u) (2, w) — Hy,, (z,w)] < |Wr (f,u) (z,w) — Hy,, (z,w)] +
+ |WT (f’ u) (wi) - Wr (hn’u) (x’w)|

< W (F0) 020) = Ho (2,)| + [ (£ = ho) 2+ 70 Ju o = (1= ) )]
R

— 0.

k:||s,UJ4

(2.6)

1
P

<W7<f,u><x,w>—an<m,w>|+(i)'l’(1_17) 1 = Bl

where £ + L =

5+ 1. By (2 3) and (2.6), we achieve W, (hy,.) = Hp,. Similarly, we
can write W (., kn) = K,,. Then by (2.5), we find
(

W= (f, ) = Wa (s oy, = 05 W (59) = Wa ()l 0, — 0

S,Wq

This implies

(2.7) W= (£,), We (9)) = (We (B ) W okl s, — O
Finally combining (2.3) and (2.7), we get
10.9) = ko) lowgrzser . = 10F9) = (k)L s, +

+ ”(WT (f7 ) 7WT ('79)) - (WT (hna ) ) WT ('7 kn))||L;3><LfJ4 — 0.
Therefore the proof is completed. O

Definition 2.4. Let w; and w3 be weight functions on R and let be 1 < p,r < oo,
7 € (0,1). The space CWE".7 (R) consists of all f € L (R) such that their

7—Wigner transforms W, (f,.) are in L[, (R2). We endow this space with the sum
norm

I lewzrz, = 1F 1w, + 1We (F ), -

Let wo and wy be weight functions on R and let be 1 < ¢,s < 0o, 7 € (0,1). The
space CWJ*7 (R) consists of all g € LZ,_ (R) such that their 7—Wigner transforms

w2,Wq

W; (.,9) are in L, (RQ). This space is equipped with the sum norm
FIWr (9, -

By using the method in Theorem 1, it is easy to see that this spaces CW2:".7 (R)

and CW2%7 (R) are Banach space with these sum norm.

||9chg;;;4 = q,w2

Lemma 2.5. The space CWEAST |, (R) is isomorphic to (CWE™T x CWL5T ) (R).

wi,W2,wWs,ws w1,ws
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Proof. Take the mapping I : CWE%rsT | (R) — (CWET x CWELET) (R), I((f,9))

W1,wW2,wWs,wWq wi,ws w2,wyq
= (f,g). It is clear that this mapping is linear and bijective. Also, since
HH ((fv g))”CWﬁ,’i'fJéf;,g,% = ”(f’ g)HLﬁl XL, + ”(WT (f’ ) Wr ('a g))”LQS xLg,

= ||pr,w1 + ||g||q,w2 + ||WT (f’ ‘)Hr,w3 + HWT ('79)”5,0.24
= 1 llp oy + I (F Ml + 19llg 0 + 1Wr (5 95,

= fllewzrz, +9llowsyz, = 15 Dllewzrz, xowass, »
The mapping I is isometry of CWEesT (R) into (CWET x CWL5T ) (R).
Therefore, we obtain that CWg45" | (R) = (CWETT x CWLsT ) (R). O

Definition 2.6. Let f and g be any functions on R. The binary translation map-
ping is defined by

To (f,9) (1) = (Tof (1), Tug () = (f (t =), g (t = 2)), @, t € R
The following lemma is written easily from Propositiond4 in [11]
Lemma 2.7. For 7 € (0,1) and z € R, we have
W, (T, h) (2,0) = €T 1y 0 W () (2,0)

and

WT (kv ng) (1‘7LU) = e27‘l’isz’(z‘r,O)VVT (k7g) :

Theorem 2.8. Assume that wy is symmetric weight function. The space CWE 2257 | (R)
is tnvariant under binary translations. Moreover,

1T (Dl ewzpzer ., < (@(2) +0((2,0) v ((zr,ON(f; Dl ewrarss .,

01 wa,w3,wy w1,w2,w3,wy

where u = max {wy, we} and v = max {ws, w4 }.

