## Celal Bayar University Journal of Science

# General Atom-Bond-Connectivity Index of Graphs 

Seda Kınacı $1^{1 *}$ (D)<br>${ }^{1}$ Vocational School, Tarsus University, Takbaş Mh. Kartaltepe Sk. Tarsus, Mersin. Turkey<br>*sedakinaci@tarsus.edu.tr<br>* Orcid: 0000-0002-5334-5091

Received: 28 July 2021
Accepted: 20 January 2022
DOI: 10.18466/cbayarfbe. 975636


#### Abstract

The Atom-bond-connectivity index $A B C$ of a graph $G$ is determined by $d_{i}$ and $d_{j}$. In this paper, sharp results for the general $A B C$ index which has chemical applications are found using different methods. These new results for $A B C$ index are investigated in terms of its edges, its vertices and its degrees. In particular, some relations for general $A B C$ index are obtained involving different Topological indices; Randic index, Zagreb index, Harmonic index and Narumi-Katayama index. Indeed, general $A B C$ index is improved by the help of the maximum and minimum degrees.


Keywords: Atom-Bond-Connectivity index, Topological indices, Generalization.

## 1. Introduction

A topological index is a popular number involved to graph which is used in chemical graph theory, particularly. Topological index also contributes to the design of pharmacologically active compounds and the identification of environmentally hazardous substances. The most important topological indices base on vertex and edge distances. Randic index is used to model the arms of the carbon atom framework of the alkanes. Randic index is described as [2]

$$
R(G)=\sum_{v_{i} v_{j} \in E(G)} \frac{1}{\sqrt{d_{i} d_{j}}}
$$

where $v_{i} v_{j}$ indicates the edge of the graph $G$ and $d_{i}$ is the degree of the vertex $v_{i}$. During many years, different indices are improved. Among them, first and second Zagreb indices are recognized by [4,7]
$Z_{1}(G)=\sum_{v_{i} v_{j} \in E(G)}\left(d_{i}+d_{j}\right), Z_{2}(G)=\sum_{v_{i} v_{j} \in E(G)}\left(d_{i} d_{j}\right)$.
Another topological identifier is the Harmonic index that has a prominent place is described in [11]

$$
H(G)=\sum_{v_{i} v_{j} \in E(G)} \frac{1}{d_{i}+d_{j}}
$$

A survey of properties of Harmonic index is given in $[10,13]$. Also the modified Narumi-Katayama index is introduced in [8],

$$
N K^{*}(G)=\prod_{i \in V(G)}\left(d_{i}\right)^{d_{i}}=\prod_{v_{i} v_{j} \in E(G)}\left(d_{i} d_{j}\right)
$$

Nowadays, it is found the atom-bond connectivity index $A B C$ which is a good example of linear and branched alkanes with tensile energy of cycloalkanes. $A B C$ index is an important degree based topological index in [9] such that

$$
A B C=A B C(G)=\sum_{v_{i} v_{j} \in E(G)} \sqrt{\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}}
$$

The $A B C$ index plays a significant role in temperature studies in alkanes. [1,3,6] For example, $A B C$ index of ethene $\left(C_{2} H_{4}\right)$ is $4 \sqrt{\frac{2}{3}}+\frac{2}{3}$.
Recently, much attention is being paid to the general $A B C$ index $A B C_{\alpha}$ is described as

$$
A B C_{\alpha}=A B C_{\alpha}(G)=\sum_{v_{i} v_{j} \in E(G)}\left(\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}\right)^{\alpha}
$$

The narrative order of this study is as follows: In Section 2, some results for general $A B C$ index of graphs with some fixed parameters are obtained. In the sequel, some special bounds are outlined and some inequalities using the vertices, the edges and the degrees are
improved. In addition, some novel results for the general $A B C$ index of graphs are pointed out related o Randic index, Zagreb index, Harmonic index and Narumi-Katayama index.

## 2. Main Results

Let $G$ be a simple, finite, connected graphs with the vertex set $V(G)$ and the edge set $E(G)$. In this section, $\sum_{i, j \in E(G)}$ and $\prod_{i, j \in E(G)}$ is represented by $\quad \sum_{i j}$ and $\prod_{i j}$ respectively.
The article [12] is refered to reader for a classical lemma, the Ozeki's inequality. Also, the following lemma is used to find the bound on general $A B C$ index.

