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 Abstract 
Estimating the growth dynamics of a pandemic is critical for policy makers to 
fine-tune emergency policies in health and other public sectors. The paper 
presents country-level calibration and prediction results on some well-known 
models in the literature, namely, the logistic, exponential, Gompertz, SIR and 
SEIR models. The models are implemented on real data from various 
countries, including Turkey, and their performance for different estimation 
windows have been analyzed using R2 scores. The computational results are 
obtained using Python. The Gompertz model outperforms other models by 
consistently offering a better fit for the total number of infected. The 
exponential model is helpful in describing the growth dynamics in the early 
stages of the COVID-19 pandemic. Suspected-Infected-Recovered (SIR) and 
Susceptible-Exposed-Infectious-Removed (SEIR) models display a fair 
performance on the underlying active cases data in many circumstances. 
Quantitative models can offer policy makers in Turkey and elsewhere a better 
insight on the evolution of pandemic when everything else is held constant and 
the infections follow a typical path. The results can be highly sensitive to 
changes in policies. There is not a single model that can perfectly mimic all 
stages of pandemic. An ensemble model or multi-modal distributions can be 
used to capture the evolution of multi-wave pandemics. 

1. Introduction 

Since the discovery of the first official case in December 2019 in the city of Wuhan, China (which followed by a 
health emergency declaration by the World Health Organization, or WHO, on January 30, 2020, due to the obvious 
risk of a pandemic), the field of epidemiology have played an important role in helping policy makers estimate the 
future trajectory of the disease and better anticipate the potential overload on their health systems and other public 
services (Tomaskova and Tirkolaee, 2021; Tirkolaee and Aydın, 2021). At the time of writing (June 2021) there 
are 185 million confirmed cases and almost 4 million deaths ascribed to COVID-19. Turkey has registered a total 
5.5 million confirmed cases on the same date, of which 5.3 million recovered and around 50 thousand lost their 
lives. The explorations on the transmission dynamics of the virus and its genetic structure have been high on the 
world agenda with a view to developing effective healthcare response and recovery mechanisms in the short- as 
well as long-run. 

Mathematical models on transmissible diseases have widely proved to be helpful in not only gaining insights into 
but also making predictions about the growth dynamics of infectious diseases and the potential impacts of 
alternative intervention policies. The recent outbreak of SARS-CoV-2 has once again brought the accuracy and 
usefulness of different models under spotlight. 
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The objective of this work is to review some of the widely used growth models, namely the logistic, exponential, 
Gompertz, Suspected-Infected-Recovered (SIR) and Susceptible-Exposed-Infectious-Removed (SEIR) models for 
the COVID-19 dynamics and calibrate them to real epidemic data, including those of Turkey, Iran and some other 
countries. We then compare their goodness-of-fit. The final objective is to identify the most effective model(s) in 
predicting the dynamics and evolution of the COVID-19 so as to provide decision-makers with some more insight 
into the future possible trends. To this end, in Section 2, we survey some of the most relevant studies in the 
literature. The reviewed models and calibration results are presented in Section 3. Finally, Section 4 concludes 
with a brief summary and outlook for future research. 

2. Selected Literature  

Wu et al. (2020) employed the logistic model, the generalized logistic model, the generalized Richards model and 
the generalized growth model to investigate the dynamics of infections for 29 provinces in China and 33 other 
countries. A comparison was made by Liang (2020) for the novel transmission dynamics of the SARS-CoV-2 as 
compared to Severe Acute Respiratory Syndrome (SARS) and Middle-East Respiratory Syndrome (MERS). They 
developed a propagation growth model considering the infection inhibition constant and growth rate. According 
to the main finding of their research in Hubei province, the growth rate of COVID-19 is approximately twice that 
of the infections caused by SARS and MERS. Ma (2020) discussed the estimation of the growth rate using 
maximum likelihood method, as well as parametric and non-parametric approaches for exponential growth rate 
and basic reproduction number, and the least squares estimation model. Two differential equations models were 
proposed by Liu et al. (2020) to account for exposed or latency period of SARS-CoV-2 infections in China. They 
assessed the epidemiological parameters such as the transmission rate and the basic reproduction number and 
analyzed the effect of the exposed or latency period in the transmission dynamics of SARS-CoV-2. 

