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Abstract: Nanobeams are now widely used in numerous vibration frequency research. In this study, an 

eigenvalue problem has used to determine the vibration frequency analysis of the buckyball and spring 

attached to the end of the nanobeam. The vibration frequencies of the system may be discovered using a 

single (2x2) matrix in this eigenvalue problem. A mathematical method for analyzing sensors has attached 

to nanobeams is presented in this paper. The results, which is obtained in this study, has showed a result 

that has compatible with the flicker frequency studies conducted in the literature, and the results have 

presented in tables and graphics. 
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Yay Kütle Sistemi İle Birleştirilmiş Fonksiyonel Olarak Derecelendirilmiş Nanokirişin Özdeğer 

Problemi İle Çözümü  

 

 

Öz: Nanokirişler günümüzde çok sayıda titreşim frekansı araştırmasında yaygın olarak kullanılmaktadır. 

Bu çalışmada, nanokirişin ucuna takılı halde bulunan buckyball ve yayın titreşim frekans analizini 

yapabilmek için bir özdeğer problemi kullanılmıştır. Bu özdeğer probleminde sistemin titreşim frekansları 

tek bir (2x2) matris kullanılarak hesaplanabilir. Bu çalışmada, nanokirişlere bağlı sensörleri analiz etmek 

için matematiksel bir yöntem sunulmaktadır. Bu makalede elde edilen sonuçlar literatürde yapılan titreşim 

frekansı çalışmaları ile uyumlu bir sonuç göstermiştir ve sonuçlar tablo ve grafiklerle sunulmuştur. 
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1. INTRODUCTION 

 

Today, numerous studies and papers on nanostructured materials are being published with 

great anticipation. In most of them, vibration frequency analyzers are commonly available. We 

should clearly say that non-local elasticity theory is incorporated in these research most of the 

time. The definition of adequate mathematical models for nanostructures is a significant topic 

affecting the theoretical framework of nanostructures because controlled experiments containing 

nanoscale effects are both expensive and challenging. This work presents a new subject to 

compare the vibration frequency that will occur in the system by using the buckyball and 

nanobeam at the same time. With the data to be revealed as a result of this study, it aims to be a 

reference for those who will work in this direction and the topic in the literature. 

The fact that non-local elasticity theory is so widely utilized has been the subject of numerous 

papers, and it gives a far more comfortable framework for studying nano elements at scale than 

classical elasticity theory. Classical elasticity theory is a scale-free theory that outstanding debts 

for small-scale effects result in small size. To circumvent the drawbacks of classical continuum 

models, Eringen (1972) has proposed the nonlocal elasticity theory. Pradhan and Phadikar (2009) 

have investigated nonlocal elasticity theory for vibration of nanoplates. Reddy (2007) has used 

nonlocal theory for bending, buckling and vibration of beams. Liu et al. (2008) have conducted 

delaminating buckling model based on nonlocal Timoshenko beam theory for microwedge 

indentation of a film/substrate system. Another study using Timoshenko beam theory have 

conducted by (Wang et al., 2008). Murmu and Pradhan's (2009) small-scale effect on the vibration 

of nonuniform nanocantilever based on nonlocal elasticity theory work, as noted in the previous 

paragraph, is an example of several studies on non-local elasticity. Lu et al. (2006) has published 

the work about dynamic properties of flexural beams using a nonlocal elasticity model. Aydogdu 

(2009), Civalek and Demir (2011) have used nonlocal beam theory in their studies. 

FG nanobeams have also been the subject of numerous studies. As an example, we can use 

Rahmani and Pedram (2014), Eltaher et al. (2013), Yayli and Uzun (2020) and Yayli (2018). 

Setoodeh et al. (2011), Thai (2012), Yayli, Yanik and Kandemir (2015), Yayli, Kandemir (2017), 

Yayli (2015) buckling analyses of carbon nanotubes can be seen in these papers. Civalek et al. 