Proof. Let (f,g) € CWE:4rsT  (R). Then, we write (f,g) € (L%, x L2_) (R) and

wi,wW2,wWs,wWs w1

(W, (£,.).Wr (9)) € (LL, x L3,) (B). Also, since [T fll,,, < w1 (=) [fll,.,
and [ Z2gll,, < w2 () /], [5): we have

172 (£ 9z, s, = ITef o + 120

< w1 (2) [fllpor @2 (2) £l
(2.8) <w () 1(£.9)l 1, vz,

where u = max {w1, wa}. Then, we write T (f,g) € (LE, x L% ) (R) for all z € R.
By Lemma 2.7, we have

IV (T21.) s W (Teg))liy, e, = W (T fs )l + IWr G T29)s
= e T ) Wr (f, ),y + 167 Tar ) Wr (9|1,
Sw3((2(1=7),0) [[Wr (fs )y +wa ((27,0)) [[Wr (1, 9) | 0,

<ws ((2,0)) w3 ((27,0)) [Wr (f, ), 0y +wa ((2,0)) wa ((27,0)) [Wr (-, 9) |50,

(2.9)
< v ((2,0)v ((zr, ) [(W- (f,), Wr (o 9)ley, xre, -

q,w2
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where v = max {ws, wy} . Combining (2.8) and (2.9),

IT= (f Dlewzzzym o, = W FTe9)pp xra, IV (T2F.) We (G Teg))llny, wrs,
< u ()9, wr, +0((z0) 0 (=7, ) (W (f) s Wr (9Dl xrs,

<u@) I Dllownares ., 0 ((z00) v (GEO) I, Dllewserss .,

= (u(2) +v((z,0) v ((zr, ) I Dlewzarer ., -

—_  ~—

Finally, we say T, (f,g) € CWELrsT  (R). O

W1,wW2,wWs,wq

Definition 2.9. Let f, g, h, k£ be Borel measurable functions on R. The binary
convolution is defined by (f,g) * (h,k) = (f *h,g* k), where ”*” denotes usual
convolution. The following conditions must be required for the binary convolution
to be defined;

/If(y)h(x—y)\dy<oo
R

and

/|g<y>k<x—y>|dy<oo
R.

Theorem 2.10. a)Assume that ws is symmetric weight function. The binary
translation mapping (f,g9) — T (f,g) is continuous from CWE A>T | (R) into
cwpanst (R) for every fized z € R.

w1,W2,ws,wWq
b) The binary translation mapping z — T, (f,g) is continuous from R into
CWpaLrsT —(R).

W1,W2,wW3,wWq

cwrarsr ., (R) be given. It is enough to prove the

S
(0,0). Let € > 0 be given. Choose an ¢ > 0 such that
ThUS7 if ||(f, g)HCWUzgquééwg wa < (57 then by (29)

Proof. a) Let (f,g)
theorem for (f,g) =

0 = TGO

”TZ (fv g)”CWﬂﬂfgfﬂg,% < (u (Z) +wv ((Z, 0)) v ((ZTv 0))) H(f7 g)HCWﬂ’ﬂJQ“%M
<0 (u(z)+v((20)v((z7,0)) =e¢.

b) Take any (f,g) € CWE:LmsT ~ (R). It is known that the translation mapping

w1,w2,wWs,wWq
is continuous from R into L? (R) and L, (R), [5]. So for any given ¢ > 0, there
exists 01 (¢) > 0 such that if |z — u| < 1 for z, u € R, then

17 (f,9) = Tu (f, g)llLﬁl XL, = (Tof = Tuf—T.9— Tug)”Lf,l xL&,

3
(2.10) = max {|Tof = Tl + 179 = Tutlly } < 5

Also since the modulation mapping is continuous from R into L7, (R?) and L, (R?)
[5], for the same € > 0, there exists d3 (¢) > 0 such that if |z — u| < 02 for z, u € R,