Sarkar et al. (2020) suggested a mathematical model to predict the dynamics of COVID-19 in India. Their model 
was established based on the dynamics of six various components including asymptomatic, recovered, infected, 
isolated infected and quarantined susceptible cases. They found that reducing contact rate between uninfected, 
infected and quarantined people caused a reduction in the basic reproduction rate. Moreover, they claimed that 
performing social-distancing and effectively tracing contacts can significantly help eliminate the pandemic. 
Several forecasting models were employed by Sharma and Nigam (2020) to investigate the COVID-19 growth 
curve in India. They utilized exponential and polynomial regression analysis, Auto-Regressive Integrated Moving 
Averages (ARIMA) model, and exponential smoothing. An ARIMA(5, 2, 5) model was found to the most suitable 
model in predicting the number of cases in India. On the other hand, in Velasquez and Lara (2020), authors 
predicted and analyzed the COVID-19 incidence in the U.S. using a reduced-space Gaussian process regression 
model. The proposed model was related to chaotic dynamical systems. A modified mathematical model was 
proposed in Çakır and Savaş (2020) to simulate the spread of COVID-19 in Iran. 

A binary classification model based on neural network was suggested in Pirouz et al. (2020) where authors 
concluded that the relative humidity and maximum daily temperature had the greatest influence on the number of 
confirmed cases. Authors of Rath et al. (2020) employed multiple linear regression model to predict the new active 
COVID-19 cases in India. They compared their proposed model with a simple linear regression model and, using 
Analysis of Variance (ANOVA), demonstrated the superiority of their model. In Duhon et al. (2021), researchers 
developed a multiple regression model to identify the main factors affecting the initial growth rate of the COVID-
19 pandemic. It was revealed that socio-demographic and climatic variables are highly connected to the initial 
growth rate while others represent a weak connection. In Carcione et al. (2020), authors carried out a simulation 
of the COVID-19 epidemic using a deterministic SEIR model to estimate the numbers of infected people and 
casualties. They found out that the isolation measures, knowledge of the transmission conditions and social 
distancing were critical factors that affected the growth pace of the outbreak. Authors in Sun et al. (2020) 
conducted a research for predicting the long-term trend of COVID-19 epidemic in China by extending the classical 
SEIR model to Dynamic-Susceptible-Exposed-Infective-Quarantined (D-SEIQ). 

In Nikolopoulos et al. (2021), authors explored the COVID-19 growth rate using statistical, epidemiological, 
machine- and deep-learning models, and a hybrid forecasting approach. A machine learning tool was employed in 
Li et al. (2021) to determine new factors related to COVID-19 transmission and fatality, such as high temperature, 
economic inequality and blood types. In Tuli et al. (2020), machine learning and cloud computing tools were 
utilized to predict the growth and conjecture of the COVID-19 pandemic. They found that the method of iterative 
weighting can enhance the fitting performance of the Generalized Inverse Weibull distribution so as to develop a 
more accurate and real-time prediction framework via cloud computing. The evolution of COVID-19 pandemic in 
Turkey was modelled in Acar et al. (2021) using a probabilistic approach that employs a Bayesian negative 
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binomial multilevel model with mixed effects. The proposed method predicted the daily confirmed COVID-19 
cases and cumulative numbers for 20 days with different prediction intervals. There are a handful of other studies 
that focus on Turkey (Eroğlu, 2020); Baldemir et al., 2020; Önder, 2020). 