(2020) and Uzun et al. (2020) have conducted vibration and stability analysis of nanobeams in 

their studies. There are some recently published studies in the literature that are similar to our 

study in terms of content and scope. As an example, Akbaş (2019), Alimoradzadeh and Akbaş 

(2021), Arda and Aydogdu (2020), (Akbaş, 2019).  

There are papers in the literature about carbon nanotubes and buckyballs, which will be 

included in this study. An example of these studies is torsional vibration of carbon nanotube–

buckyball systems based on nonlocal elasticity theory have published by (Murmu et al., 2011). 

Dravid et al. (1993) has conducted buckytubes and derivatives: their growth and implications for 

buckyball formation. Murmu and Adhikari (2010) has studied on nonlocal vibration of carbon 

nanotubes with attached buckyballs at tip. 

In this study, an eigenvalue problem has established for the vibration analysis of the 

buckyball and spring system attached to the nanobeam. In this eigenvalue problem, the vibration 

frequencies of the system can be found by using a single (2x2) matrix. This work presents a 

mathematical method for the analysis of sensors attached to nanobeam. Obtained data are 

presented in the form of tables and graphs. Figure 2, represents a functionally graded nanobeam 

with an attached spring mass system and the buckyball system used in the study.   

 

2. DEFINITION OF PROBLEM 

 

According to Eringen (1983), the stress field at a point x in an elastic continuum is reliant 

not only on the strain field at the point, but also on strains at all other points of the body. In Eq. 
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(1), which has been created based on Eringen's definitions, the nonlocal stress tensor 𝜎 at point x 

is expressed as 

𝜎 = ∫𝐾(|𝑥′ − 𝑥|, 𝜏) t(𝑥′) dx′

𝑉

                                                        (1) 

 

where t(𝑥) is the classical, macroscopic stress tensor at point x and the kernel function 

𝐾(|𝑥′ − 𝑥|, 𝜏) is the nonlocal modulus, |𝑥′ − 𝑥| being the distance and 𝜏 is a material constant 

that depends on internal and external characteristic. 

 

It is possible Eringen (1983) to represent the integral constitutive relations in an equivalent 

differential form as 

𝜎 − (𝑒0𝑎)2𝛻2𝜎 = 𝐶: 𝜀                                                        (2) 

 

in which 𝜀 and C are the strain and elasticity tensors, respectively. 𝑒0𝑎 represents the nonlocal 

parameter. In all theories, the axial force–strain relation is the same and it is given by (Eringen, 

1983) 

 

𝑁 − (𝑒0𝑎)2
𝜕2𝑁

𝜕𝑥2
 = 𝐸𝐴(𝜀xx

0 )                                                              (3) 

 

where the relations have been utilized. 

 

𝐴 = ∫ 
𝐴

𝑑𝐴,∫ 
𝐴

𝑧dA = 0                                                                (4) 

 

As a result, the x-axis follows the geometric centroid of the beam (Euler–Bernoulli Beam Theory). 

We only have N and 𝑀 in this theory. The constitutive relations are defined as follows (Eringen, 

1983): 

 

𝑀 − (𝑒0𝑎)2 𝜕2𝑀

𝜕𝑥2 = EIκ                                                                   (5)                                                               

 

wherein 𝑀 represents moment, κ is the curvature. The fourth-order partial differential equation 

of the nanobeam is given by Reddy (2007) according to nonlocal elasticity theory. 

 

 

𝐸(𝑟)𝐼
𝜕4𝑤(𝑥, 𝑡)

𝜕𝑥4
+ [1 − (𝑒0𝑎)2

𝜕2

𝜕𝑥2
] 𝜌(𝑟)𝐴

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑡2
= 0                               (6) 

 

where 𝐸(𝑟) is the modulus elasticity of the functionally graded material, 𝜌(𝑟) is the density of 

the functionally graded material. I is the moment of inertia of the cross-sectional area A, 𝑎 is the 

internal characteristic length, and 𝑒0 is a material constant. The material variation is taken as 

follows: 

 

𝐸(𝑟) = ((𝐸𝑜(𝑟) − 𝐸𝑖(𝑟)) (
𝑟

𝑅
)
𝛽

+ 𝐸𝑖(𝑟)) ;                                                     (7) 