194 OZNUR KULAK AND ARZU OMERBEYOGLU

then
|(Wr (Tof = Tuf,), Wr (., Tog _Tug))HLT XL,
= [[Wr (T f = Tuf, My + W7 (T Tu9)||g s =
= max{|[e”* " To1r)0)Wr (£,) = zmuT(u(l—f),mWr (£l
2™ T (or,0)Wr (1 9) — €™ “TuryWr (-, 9), ) =
= max{[| Mo, - Tz1-7).0)Wr () = Mo, -y Tw(1 1)
(211)  ||M,)Ter0)Wr (+9) = Mo,y Tauro)Wr (5 9)|, 0,3 <
Set § = min {01, d2} . From (2.10) and (2.11), if |z — u| < ¢ for z, u € R, then
1T (f:9) = Tu (s D eowrres o, = 1T = Tuf = Tog = Tug)lowzares, .,
= (Tof = Tuf = Teg = Tug)ll 1z, xps, +

g e
(W (Tof =Tt ) We (o Tog = Tug)) 1wz, <5+ 5 =¢

rws’

) (‘f7')H’l‘,UJ37
<
2

O

Corollary 1. a) The binary translation mapping z — T, (f, g) is continuous from
R into CW2™7 (R).

w1i,ws
b) The binary translation mapping z — T, (f,g) is continuous from R into
CWi, (R).

Lemma 2.11. Let f, g € S(R). If 7 € (0,1), then

W (9) () = 55V )

holds for all x, w € R.

Proof. Assume that f, g € S (R). If we make the substitution v = = + 7¢, then we
have

We(£,9) (r) = [ o+ 75T — 0 =) et
R

= u W@, miw( #TE du

—{mg( L)) L

:/f<u>g(u (”) +f)62mw<“ ) du

e ()

/f Dy (u S )e_Qmwrudu
- -7

for all z, w € R. [
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Theorem 2.12. Let f, h, g, k, f1, f2€ S(R). If 7 € (0,1), then

W (f % h, f1) (z,w) = T&_T)e““ (h* (f*M% (DTzlfl>*>) (1:)
and
W (k) (r,0) = 2e 07 (D2 ke (D2 g Mo ) (fi)

holds for all x, w € R.
Proof. Take any f, h, f1 € S(R). Then by Lemma 2.11, we have

2rizw 1 T
WT (f*h’7f1) (.Z',W):e T 7VDL}“1 (f*h) (.’I;,UJ)
T(l—7) ~7=1
2mizw 1 x w
g e U (75:5)
1

:e@meﬁﬁ ((f*h)*Mg (Drilfl)*) (1 fr)
_ T(i_ﬂew (hx (0 (Dﬁfl)*)) (1IT) '

Now take any g, k, fo € S(R). Again by Lemma 2.11, we get

Wr (f2, 9% k) (v,w) = GWT(i_T)VBA(g*’“)ﬁ (z,0)

= 6WT(1_7)VD771(Q*]€).}[‘2 <1_:CT, :J)

— Wme:?z‘iiﬁ Vi,D_=_ (g *k) <1_‘"‘7T, T“’)

_ w&i—ﬂe()e” (Doz, gy + e 1) (11)

B 5(1—7)(()) — . (Dm0 Do) w0 15 (fxf)

1 2rizw(+7) —r
L (0 ke (D are11)) ()

T T

(]

Theorem 2.13. Suppose that w3 = ki and wy = ko such that ki and ko are
constant numbers. Then CWELT (R) is an essential Banach module over

;W2,W3,Wq
(LY, x LL,) (R).