Against this backdrop, this study aims to contribute to the line of literature that aims to offer more insight into 
real-world parameter estimations of epidemic models, with particular emphasis on Turkey. We present detailed 
estimation results on some of the well-known mathematical models, namely, the logistic, exponential, Gompertz, 
SIR and SEIR models, for a considerable number of countries, including Turkey. However, our end-to-end 
algorithm is able to extract the necessary data for any other country and perform calibrations on real-world data. 

3. Models And Calibration Results 

This study conforms to the research and publication ethics. We first discretize the model training period 𝑡 ∈ [0, 𝑇] 
as 𝑡! ∈ {𝑡", 𝑡#, … , 𝑡$!} where 𝑡" = 0 and 𝑡$! = 𝑇. The off-sample forecasting window will cover 𝑛# = 20 days. 
The model performances will then be compared using both in- and off-sample 𝑅% values. The logistic model is 
one of the most widely-used models in the literature that has proved to be effective in describing health phenomena 
like epidemics. Under this model, the total number of infected is given by 

𝐼&
(#) = )

#*+"
#"$
%

, (1) 

where 𝑎, 𝑏, 𝑐 are the infection speed, inflection point (i.e., the point at which the maximum increase in the number 
of infected occurs) and the estimated number of infected once the pandemic ends, respectively. Setting 𝛾(𝑡) =
𝑒,(&,-)//	, this can be easily seen from the second derivative 𝐼11 which is equal to )23#,2

&4
/&(#*2)'

. Setting 𝐼11 = 0 gives 
𝛾 = 1 which is possible only when 𝑡 = 𝑏 or 𝑡 → ∞. This verifies 𝑏 as the inflection point. The meaning of 
parameter 𝑐, on the other hand, can be validated by looking at lim

&→6
𝐼& which is apparently equal to 𝑐, rendering the 

latter as a horizontal asymptote. This is also the level at which 𝐼& flattens out. In other words, 𝐼&1 =
)2

/(#*2)&
= 0 

implies 𝑡 → ∞.  

While the logistic model converges to a constant over the long-run, the exponential model helps mimic periods 
where pandemics seem to be out of control (at least for a while). In its most general form, the total number of 
infected is modelled through the function 

𝐼&
(%) = 𝑎	𝑒-(&,)), (2) 

where 𝑎, 𝑏, 𝑐 are the initial number of infected, growth rate and infection start date, respectively. For the growth 
rate, observe that 𝐼&1 = 𝑏𝐼 or  d𝐼& = 𝑏d𝑡. The peculiarity of the exponential model is that it doesn't converge in the 
long-run, i.e., lim&→6𝐼&

(%) = ∞. Yet, there are periods in epidemic outbreaks that the exponential model explains 
the data well at least for some time. As an outlook, future research can harness a model selection tool which 
switches between different models at different phases of the pandemic (such as, second or third waves) to form an 
ensemble model that better represents the underlying data. A comparison of exponential versus sub-exponential 
growth is presented in Figure 1. 

 
Fig. 1. Epidemic growth dynamics by Chowell et al. (2016). 
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Another model that is considered in this paper is the `Gompertz growth' which is in fact a special case of the 
logistic growth and also analogous to the sigmoid function used as an activation function in neural nets. Unlike 
the logistic growth, which is perfectly symmetrical around the inflection point, the Gompertz function presents a 
non-symmetrical behaviour characterized with a slower growth and convergence during the slowing-down phase 
of the pandemics. Due to the drawbacks in effectively calibrating the location parameter 𝑏, we consider a slightly 
modified version of the Gompertz model. Under this model, the total number of infected is given by 

𝐼&
(7) = 𝑎 expB−𝑒,-(&,))D, (3) 

where 𝑎, 𝑏, 𝑐 are the upper bound for the total number of infected (i.e., lim
&→6

	𝐼8 = 𝑎), the growth rate and the 

location parameter, respectively. The maximum rate of increase in the number of infected occurs at 𝑡 = 9: -	
)

 which 

can be seen by setting 𝐼11 = 𝐼𝑏%𝑐%𝑒,)& E𝑒,)& − #
-
F equal to 0. 