 

𝜌(𝑟) = ( (𝜌𝑜(𝑟) − 𝜌𝑖(𝑟)) (
𝑟

𝑅
)
𝛽

+ 𝜌𝑖(𝑟)) ;                                                     (8) 
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where 𝜌𝑖(𝑟) mass density of inner material, 𝜌𝑜(𝑟)  mass density of outer material, 𝐸𝑖(𝑟) modulus 

of elasticity of inner material , 𝛽 represents FG index, 𝐸𝑜(𝑟)  modulus of elasticity of outer 

material. 

 

The lateral displacement 𝑤(𝑥, 𝑡) is used to examine the lateral vibration of the nanobeam. 

 

𝑤(𝑥, 𝑡) = 𝛹(𝑥)cos(ωt)                                                            (9) 

 

ω where is the natural frequency and 𝛹(𝑥) is the modal displacement function. On the basis of 

the identification of relationships between boundary points, the modal displacement function is 

defined as follows: 

 

𝑤(𝑥) =

[
 
 
 
 

𝛹0 𝑥 = 0
 𝛹𝐿 𝑥 = 𝐿

∑𝐷𝑗 sin(𝛼𝑗𝑥)

∞

𝑗=1

0 < 𝑥 < 𝐿
]
 
 
 
 

                                                   (10) 

 

in which 𝛹0 and 𝛹𝐿 are the deflections at the boundary points, wherein  

 

𝛼𝑗 =
jΠ

𝐿
                                                                           (11) 

 

where L is the nanobeam's length. In Eq. (10), the Fourier coefficient ( 𝐷𝑗 ) can be expressed as 

follows: 

𝐷𝑗 =
2

𝐿
∫ 𝑤(𝑥)sin(𝛼𝑗𝑥)𝑑𝑥

𝐿

0

                                                   (12) 

 

 

 
 

Figure 1: 

Functionally graded nanobeam with an attached spring mass system with 

buckyball 
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Eq. (10) is termwise differentiated to provide: 

 

𝑤′(𝑥) = ∑ 𝛼𝑗𝐷𝑗 cos(𝛼𝑗𝑥)

∞

𝑘=1

                                                        (13) 

 

A Fourier cosine series can be used to express Eq. (13): 

 

𝑤′(𝑥) =
𝑟0
𝐿

∑𝑟𝑗 cos(𝛼𝑗𝑥)

∞

𝑗=1

                                                          (14) 

 

 

In Eq. (14), the Fourier coefficients are given by 

 

𝑟0 =
2

𝐿
∫ 𝑤′(𝑥)𝜕𝑥

𝐿

0

=
2

𝐿
[𝑤(𝐿) − 𝑤(0)]                                               (15) 

 

𝑟𝑗=
2

𝐿
∫ 𝑤′(𝑥)cos(𝛼𝑗𝑥)𝜕𝑥         (𝑗 = 1,2. . . )

𝐿

0

                                       (16) 

 

We obtain the following results when we apply integration by parts: 

 

𝑟𝑗=
2

𝐿
[𝑤(𝑥)cos(𝛼𝑗𝑥)] +

2

𝐿
[𝛼𝑗 ∫ 𝑤(𝑥) sin(𝛼𝑗𝑥) 𝜕𝑥

𝐿

0

                        (17) 

 

𝑟𝑗=
2

𝐿
[(−1)𝑗 𝑤(𝐿) − 𝑤(0)] + 𝛼𝑗𝐷𝑗                                               (18) 

 

The function's first derivative is then calculated as follows: 

 

𝜕𝑤(𝑥)

𝜕𝑥
=

𝜓𝐿 − 𝜓0

𝐿
+ ∑cos(𝛼𝑗𝑥)

∞

𝑗=1

(
2((−1)𝑗𝜓𝐿 − 𝜓0)

𝐿
+ 𝛼𝑗𝐷𝑗 )                     (19) 

 

Stokes' transformation is the technique outlined above. By using Stokes' transformation as follows 

Eq. (20), the higher order derivatives of w(x) can be obtained individually. 