Proof. Let w3 and w4 be constant weight functions. It is known that CWg 4> | (R)

is a Banach space by Theorem 2.2. Now we take any (f,g) € CWELIs™ —(R)

Ww1,W2,wWs,wWq

and (h, k) € (LY, x LL,) (R). Since L?, (R) and LZ, (R) are Banach convolution

w1
module over L, (R) and L, (R) respectively, we have

(2.12) 1 Pl < Nl 1Pl
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and

(2.13) 19 % Kl gy < Ngllgp &l 0, -
Take any f; € S(R). By Theorem 2.12, we get

W, (F 5 by )y = (1) (e (1202 (0221) ) (1)
T / fx M (D;_lfl)*)(lfT)du
:m/|h<u>| 7, (£ M (D,lfl)*)(lg) du
R s
=y o2 0) (=)l
R
“ i re e e (o)) ()]
R s
\/T(ii_ﬂ/m(un VB onf )| au
- / b (u)| le =7 W, (f, f1) L du
1 Al W,
(2.14)

S AW (Fs Pl o (1Pl g < 00
Thus W, (f = h,.) € L,, (R?). Now take f; € S(R). Again by Theorem 2.12, we

D) ()

1 2rizw(+r)
—e T(-7) (D%lk*(D

||WT (f27g * k)Hs,w4 =

.
S,wyq
zi (Doz ks (Dozygs Me f3)) (fi)
S,waq
-1 /DT;Ik(U) T, (D=, ) (1_—xf> o
A S,wa
s ()]
/ ,
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1 2rizw —2mizw -z
- 7/ D_=_k(u)|||eTG=T e 707 (DLg*Ml}fﬁ du
= = 1 - 1—7 $.wa
A ,
1 2mizw —-r —Ww
- ;/ D711k(u) eTOT)VfZDTTlg(lT’ T ) 5,wq .
A )
1 Arizw = —2mizw —r —w
_ = D - k (u) er(i-7) e T(l r) Vi, D , du
- 1 l—7" 7
A S,w4q
— a u e* -7 T y u
- T—1 D 9 2 1—7'71 $,W4
A )
1 —2mizw ]_ 27r1,rw
=— [ D=k ||[VT(l=-T)e" 7 ———ms Vb . gf2(z,w0) du
- 1 7(1— 7')
: S,w4q
1
= — 7'(]_—’7’) D ‘”W f27 )st4du

= HW f27

: kH

ﬁ

HW f2’ SW4\/ || ||1
(2.15)

< ||W (f27 )Hs,w4 ||kH1,w4 < 0.

sw4

So W, (.,g* k) € Lf,, (R?). Combining (2.12), (2.13), (2.14) and (2.15), we achieve

1(£;9) * (hs B)llowrares = I g x R)llowpars: | =

w1 ,wa,w3,wyq 1,w2,w3,wyq

= 17 % g % W), ez, + IOV (F by ) We (g s Mgy s
max {1+ Bl g, 195 Kl } + max W (F 5 Bl s IW Cog 5 B, )
085 {11 I, 19 1B b+ 005 LI CF g Dl I o ) B, )

{
{
5 {1y 191y § 0 { 1R, Il b+
{
{
{

Il
=]

-+ max

W (£,.) W,||WT<.,g>||s,w4}max{nhuw,||k||17w4}

el o+

o+ ma { [ W (. W,||WT<.,g>||s,m}max{nhum7||k||1,w2}

= {max {111, 9} + m2x LUV (£ ) I (o), } e { My 5 1L,

= {”(.ﬂg)HLﬁleE,z + H(WT (f’ ) Wr (-’g))||L£3><LZ4} H(h7k)||L}dl><L1)2
(2.16)
= I Dllewszpes, o, 1Ry xrs

= max {1 £ll0, 191l } max { |

Therefore we obtain that CWE:%m%7 | (R) is a Banach module over (L}, x L. ) (R).

w1 ,W2,wWs3,wq w1
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Now we will show that CWE:47>5" | (R) is an essential Banach module over

(LY, x LL,) (R) and use Module Factorization Theorem [12]. For this, it suffices to

w1

prove that (LY, x L. ) (R) « CWE:Lrsr  (R) is dense in CWEL5T  (R). By

w1 W1,w2,ws3,wWq Ww1,W2,wWs,wWq
(2.16), we can write

(LY, x LL)) (R) « CWEasr | (R) C CWELST | (R).