We perform the calibrations mainly using Python's scipy as well as scikit library. Our code is able to extract country 
data from related data sources and perform curve-fitting with stream data. The estimation results of all three models 
above for some selected countries, including Turkey, and different values of 𝑛" are presented in Figures 2-5. Green, 
black and blue lines represent the exponential, Gompertz and logistic models, respectively. Also, red and orange 
dots represent the real data, the latter being the test sample which is not used in the model training. Table 1 includes 
detailed calibration results, estimated parameter values, and model performances in terms of their 𝑅% values, both 
in- and off-sample.  

 

Fig. 2. 𝐼&
(#), 𝐼&

(%), 𝐼&
(7) calibrated to data from Turkey for 𝑛" = {25,50,75,100,125,150} and 𝑛# = 20. 
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Fig. 3. 𝐼&

(#), 𝐼&
(%), 𝐼&

(7) calibrated to data from Iran for 𝑛" = {25,50,75,100,125,150} and 𝑛# = 20. 

 
Fig. 4. 𝐼&

(#), 𝐼&
(%), 𝐼&

(7) calibrated to data from UK for 𝑛" = {40,50,75,100,125,150,175} and 𝑛# = 20. 
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Fig. 5. 𝐼&

(#), 𝐼&
(%), 𝐼&

(7) calibrated to data from US for 𝑛" = {75,100,125,150,175,200} and 𝑛# = 20. 

 

Table 1. Model calibration results for selected countries. 

 

Since all 3 models compared in the table are univariate, reporting the adjusted 𝑅% values would not affect the 
results. A quick observation from the table is that the exponential model is generally useful in modelling the early 
stages of pandemic, but this doesn't extend well into the later stages when the speed of infection tends to diverges 
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from that implied by the exponential model. It also offers a relatively weak performance off the sample in most of 
the cases. Instead, logistic and Gompertz models are able to reproduce the overall pattern of infections and provide 
consistently more realistic estimates even for periods extending beyond the early stages of the pandemic. Overall, 
it can be concluded that the Gompertz offers a better performance off the sample, however. The model predicts 
not only a significantly higher value for the upper bound of the total number of infected in almost all cases, but 
also a longer period for the pandemic. Again, the exponential model performance seems to diverge from those of 
2 other models after the early stages of the pandemic, both in- and off-sample. 

Another popular model is the SIR Model which borrows its name from its underlying approach of partitioning the 
population into three sub-groups, namely, susceptible (𝑆) but not yet infected, infected and infectious (𝐼), and 
recovered and immune (𝑅). The SIR model, invented by Ross (1911) and Hamer (1906), does not have an explicit 
solution, however. There are various assumptions behind the model that restrict the model's ability to fit different 
types of pandemic outbreaks. These include the assumptions that: (i) the population is large, closed and distributed 
homogeneously; (ii) the outbreak always dies out; (iii) no natural births or natural deaths occur; (iv) the infection 
has zero latent period, that is, an individual becomes infectious as soon as she becomes infected; and (v) infection 
leads to lifetime immunity for individuals. The SIR model is represented by the following system of quadratic 
ODEs: 

d𝑆& = −𝛽𝑆&	𝐼&
(;)d𝑡, (4) 

d𝐼&
(;) = L𝛽𝑆&𝐼&

(;) − 𝛾𝐼&
(;)Md𝑡, (5) 

d𝑅& = 𝛾𝐼&
(;)	d𝑡, (6) 

where 𝛽 and 𝛾 are the transmission and recovery rates, respectively. All of the limits lim
&→6

	𝑆&, lim&→6	𝐼& and lim
&→6

	𝑅& 

exist, supporting (ii) above. Here, 𝛽 = -
<

 where 𝑏 = 𝜅𝜏 with 𝜅 and 𝜏 being the number of contacts by each infected 
individual and the proportion of contacts that result transmission (known as the transmissibility parameter), 
respectively. Defining 𝑆&% =

>#
<

 as the susceptible proportion (and recalling the homogeneity assumption), each 

infected individual infects 𝛽𝑆 individuals. The effective reproductive number is given by 𝑟" =
>!
<
-
2
= >!?