Theorem 2.1. [10] If $\boldsymbol{\alpha} \geq \mathbf{1}$ is an integer and $\mathbf{0} \leq \boldsymbol{x}_{\mathbf{1}} \leq$ $\cdots \leq x_{k} \leq k-1$, then

$$
(k-1)^{1-\alpha} \sum_{j=1}^{k}\left(x^{j}\right)^{\alpha} \leq\left(\sum_{j=1}^{k}\left(x^{j}\right)^{\frac{1}{\alpha}}\right)^{\alpha}
$$

For details, see [5,14,15].

### 2.2. On The General ABC Index For $\alpha=1$ and $\alpha=2$

In this subsection, $G$ may have several connected components but $G$ does not contain isolated vertices. Here, general $A B C$ index for $\alpha=1$ is found by adding an edge to $G$ and by deleting an edge from $G$. Also, special inequalities for general $A B C$ index are established associated with different topological indices.

Theorem 2.2. Let $i$ and $j$ be nonadjacent vertices of graph $G$ and let $G+i j$ be the graph obtained from $G$ by adding edge $i j$ to it. Then,
i) $A B C_{1}(G+i j) \leq A B C_{1}(G) ; d_{i} \geq 2$,
ii) $A B C_{1}(G+i j) \geq A B C_{1}(G) ; 0 \leq d_{i} \leq 2$.

Proof: Let $d_{i}=\mu$ and $d_{j}=\rho$. For $x, y>0$,

$$
\frac{(\mu+1)+\rho-2}{(\mu+1) y}-\frac{\mu+\rho-2}{\mu \rho}=\frac{-\rho+2}{\mu \rho(\mu+1)}
$$

There are two cases in this expression: i) $\rho \geq 2$, ii) $0<\rho \leq 2$.

Let $i_{1}, i_{2}, \ldots, i_{k}$ be the neighbours of $i$ in $G$ for $k=d_{i}$ and let $j_{1}, j_{2}, \ldots, j_{l}$ be the neighbours of $j$ in $G$ for $l=d_{j}$.
Let $\alpha=1$ in general $A B C$ index.
i) For $\rho \geq 2$; the inequality gives
$A B C_{1}(G+i j)-A B C_{1}(G)=$
$\frac{\left(d_{i}+1\right)+\left(d_{j}+1\right)-2}{\left(d_{i}+1\right)\left(d_{j}+1\right)}+\sum_{m=1}^{k}\left[\frac{\left(d_{i}+1\right)+d_{i_{m}}-2}{\left(d_{i}+1\right)\left(d_{i_{m}}\right)}-\frac{d_{i}+d_{i_{m}}-2}{d_{i} d_{i_{m}}}\right]$
$+\sum_{n=1}^{l}\left[\frac{\left(d_{j}+1\right)+d_{j_{n}}-2}{\left(d_{j}+1\right)\left(d_{j_{n}}\right)}-\frac{d_{j}+d_{j_{n}}-2}{d_{j} d_{j_{n}}}\right] \leq 0$
ii) Similarly case (i), $A B C_{1}(G+i j)-A B C_{1}(G) \geq 0$ for $0<\rho \leq 2$.

Theorem 2.3. Let $i$ and $j$ be nonadjacent vertices of graph $G$ and let $G-i j$ be the graph obtained from $G$ by deleting edge $i j$ to it. Then,
i) $A B C_{1}(G) \geq A B C_{1}(G-i j) ; d_{i} \leq 2$,
ii) $A B C_{1}(G) \leq A B C_{1}(G-i j) ; d_{i} \geq 2$.

Proof: Let $d_{i}=\mu$ and $d_{j}=\rho$. For $x>1, \rho>0$,

$$
\frac{\mu+\rho-2}{\mu \rho}-\frac{(\mu-1)+\rho-2}{(\mu-1) \rho}=\frac{-\rho+2}{\mu \rho(\mu-1)}
$$

There are two cases in the above exression:
i) $\rho \geq 2$, ii) $\rho \leq 2$.