 

𝜕2𝑤(𝑥)

𝜕𝑥2
= −∑𝛼𝑗 sin(𝛼𝑗𝑥)

∞

𝑗=1

(
2((−1)𝑗𝜓𝐿 − 𝜓0)

𝐿
+ 𝛼𝑗𝐷𝑗 )                     (20) 

 

𝜕3𝑤(𝑥)

𝜕𝑥3
=

𝜓𝐿
" − 𝜓0

"

𝐿

+ ∑cos(𝛼𝑗𝑥)

∞

𝑗=1

(
2((−1)𝑗𝜓𝐿

" − 𝜓0
")

𝐿
− 𝛼2

𝑗 
2((−1)𝑗𝜓𝐿 − 𝜓0)

𝐿
+ 𝛼𝑗𝐷𝑗)  (21) 
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𝜕4𝑤(𝑥)

𝜕𝑥4
= −∑𝛼𝑗 sin(𝛼𝑗𝑥)

∞

𝑗=1

(
2((−1)𝑗𝜓𝐿

" − 𝜓0
")

𝐿
− 𝛼2

𝑗 
2((−1)𝑗𝜓𝐿 − 𝜓0)

𝐿
+ 𝛼𝑗𝐷𝑗)  (22) 

 

Equations (20) and (22) are replaced into Eq. (6) to provide: 

 

∑(
𝑗=1

∞ 2

𝐿
cos(ωt) sin(𝛼𝑗𝑥) (−LD𝑗(𝐴 (𝑒0𝑎)2ρ(𝑟)ω2𝛼2

𝑗 + ρ(𝑟)Aω2 − E(𝑟)I𝛼4
𝑗
)

− 2𝛼𝑗((−1)𝑗(𝜓𝐿(𝐴 (𝑒0𝑎)2ρ(𝑟)ω2 − E(𝑟)I𝛼2
𝑗
) + E(𝑟)Iψ𝐿

") + 𝜓0(E(𝑟)I𝛼2
𝑗

− 𝐴 (𝑒0𝑎)2ρ(𝑟)ω2) + E(𝑟)Iψ𝐿
")) = 0                                                                 (23) 

 

In Eq (23), the Fourier coefficient can be written as follows in terms of 𝜓0, 𝜓𝐿, 𝜓0
"
, and 𝜓𝐿

"
: 

 

𝐷𝑗 =
2(𝜔2)𝑗

𝛼3
𝑗𝐿(𝑒0𝑎)2𝛼2

𝑗𝜔
2 − (𝜔2)𝑗 + 𝜔2

  ((𝜓0
" − (−1)𝑗𝜓𝐿

") − 𝛼2
𝑗(𝜓0 − (−1)𝑗𝜓𝐿)

+
𝜔2

𝜔2
𝑗
𝛼4

𝑗(𝑒0𝑎)2(𝜓0 − (−1)𝑗𝜓𝐿))                                                                      (24) 

 

 

The free vibration of a nanobeam with free boundaries at both ends is represented by the function 

w(x,t). 

 

 
 

Figure 2: 

Simplified version of buckyball 

 

𝑤(𝑥, 𝑡) = ∑
2(𝜔2)𝑗

𝛼3
𝑗𝐿(𝑒0𝑎)2𝛼2

𝑗𝜔
2 − (𝜔2)𝑗 + 𝜔2

((𝜓0
" − (−1)𝑗𝜓𝐿

") − 𝛼2
𝑗(𝜓0 − (−1)𝑗𝜓𝐿)

∞

𝑗=1

+
𝜔2

𝜔2
𝑗
𝛼4

𝑗(𝑒0𝑎)2(𝜓0 − (−1)𝑗𝜓𝐿)) cos(ωt) sin(𝛼𝑗𝑥)                                    (25) 
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This equation can be applied with any deformable boundary condition and is a more general 

version of the current technique. 