2
. The 

threshold value for 𝑟" that determines whether an outbreak is predicted to die out soon or evolve into an epidemic 
is 1. If transmission rate per unit of time exceeds the recovery rate, then 𝑟" > 1 and an epidemic can be expected 
before 𝐼& goes to 0 as 𝑡 → ∞. Otherwise, 𝐼& decreases monotonically and reaches 0. If 𝑟" > 1, 𝐼& can increase up to 
𝑆& before it starts to decrease. Control of epidemics is mostly about keeping 𝑟" below 1. This requires public 
interventions to (i) reduce #

2
 (duration of infection), (ii) reduce 𝜅 (contact rate of infected), (iii) reduce 𝑆" and (iv) 

reduce 𝜏 (transmissibility). The type of interventions (such as “mask-distance-hygiene” or antivirals) is beyond 
the scope of this study. 

While calibrating the SIR model, one thing which is critical is to work with active infections (i.e., Total	Cases −
Deaths − Recoveries), rather than the cumulative cases directly. We again design our code to extract all of these 
ingredients from the relevant resources and then calculate the active cases before using them for estimating 
parameters of the SIR model. Then Python's odeint class under the scipy library is used to integrate SIR differential 
equations and solve for optimal parameter values for 𝛽 and 𝛾. In Figures 6-9, we present the parameter estimation 
results for 𝐼&

(;) using data from Turkey, Russia, Germany and Iran for different values of 𝑛, although our code is 
able to calibrate the model to many other country data of our choice. Estimated parameter values are provided in 
figure keys. In most cases, the SIR curve offers a fairly good representation of the underlying data and can be used 
to predict the number of infected. This is particularly true in the case of Germany (see Figure 8) where the pattern 
of infected closely follows an SIR curve characterized by the estimated parameters.  
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Fig. 6. SIR model 𝐼&

(;) calibrated to data from Turkey for 𝑛 ∈ {25,30,40,50,75,100}. 

 
Fig. 7. SIR model 𝐼&

(;) calibrated to data from Russia for 𝑛 ∈ {75,100,125,150,175,200}. 



Aydın,	Tirkolaee	 												 					 	 	 	 	 	 												JTOM(6)1,	943-954,	2022	

 
 

951 

 
Fig. 8. SIR model 𝐼&

(;) calibrated to data from Germany for 𝑛 ∈ {50,75,100,125,150,175}. 

 

 
Fig. 9. SIR model 𝐼&

(;) calibrated to data from Iran for 𝑛 ∈ {25,50,75}. 

A well-known extension to the SIR model is the SEIR model which incorporates an additional population 
compartment, namely ‘E’ or ‘Exposed’, that represents individuals who are already infected by the virus but yet 
to be able to transmit it (the time between known as the latent period). However, one frequently stated challenge 
with SARS-CoV-2 is that it can transfer from one individual to another even before the incubation period ends, 
i.e., when symptoms are expected to appear (negative latency). Therefore, considering the fact that the incubation 
period for SARS-CoV-2 is unknown and varies between 1-14 days (with an average of 4-5 days), the transmission 
period can start even 1-2 days before the end of that unknown incubation period.  