Let $i_{1}, i_{2}, \ldots, i_{k}$ be the neighbours of $i$ in $G$ for $k=d_{i}$ and let $j_{1}, j_{2}, \ldots, j_{l}$ be the neighbours of $j$ in $G$ for $l=d_{j}$, similar to Theorem 3.1.
Let $\alpha=1$ in general $A B C$ index.
i) For $\rho \geq 2$; the inequality shows

$$
\begin{array}{r}
A B C_{1}(G)-A B C_{1}(G-i j) \\
=\sum_{m=1}^{k}\left[\frac{d_{i}+d_{i_{m}}-2}{d_{i}\left(d_{i_{m}}\right)}\right. \\
\left.-\frac{\left(d_{i}-1\right)+d_{i_{m}}-2}{\left(d_{i}-1\right) d_{i_{m}}}\right] \\
+\sum_{n=1}^{l}\left[\frac{d_{j}+d_{j_{n}}-2}{d_{j}\left(d_{j_{n}}\right)}-\frac{\left(d_{j}-1\right)+d_{j_{n}}-2}{\left(d_{j}-1\right) d_{j_{n}}}\right] \\
-\frac{\left(d_{i}-1\right)+\left(d_{j}-1\right)-2}{\left(d_{i}-1\right)\left(d_{j}-1\right)} \leq 0
\end{array}
$$

ii) Similarly case (i), $A B C_{1}(G)-A B C_{1}(G-i j) \geq 0$ for $\rho \leq 2$.

Theorem 2.4. Let $G$ be a nontrivial graph with the minimum degree $\delta$ and the maximum degree $\Delta$. Then,

$$
A B C_{1}(G) \geq \frac{\delta m}{\Delta}+\left(\delta^{2}-2\right) R^{2}(G)
$$

Proof: It is seen that $\left(d_{i}-\delta\right)\left(\Delta-d_{j}\right) \geq 0$. Thus, $\Delta d_{i}+\delta d_{j} \geq d_{i} d_{j}$. It is implies that

$$
d_{i} d_{j}+\Delta \delta \geq \frac{\Delta}{\delta}\left(d_{i}+d_{j}-2\right)+\frac{2 \Delta}{\delta}
$$

Therefore, the inequality gets $1+\frac{\Delta \delta}{d_{i} d_{j}} \leq \frac{\Delta}{\delta} \frac{d_{i}+d_{j}-2}{d_{i} d_{j}}+$
$\frac{2 \Delta}{\delta} \frac{1}{d_{i} d_{j}}$. That is; $\frac{\delta m}{\Delta}+\left(\delta^{2}-2\right) \sum_{i j} \frac{1}{d_{i} d_{j}} \leq \sum_{i j} \frac{d_{i}+d_{j}-2}{d_{i} d_{j}}$. By the definition of $A B C_{\alpha}(G)$ for $\alpha=1$ and $R(G)$,
$A B C_{1}(G) \geq \frac{\delta m}{\Delta}+\left(\delta^{2}-2\right) R^{2}(G)$.

Theorem 2.5. Let $G$ be a nontrivial, regular graph with $m$ edges. Then,

$$
A B C_{1}(G) \geq m \frac{2\left(N K^{*}(G)\right)^{\frac{1}{2 m}}-2}{N K^{*}(G)}
$$

Proof: By the Aritmetic-Geometric Mean inequality,

$$
\begin{gathered}
\frac{1}{m} \sum_{i j}\left(\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}\right) \geq \frac{1}{m} \frac{\sum_{i j}\left(d_{i}+d_{j}\right)-2 m}{\sum_{i j} d_{i} d_{j}} \\
\geq \frac{1}{m} \frac{\sum_{i j} 2 \sqrt{d_{i} d_{j}-2 m}}{\sum_{i j} d_{i} d_{j}} \\
\geq \frac{2\left(\prod_{i j}\right)^{\frac{1}{m}}-2}{\prod_{i j} d_{i} d_{j}} \\
\geq \frac{2\left(N K^{*}(G)\right)^{\frac{1}{2 m}}-2}{N K^{*}(G)}
\end{gathered}
$$

Hence,

$$
A B C_{1}(G) \geq m \frac{2\left(N K^{*}(G)\right)^{\frac{1}{2 m}}-2}{N K^{*}(G)}
$$