 

3.  DEFINED BOUNDARIES 

 

Consider a cantilever nanobeam with a point mass at the free end and translational constraint 

at the other end (see Fig. 2). In mathematics, the boundary conditions are expressed as, 

 

𝜓0 = 0,
𝜕 w(𝑥, 𝑡)

𝜕𝑥
= 0, 𝑥 = 0                                                                            (26) 

 

𝜓𝐿
" = 0,   kψ𝐿 − 𝑚

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑡2
= 𝐸𝐼

𝜕3 w(𝑥, 𝑡)

𝜕𝑥3
,      𝑥 = 𝐿                                             (27) 

 

Substituting equations (19) and (21) into equations (26)-(27) yields two simultaneous 

homogeneous equations. 

 

(1 + ∑ 

∞

𝑗=1

2𝜆4(−1)𝑗(𝜋2𝛥2𝑗2 + 1)

𝜆4(𝜋2𝛥2𝑗2 + 1) − 𝑗4
)𝜓𝐿 + (𝐾 − mπ2𝜆4 + ∑ 

∞

𝑗=1

2𝜆4𝜋2𝑗2

𝜆4(𝜋2𝛥2𝑗2 + 1) − 𝑗4
)  𝜓0

"

= 0                                                                                                                                 (28) 

(∑ 

∞

𝑗=1

2𝑗2

𝜋2(𝜆4(𝜋2𝛥2𝑗2 + 1) − 𝑗4
)𝜓𝐿 + (1 + ∑ 

∞

𝑗=1

2𝜆4(−1)𝑗

𝜆4(𝜋2𝛥2𝑗2 + 1) − 𝑗4
)𝜓0

"

= 0                                                                                                                                 (29) 

wherein 

𝜆4 =
ρ(𝑟)AL4𝜔2

𝜋4𝐸(𝑟)𝐼
                                                                                         (30) 

𝐾 =
kL3

𝐸(𝑟)𝐼
                                                                                              (31) 

𝛥 =
𝑒0𝑎

𝐿
                                                                                               (32) 

Equations (28) and (29) can be expressed as a matrix 

[
𝛷11 𝛷12

𝛷21 𝛷22
] [

𝜓𝐿

𝜓0
"] = 0                                                                           (33) 

where 

𝛷11 = 1 + ∑ 

∞

𝑗=1

2𝜆4(−1)𝑗(𝜋2𝛥2𝑗2 + 1)

𝜆4(𝜋2𝛥2𝑗2 + 1) − 𝑗4
                                                          (34) 
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𝛷12 = 𝐾 − 𝑚𝜋4𝜆4 + ∑ 

∞

𝑗=1

2𝜆4𝜋2𝑗2

𝜆4(𝜋2𝛥2𝑗2 + 1) − 𝑗4
                                                         (35) 

𝛷21 = ∑ 

∞

𝑗=1

 
2𝑗2

𝜋2(𝜆4(𝜋2𝛥2𝑗2 + 1) − 𝑗4
                                                             (36) 

𝛷22 = 1 + ∑ 

∞

𝑗=1

2𝜆4(−1)𝑗

𝜆4(𝜋2𝛥2𝑗2 + 1) − 𝑗4
                                                             (37) 

An eigenvalue problem is defined in the equation given in (33). Eigenvalues can easily be found 

if the equation is set to “0” by adjusting the determinant of the coefficient matrix in Eq. (33). 

 

[
𝛷11 𝛷12

𝛷21 𝛷22
]=0                                                                      (38) 

By providing the different characteristics of ( K ) and (m) according to the boundary condition, 

the characteristic equation of the aforementioned determinant may be determined. 