w1 Ww1,W2,wWs,wWq w1,wW2,ws,wq
Also it is known that L} (R) and L, (R) have bounded approximate identity,
[6]. Let U and V be compact neighbourhoods of the unit element of R. We can
choose approximate identities (eq),; and (eg) ey Which are positive bounded and
suppeqa C U, suppeg C V, |leqa|l; = 1 and |[leg]|;, = 1 for all o, B € I. Let
(h, k) e CWEamsT (R). For fixed ag, By € I, we get

W1,w2,ws,wq

[ Cear o) * (k) = (s )l engmnzer = 1 (Eao B = By = B) [ pppaes

»w2,w3,wy

~ ||(ea0 *h — h/, €80 xk — k)HCngT:JB XCWLS’;J‘L

(2.17) = llea * h — h”cwgi’;;fg + llegy * k — kHCWL”;,LZl :

On the other hand, since the translation mapping is continuous by Corollary 1, we
have ||T.h — h||gy».rr < § for given any € > 0. Hence
w1,ws

lea b= bllowzys, = | [ ean (2) (b ) = ) d

R CWE o,
g
(2.18) < /eao () ITh— bl cypgy, 42 < =
Rd

Similarly we write for the same € > 0,we can make

€
(2.19) lleg, * k — k”cwg;;,ﬁl <3
Then, by (2.17), (2.18) and (2.19), we obtain

g g
(eaoreao) * (k) = (b )l gz . < 2+ 5 =c.

\Wwo,w3,wy 2 2

That means (L., x L. ) (R) * CWgersr (R) is dense in CWELEST | (R).

w1 . . w1,w2,wWs,wq . wi,wW2,ws,wq
Therefore from Module Factorization Theorem, the proof is completed.

By using Theorem 6, it easy to prove following Corollary

Corollary 2. Assume that w3 = k1 and wy = ko such that k; and ko are constant
numbers. Then,

a) CWE"7 (R) is an essential Banach module over L}, (R).

b) CW&s7 (R) is an essential Banach module over L}, (R).

w2,Wq

Theorem 2.14. Let w3 = k1 and wy = ko be constant weight functions. Then
there exists ((ea,€s)), gy 8 an approzimate identity of the space (LY, x LL,) (R)
such that

hHGlI (eaaeﬁ) * (fa g) = (.f7 g)

a,p

for all (f,g) € CWELTsT (R),

w1,w2,wWs,Wa
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Proof. Using the fact that L}, (R) and L, (R) have bounded approximate identi-
ties (ea),er and (eg)ge; , respectively, we easily obtain that ((ea,ep)), 5o is an
approximate identity in (L}, x Ll ) (R). On the other hand, from Corollary 2 and
by [3], we get

2.20 lime,, =7 1 —
(2.20) limeo « f = f, limeg + g =g

for all f € CWE™T (R) and g € CW2*T (R). Therefore by (2.20), we obtain

w1,ws w2,wyq

1. s 5 = 1 @ ) = )
a,ggl(e es) * (f,9) a,&?éz(e « foesxg) = (f,9)

(f,9) € CWEAL T, s (R). O

Wi,W2,wWs,wWq

3. CONCLUSION

Wigner transform, which is a quadratic time-frequency representation; it is very
ideal in the mathematical description of the time-frequency information of the sig-
nals. The reasons for its preference can be summarized as follows: The Wigner
transform measures the energy of a given signal in any frequency band and in any
time period. Thus, in signal analysis, the information of the energy density in
the time-frequency plane is obtained. It also gives the joint probability distribu-
tion for position and momentum variables in physics, [7]. In our previous papers,
we have characterized function spaces using the wavelet transform and fractional
wavelet transform, [4,8]. In this study, we defined a new function space using the
T7—Wigner transform, which is a quadric time-frequency transform. We then have
studied the Banach module structure of this space, the continuity of the translation
mapping and its approximate units. In this way, a new function space with rich
features was characterized thanks to the 7—Wigner transform, which is frequently
used in harmonic analysis, signal analysis and operator theory.
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