Theorem 2.6. Let $G$ be a graph with $n$ vertices and $m$ edges. Then,

$$
A B C_{2}(G) \leq \frac{H^{2}(G)-4 M_{2}(G)-H(G)+4 m}{M_{2}(G)^{2}}
$$

Proof: Using the definition of $A B C_{\alpha}(G)$ for $\alpha=2$; $A B C_{2}(G)$ is obtained as follows:

$$
\begin{gathered}
A B C_{\alpha}(G)=\sum_{i j}\left(\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}\right)^{\alpha} \\
\leq \frac{\sum_{i j}\left(d_{i}^{2}+d_{j}^{2}\right)-2 \sum_{i j} d_{i} d_{j}-4 \sum_{i j}\left(d_{i}+d_{j}\right)+\sum 4}{\sum_{i j}\left(d_{i} d_{j}\right)^{2}} \\
\leq \frac{\sum_{i j}\left(d_{i}+d_{j}\right)^{2}-4 \sum_{i j} d_{i} d_{j}-\sum_{i j}\left(d_{i}+d_{j}\right)+4 m}{M_{2}(G)^{2}} \\
=\frac{H^{2}(G)-4 M_{2}(G)-H(G)+4 m}{M_{2}(G)^{2}}
\end{gathered}
$$

### 2.2. On The General ABC Index

In this subsection, $A B C$ index is generalized and some relations for general $A B C$ index are obtained consepting the degrees.

Theorem 2.7. Let $G$ be a nontrivial graph with $x, y \in \mathbb{R}$. Then,

$$
\begin{array}{r}
A B C_{x+y}(G) A B C_{x-y}(G)-\sigma_{x, y} \leq A B C_{x}(G) \\
\leq \sqrt{A B C_{x+y}(G) A B C_{x-y}(G)}
\end{array}
$$

with
$=\left\{\begin{array}{cc}\sigma_{x, y}^{x-2} n^{2}\left(\left(\frac{\delta-1}{\delta^{2}}\right)^{x}-\left(\frac{\Delta-1}{\Delta^{2}}\right)^{x}\right) & ; \text { if }|x| \geq|y| \\ 2^{x-2} n^{2}\left(\left(\frac{\Delta-1}{\Delta^{2}}\right)^{\frac{x+y}{2}}\left(\frac{\delta-1}{\delta^{2}}\right)^{\frac{x-y}{2}}-\left(\frac{\delta-1}{\delta^{2}}\right)^{\frac{x+y}{2}}\left(\frac{\Delta-1}{\Delta^{2}}\right)^{\frac{x-y}{2}}\right) & ; \text { if }|x|<|y|\end{array}\right.$
Proof: The Cauchy-Schwarz inequality gives that

$$
\begin{gathered}
\sum_{i j}\left(\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}\right)^{\alpha}=\sum_{i j}\left(\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}\right)^{\frac{x+y}{2}+\frac{x-y}{2}} \\
\leq \sum_{i j}\left(\left(\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}\right)^{x+y}\right)^{\frac{1}{2}} \sum_{i j}\left(\left(\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}\right)^{x-y}\right)^{\frac{1}{2}} \\
=\sqrt{A B C_{x+y}(G) A B C_{x-y}(G)}
\end{gathered}
$$

In this expression, there are four cases:

1) If $x+y \geq 0$ then, $\left(\frac{2 \Delta-2}{\Delta^{2}}\right)^{\frac{x+y}{2}} \leq$ $\left(\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}\right)^{\frac{x+y}{2}} \leq\left(\frac{2 \delta-2}{\delta^{2}}\right)^{\frac{x+y}{2}}$.
2) If $x+y \leq 0$ then, $\left(\frac{2 \delta-2}{\delta^{2}}\right)^{\frac{x+y}{2}} \leq$ $\left(\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}\right)^{\frac{x+y}{2}} \leq\left(\frac{2 \Delta-2}{\Delta^{2}}\right)^{\frac{x+y}{2}}$.
3) If $x-y \geq 0$ then, $\left(\frac{2 \Delta-2}{\Delta^{2}}\right)^{\frac{x-y}{2}} \leq$ $\left(\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}\right)^{\frac{x-y}{2}} \leq\left(\frac{2 \delta-2}{\delta^{2}}\right)^{\frac{x-y}{2}}$.
4) If $x-y \leq 0$ then, $\left(\frac{2 \delta-2}{\delta^{2}}\right)^{\frac{x-y}{2}} \leq$ $\left(\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}\right)^{\frac{x-y}{2}} \leq\left(\frac{2 \Delta-2}{\Delta^{2}}\right)^{\frac{x-y}{2}}$.