How this can affect the performance of the SEIR model, which introduces a distinction between the people who 
are infected by the virus and those who are able to transmit it, is beyond the scope of this work. The system of 
quadratic ODEs describing the SEIR model are given by: 

d𝑆& = −𝛽𝑆&	𝐼&
(@)d𝑡, (7) 

d𝐸& = L𝛽𝑆&𝐼&
(@) − 𝜃𝐸&Md𝑡, (8) 

d𝐼&
(@) = L𝜃𝐸& − 𝛾𝐼&

(@)Md𝑡, (9) 

d𝑅& = 𝛾𝐼&
(@)	d𝑡, (10) 
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where 𝛽 and 𝛾 are the transmission and recovery rates, respectively, and 𝜃 is the rate at which already exposed 
individuals become infected (incubation rate). So, #

A
 can be seen as the average latency, i.e., the mean time between 

contracting the virus and starting to transmit it. Again, in Figure 10, we present the results for some selected 
countries. Like SIR, the SEIR model is also able to successfully represent the underlying active cases data unless 
there is a multi-modal structure, such as a second or third wave of infection. 

 

Fig. 10. SEIR model 𝐼&
(@) calibrated to various country data for arbitrary values of 𝑛. 

4. Conclusion 

The present study reviewed some of the most widely used epidemic growth models in the literature, namely the 
logistic, exponential, Gompertz, SIR and SEIR models, and presented their calibration results using real-world 
epidemic data from selected countries, including Turkey. Among the first three models, which aimed to predict 
the total number of infected, the Gompertz model seems to have outperformed the logistic and exponential models. 
SIR and SEIR models, which rather work with active infection data (contrary to cumulative), have also offered a 
fair representation of the underlying data. All in all, our calibration algorithm was able to return the best possible 
fit in almost all cases when provided with a target model and underlying data its input. 

As an outlook, we’d like to extend the current study into a one which takes into account multiple waves of infection 
(due to variants, seasonal changes, loosening of measures, etc.). This could be achieved through, inter alia, 
impulsive control model, robust-entropic optimal control, robust-entropic optimal control, bi-modal, or, in general, 
multi-modal distributions (see, e.g., Pearce et al., 2005; Baltas et al., 2018; Valvo, 2020; Khalilpourazari et al., 
2021; Gürbüz et al., 2021). Furthermore, the next trend in epidemic data science could be the prediction models 
that focus on early detection of pandemics or epidemics. Machine learning (ML) tools can be used to accommodate 
more complex relationships between many interacting factors (policies, social measures, travel restrictions, 
vaccine development, mutations, etc.) and the growth dynamics of outbreaks. In this regard, one extension could 
be to consider a model which integrates future mutation scenarios into predictions on the growth pace of epidemic. 
Future research can also consider an ensemble of models and an optimal switching rule to obtain better predictive 
performance than could not be achieved with any of the constituent models per se. 

Contribution of Researchers 

Nadi Serhan Aydın carried out model calibrations and data analysis. Erfan Babaee Tirkolaee reviewed the literature 
and contributed to the interpretation of model results. 

 



Aydın,	Tirkolaee	 												 					 	 	 	 	 	 												JTOM(6)1,	943-954,	2022	

 
 

953 

Conflicts of Interest 

The authors declared that there is no conflict of interest. 

References 

Acar, A.C., Er, A.G., Burduroğlu, H. C., Sülkü, S. N., Aydin Son, Y., Akin, L. and Ünal, S. (2021). Projecting the 
course of COVID-19 in Turkey: A probabilistic modeling approach. Turkish Journal of Medical 
Sciences, 51(1):16-27, DOI: https://doi.org/10.3906/sag-2005-378.   

Baldemir, H., Akın, A. and Akın, Ö. (2020). Fuzzy modelling of COVID-19 in Turkey and some countries in the 
world. Turkish Journal of Mathematics and Computer Science, 12(2):136-150, DOI: 
https://doi.org/10.47000/tjmcs.751730.  

Baltas, I., Xepapadeas, A. and Yannacopoulos, A. N. (2018). Robust portfolio decisions for financial institutions. 
Journal of Dynamics and Games, 5(2): 61-94, DOI: http://dx.doi.org/10.3934/jdg.2018006. 

Carcione, J.M, Santos, J.E, Bagaini C. and Ba J. (2020). A simulation of a COVID-19 epidemic based on a 
deterministic SEIR model. Frontiers in Public Health, 8:230, DOI: https://doi.org/10.3389/fpubh.2020.00230.  