 

4. RESULTS AND DISCUSSION 

 

The vibration frequency analysis of the buckyball and spring attached to the end of the 

nanobeam was determined using an eigenvalue problem in this work. In this eigenvalue problem, 

a single (2x2) matrix can be used to find the system's vibration frequencies. The mechanical 

characteristics that were used in the study to determine vibration frequency values, 𝜌𝑖(𝑟) (mass 

density of inner material)= 4429 kg/m³, 𝜌𝑜(𝑟)  (mass density of outer material)= 3000 kg/m³, 

𝐸𝑖(𝑟) (Modulus of Elasticity of inner material)= 105.7 𝐺𝑃𝑎, 𝐸𝑜(𝑟)  (Modulus of Elasticity of 

outer material)= 151 𝐺𝑃𝑎 and the 𝐿 parameter value specified as 100 nm and 200 nm, m (mass 

of buckyball) =4, k (spring coefficient) =5. The unitless m and k values have been created to using 

in analysis for this study. 

 

The vibration frequency values of the system which has shown in Figure 2 are given below 

in table and graph. Variable 𝛽 (FG index) values has used while calculating frequency parameters. 
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Table 1. The frequencies (1010 rad/s) of nanobeam with an attached spring mass system 

for diversified  β parameter  ( 𝚫 = 𝟎. 𝟎𝟒 and 𝑳 → 𝟏𝟎𝟎 𝐧𝐦) 

 

 

                       𝛽 = 0        𝛽 = 1          𝛽 = 2       𝛽 = 3       𝛽 = 4        𝛽 = 5 

 

 Mode 1         0.4653       0.4268       0.4093     0.3991      0.3924      0.3876 

 

 Mode 2         3.4737       3.1286       2.9616     2.8597      2.7901      2.7391 

 

 Mode 3         5.5748       5.0210       4.7529     4.5895      4.4777      4.3959 

 

 Mode 4         13.5818     12.2327     11.5795   11.1811   10.9089    10.7097 

 

 Mode 5         17.4637     15.7289     14.8891   14.3769    14.0269   13.7706 

 

 Mode 6         29.4838     26.5551     25.1371   24.2724    23.6815   23.2489 

 

 

Figure 3: 

Frequency parameter for diversified β parameter 

As can be easily observed in the table and graph given above, as parameter β increases, 

natural frequency values are observed at the highest value for the mode 6. While the lowest 

frequency value is seen in the first mode, a partial increase is observed in the progressive mode 

values. It has been observed that increasing the parameter value β reduces the frequency of 

vibration. 
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Table 2. The natural frequencies (1010 rad/s) of nanobeam with an attached spring mass 

system for various 𝚫 parameter  (𝑳 → 𝟐𝟎𝟎 𝐧𝐦 𝐚𝐧𝐝  𝜷 = 𝟑 ) 
 

 

                  Δ = 0.00       Δ = 0.025        Δ = 0.04        Δ = 0.1      

 

Mode 1          0.229             0.229              0.229            0.229 

 

Mode 2          1.158             1.154              1.147            1.096 

  

Mode 3           3.717             3.667             3.594            3.102 

 

Mode 4           7.738             7.517             7.207             7.178 

 

Mode 5          13.224           12.582           11.743          10.650 

 

 

Figure 4: 

Natural frequency parameter values for various 𝛥 parameter 
 

As shown in the Table 4 and Fig. 4, as the mode value increases, the natural vibration 

frequency value increases and as the Δ= 
𝑒0𝑎

𝐿
 parameter value increases, a slight decrease in the 

vibration frequency value is observed. 
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5. CONCLUSION 

 

As can be seen from this work, tables and graphs have been created by considering which 

parameters can affect the vibration frequency values of the system has created within the scope 

of this study. Buckyball has added to the functionally graded nanobeam via a spring mass system. 

Hence, it decreased of the natural frequency of the structural system and caused a significant 

increase on the dynamic response of the nanobeam. By changing the β and Δ parameters, their 

effect on the frequency of vibration has been observed. 

 

 In the first part of this study, the value of 𝛽 was changed at close intervals. As a result of 

this change, it has been observed that the vibration frequency values are the highest in the 

first mode and continue to decrease in the progressive mode values. 

 

 The Δ parameter was modified in the second part of the study, and the influence on 

vibration frequency value was noticed. As a result, as the  Δ parameter value increase, the 

initial mode value achieves the highest vibration frequency value, while the subsequent 

mode values achieve lower vibration frequency values. 
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