Let $(x+y)(x-y) \geq 0$. By the Ozeki's inequality, it is seen that

$$
\begin{aligned}
& \sum_{i j}\left(\left(\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}\right)^{\frac{x+y}{2}}\right)^{2} \sum_{i j}\left(\left(\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}\right)^{\frac{x-y}{2}}\right)^{2} \\
& -\left(\sum_{i j}\left(\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}\right)^{\frac{x+y}{2}} \sum_{i j}\left(\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}\right)^{\frac{x-y}{2}}\right)^{2} \\
& \quad \leq \frac{n^{2}}{4}\left(\left(\frac{2 \delta-2}{\delta^{2}}\right)^{\frac{x+y}{2}}\left(\frac{2 \delta-2}{\delta^{2}}\right)^{\frac{x-y}{2}}\right. \\
& \left.\quad-\left(\frac{2 \Delta-2}{\Delta^{2}}\right)^{\frac{x+y}{2}}\left(\frac{2 \Delta-2}{\Delta^{2}}\right)^{\frac{x-y}{2}}\right)
\end{aligned}
$$

and thus,

$$
\begin{aligned}
& A B C_{x+y}(G) A B C_{x-y}(G)-A B C_{x}(G) \leq \\
& 2^{x-2} n^{2}\left(\left(\frac{\delta-1}{\delta^{2}}\right)^{x}-\left(\frac{\Delta-1}{\Delta^{2}}\right)^{x}\right) .
\end{aligned}
$$

It follows that
$A B C_{x+y}(G) A B C_{x-y}(G)-\sigma_{x, y} \leq A B C_{x}(G)$.

Celal Bayar University Journal of Science
Volume 18, Issue 1, 2022, p 91-94
Doi: 10.18466/cbayarfbe. 975636

Let $(x+y)(x-y)<0$. It is represented that

$$
\begin{aligned}
& A B C_{x+y}(G) A B C_{x-y}(G)-A B C_{x}(G) \\
& \leq \frac{n^{2}}{4}\left(\left(\frac{2 \Delta-2}{\Delta^{2}}\right)^{\frac{x+y}{2}}\left(\frac{2 \delta-2}{\delta^{2}}\right)^{\frac{x-y}{2}}\right. \\
&\left.-\left(\frac{2 \delta-2}{\delta^{2}}\right)^{\frac{x+y}{2}}\left(\frac{2 \Delta-2}{\Delta^{2}}\right)^{\frac{x-y}{2}}\right)
\end{aligned}
$$

And thus,
$A B C_{x+y}(G) A B C_{x-y}(G)-2^{x-2} n^{2}\left(\left(\frac{\Delta-1}{\Delta^{2}}\right)^{\frac{x+y}{2}}\left(\frac{\delta-1}{\delta^{2}}\right)^{\frac{x-y}{2}}-\right.$ $\left.\left(\frac{\delta-1}{\delta^{2}}\right)^{\frac{x+y}{2}}\left(\frac{\Delta-1}{\Delta^{2}}\right)^{\frac{x-y}{2}}\right) \leq A B C_{x}(G)$.

Hence,
$A B C_{x}(G) \geq A B C_{x+y}(G) A B C_{x-y}(G)-\sigma_{x, y}$.
Theorem 2.9. Let $G$ be a nontrivial graph with $m$ edges, maximum degree $\Delta$ and $2 \Delta \leq m-1$. For any integer $4 \alpha \geq 1$,

## 3. Conclusion

$\boldsymbol{A B C}$ index is an important estimation index in chemical graph theory. In this paper, some effects for the $\boldsymbol{A B C}$ index and the general $\boldsymbol{A B C}$ index are formed by the help of degrees and different topological indices. This paper aims to contribute to the use of the $\boldsymbol{A B C}$ index.

## Author's Contributions

Seda Kınacı: Prepared and wrote the draft, proved the theorems.

## Ethics

In the creation of this article, ethical violations were taken into account and acted within this framework.