Chowell, G., Sattenspiel, L., Bansal, S. and Viboud, C. (2016). Mathematical models to characterize early 
epidemic growth: A review. Physics of Life Reviews, 18:66-97, DOI: https://doi.org/10.1016/j.plrev.2016.07.005.  

Çakır Z. and Savaş, H. (2020). A mathematical modelling for the COVID-19 pandemic in Iran. Ortadoğu Tıp 
Dergisi, 12(2):206-210, 18:66-97, DOI: https://doi.org/10.21601/ortadogutipdergisi.715612.  

Duhon, J., Bragazzi, N. and Kong, J.D. (2021). The impact of non-pharmaceutical interventions, demographic, 
social, and climatic factors on the initial growth rate of COVID-19: A cross-country study. Science of the Total 
Environment, 760:144325, 18:66-97, DOI: https://doi.org/10.1016/j.scitotenv.2020.144325.  

Eroğlu, Y. (2020). “Forecasting models for COVID-19 cases of Turkey using artificial neural networks and deep 
learning. Endüstri Mühendisliği, 31(3):353-372, 18:66-97, DOI: 
https://doi.org/10.46465/endustrimuhendisligi.771646.  

Gürbüz, B., Mawengkang, H., Husein, I. and Weber, G. W. (2021). Rumour propagation: an operational research 
approach by computational and information theory. Central European Journal of Operations Research, 1-21, DOI: 
https://doi.org/10.1007/s10100-020-00727-0. 

Hamer, W.H. (1906). The Milroy lectures on epidemic diseases in England: The evidence of variability and of 
persistency of type. The Lancet, 167(4305):569-574, DOI: https://doi.org/10.1016/S0140-6736(01)80264-6.  

Khalilpourazari, S., Doulabi, H. H., Çiftçioğlu, A. Ö. and Weber, G. W. (2021). Gradient-based grey wolf 
optimizer with Gaussian walk: Application in modelling and prediction of the COVID-19 pandemic. Expert 
Systems with Applications, 177:114920, DOI: https://doi.org/10.1016/j.eswa.2021.114920. 

Li, M., Zhang, Z., Cao, W., Liu, Y., Du, B., Chen, C., Liu, Q., Uddin, M.N., Jiang, S., Chen, C., Zhang, Y. and 
Wang, X., (2021). Identifying novel factors associated with COVID-19 transmission and fatality using the machine 
learning approach. Science of the Total Environment, 764:142810, 18:66-97, DOI: 
https://doi.org/10.1016/j.scitotenv.2020.142810.  

Liang, K., (2020). Mathematical model of infection kinetics and its analysis for COVID-19, SARS and MERS. 
Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics of Infectious 
Diseases, 82:104306, DOI: https://doi.org/10.1016/j.meegid.2020.104306.  

Liu, Z., Magal, P., Seydi, O. and Webb, G., (2020). A COVID-19 epidemic model with latency period. Infectious 
Disease Modelling, 5:323-337, DOI: https://doi.org/10.1016/j.idm.2020.03.003.  



Aydın,	Tirkolaee	 												 					 	 	 	 	 	 												JTOM(6)1,	943-954,	2022	

 
 

954 

Ma, J., (2020). Estimating epidemic exponential growth rate and basic reproduction number. Infectious Disease 
Modelling, 5:129-141, DOI: https://doi.org/10.1016/j.idm.2019.12.009.  

Nikolopoulos, K., Punia, S., Schäfers, A., Tsinopoulos, C. and Vasilakis, C. (2021). Forecasting and planning 
during a pandemic: COVID-19 growth rates, supply chain disruptions, and governmental decisions. European 
Journal of Operational Research, 290(1):99-115, DOI: https://doi.org/10.1016/j.ejor.2020.08.001.  