## References

[1]. Ahmadi, M.B., Dimitrov, D., Gutman, I., Hosseini, S.A., Disproving a conjecture on trees with minimal atom-bond connectivity index, MATCH Communications in Mathematical and in Computer Chemistry 72, 685-698, 2014.
[2]. Randi'c, M., On characterization of molecular branching, Journal of the American Chemical Society 97, 6609-6615, 1975.
[3]. Bianchi, M., Cornaro, A., Palacios, J.L., Torriero, A., New upper bounds for the ABC index, MATCH Communications in Mathematical and in Computer Chemistry 76, 117-130, 2016.
[4]. Borovi'canin, B., Furtula, B., On extremal Zagreb indices of trees with given domination number, Applied Mathematics and Computation 279, 208-218, 2016.
$A B C_{\alpha}(G) \leq \delta^{\alpha} R_{\alpha}(G)+\alpha \delta^{\alpha-2} R_{\alpha-1}(G)$.
Proof: It is seen that $\left(d_{i}-\delta\right)\left(d_{j}-\delta\right) \geq 0$. Hence, $\left(d_{i} d_{j}+\delta^{2}\right) \geq \delta\left(d_{i}+d_{j}-2\right)$. That is; $\left(\frac{d_{i} d_{j}}{\delta^{2}}+1\right)^{\alpha} \geq \delta^{-\alpha}\left(d_{i}+d_{j}-2\right)^{\alpha}$.
By the Bernoulli inequality for $x \geq-1$, it gives that
$\delta^{-\alpha}\left(d_{i}+d_{j}-2\right)^{\alpha} \leq\left(\frac{d_{i} d_{j}}{\delta^{2}}+1\right)^{\alpha} \leq 1+$
$\alpha \frac{d_{i} d_{j}}{\delta^{2}}$. Thus, $\frac{\left(d_{i}+d_{j}-2\right)^{\alpha}}{\left(d_{i} d_{j}\right)^{\alpha}} \leq \frac{\delta^{\alpha}+\alpha \delta^{\alpha-2} d_{i} d_{j}}{\left(d_{i} d_{j}\right)^{\alpha}}$
$\left(\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}\right)^{\alpha} \leq \frac{\delta^{\alpha}}{\left(d_{i} d_{j}\right)^{\alpha}}+\frac{\alpha \delta^{\alpha-2}}{\left(d_{i} d_{j}\right)^{\alpha-1}}$.
$\sum_{i j}\left(\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}\right)^{\alpha} \leq$
$\delta^{\alpha} \sum_{i j} \frac{1}{\left(d_{i} d_{j}\right)^{\alpha}}+\alpha \delta^{\alpha-2} \sum_{i j} \frac{1}{\left(d_{i} d_{j}\right)^{\alpha-1}}$.
Therefore,
$A B C_{\alpha}(G) \leq \delta^{\alpha} R_{\alpha}(G)+\alpha \delta^{\alpha-2} R_{\alpha-1}(G)$.
[5]. Büyükköse, S., Altınk, E., Yalçın, F., Improved Bounds for the Extremal Non-trivial Laplacian Eigenvalues, Gazi University Journal of Science, 28, (1), 65-68, 2015.
[6]. Das, K.C., Atom-bond connectivity index of graphs, Discrete Applied Mathematics 158, 1181-1188, 2010.
[7]. Das, K.C., On comparing Zagreb indices of graphs, MATCH Communications in Mathematical and in Computer Chemistry 63, 433-440, 2010.
[8]. Ghorbani, M., Songhori, M., Gutman, I., Modified NarumiKatayama index, Kragujevac J. Sci. 34, 5764, 2012.
[9]. Gutman, I., Degree-based topological indices, Croatica Chemica Acta 86, 351-361, 2013.
[10]. Jos'e, M.R., Jos'e, M.S., New Results on the Harmonic Index and Its Generalizations, MATCH Communications in Mathematical and in Computer Chemistry 78, 387-404, 2017.
[11]. Fajtlowicz, S., On conjectures of Graffiti-II, Congressional Number 60, 187-197, 1987.
[12]. Kaya Gök, G., Some Bounds on the Distance-Sum-Connectivity Matrix, Journal of Inequalities and Applications, 171, 2018.
[13]. Wua, R., Tanga, Z., Deng, H., A lower bound for the harmonic index of a graph with minimum degree at least two, Filomat 27, 5155, 2013.
[14]. Kaya Gök, G., On the topological matrix and topological indices, AKCE International Journal of Graphs and Combinatorics 1, 252258, 2020.
[15]. Bapat, R.B., Graphs and Matrices, Indian Statistical Institute, New Delhi 110016,India, 2010.