Önder, H. (2020). Short-term forecasts of the COVID-19 epidemic in Turkey: March 16–28, 2020. Black Sea 
Journal of Health Science, 3(2):27-30, Available at: 
https://dergipark.org.tr/tr/pub/bshealthscience/issue/51721/710.  

Pearce, C., Kaya, Y. and Belen, S. (2005). Impulsive control of a sequence of rumour processes. In Continuous 
Optimization. Springer, Boston, MA, 99:387-407, DOI: https://doi.org/10.1007/0-387-26771-9_14. 

Pirouz, B., Shaffiee Haghshenas, S., Shaffiee Haghshenas, S. and Piro, P. (2020). Investigating a serious challenge 
in the sustainable development process: Analysis of confirmed cases of COVID-19 (new type of coronavirus) 
through a binary classification using artificial intelligence and regression analysis. Sustainability, 12(6):2427, 
DOI: https://doi.org/10.3390/su12062427.  

Rath, S., Tripathy, A. and Tripathy, A.R. (2020). Prediction of new active cases of coronavirus disease, (COVID-
19) pandemic using multiple linear regression model. Diabetes and Metabolic Syndrome Clinical Research and 
Reviews, 14(5):1467-1474, DOI: https://doi.org/10.1016/j.dsx.2020.07.045.  

Ross, R. (1911). The Prevention of Malaria. London: John Murray. Available at: 
https://archive.org/details/pr00eventionofmalarossrich.  

Sarkar, K., Khajanchi, S. and Nieto, J.J., (2020). Modeling and forecasting the covid-19 pandemic in India. Chaos, 
Solitons and Fractals, 139:110049, DOI: https://doi.org/10.1016/j.chaos.2020.110049.  

Sharma, V.K. and Nigam, U., (2020). Modeling and forecasting of COVID-19 growth curve in India. Transactions 
of the Indian National Academy of Engineering, 5:697-710, DOI: https://doi.org/10.1007/s41403-020-00165-z.  

Sun, J., Chen, X., Zhang, Z., Lai, S., Zhao, B., Liu, H., Wang, S., Huan, W., Zhao, R., Ng, M.T.A. and Zheng, Y. 
(2020). Forecasting the long-term trend of COVID-19 epidemic using a dynamic model”, Scientific 
Reports, 10:21122, DOI: https://doi.org/10.1038/s41598-020-78084-w.  

Tirkolaee, E. B. and Aydın, N. S. (2021). A sustainable medical waste collection and transportation model for 
pandemics. Waste Management and Research, 39(1_suppl): 34-44, DOI: 
https://doi.org/10.1177/0734242X211000437. 

Tomaskova, H. and Tirkolaee, E. B. (2021). Using a process approach to pandemic planning: a case study. Applied 
Sciences, 11(9):4121, DOI: https://doi.org/10.3390/app11094121. 

Tuli, S., Tuli, S., Tuli, R. and Gill, S. S. (2020). Predicting the growth and trend of COVID-19 pandemic using 
machine learning and cloud computing. Internet of Things, 11:100222, DOI: 
https://doi.org/10.1016/j.iot.2020.100222.  

Valvo, P. 2020. A Bimodal Lognormal Distribution Model for the Prediction of COVID-19 Deaths. Applied 
Sciences, 10:8500, DOI: https://doi.org/10.3390/app10238500.  

Velasquez, R.M.A. and Lara, J.V.M. (2020). Forecast and evaluation of COVID -19 spreading in USA with 
reduced-space gaussian process regression. Chaos, Solitons and Fractals, 136:109924, DOI: 
https://doi.org/10.1016/j.chaos.2020.109924.  

Wu, K., Darcet, D., Wang, Q. and Sornette, D., (2020). Generalized logistic growth modeling of the COVID-19 
outbreak: comparing the dynamics in the 29 provinces in China and in the rest of the world. Nonlinear Dynamics, 
101(3):1561-1581, DOI: https://doi.org/10.1007/s11071-020-05862-6. 


