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Abstract. In this research, we introduce the stochastic integration with re-

spect to a cylindrical special semi-martingale, which is a specific case of general
integration, with specific properties of special semi-martingales.

1. Introduction

Cylindrical semi-martingales play a key role in application, specially in stochastic
partial differential equations. Among the wide class of cylindrical semi-martingales,
cylindrical Brownian motions are used widely as models in stochastic analysis [3,
5,8,9,11,14,18,19]. Although Brownian motions work as good models, motivation
of using other classes of cylindrical semi-martingales appears in recent research.
Interesting examples of such a view can be found in [1, 2, 6, 12, 13, 15]. In spite of
the fact that most of the past articles have an applied view to extend the concepts
and utilities the stochastic integration, none of these works considers stochastic
integration with respect to cylindrical special semi-martingales.

In this work, our main objective is to introduce a theory of stochastic inte-
gration for cylindrical special semi-martingales, which are a particular family of
semi-martingales with complex behavior in relation with the measure of the space,
defined on. P is a special semi-martingale if P can be decomposed into P = M +A
whereM is a local martingale and A a process with predictable finite variation, with
A0 = 0. Such a decomposition is then unique and is called canonical decomposition.
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On the other hand, for a Banach space X , the cylindrical σ-algebra is defined
to be the coarsest σ-algebra, i.e. the one with the fewest measurable sets, such that
every continuous linear function on X is a measurable function. That is important
to note that in general, the cylindrical σ-algebra is not the same as the Borel σ-
algebra on X , which is the coarsest σ-algebra that contains all open subsets of
X .

In the following, we study the cylindrical special semi-martingale M : X ∗ →
SSP from the dual of a separable Banach space X to the space of special semi-
martingales. Moreover, we define the integral of a progressive process with respect
to a cylindrical special semi-martingale.

2. Preliminaries

Let X ,Y be two Banach spaces. We will denote the space of all bilinear oper-
ators from X × Y to R as B(X ,Y ). Note that for a continuous b ∈ B(X ,Y )
there exists an operator B ∈ L (X ,Y ∗) such that

b(x, y) = ⟨Bx, y⟩ = Bx(y), x ∈ X, y ∈ Y. (1)

An operator B : X → X ∗ is called self-adjoint, if for each x, y ∈ X

⟨Bx, y⟩ = ⟨By, x⟩.

and is called positive, if B is self-adjoint and Bx(x) = ⟨Bx, x⟩ ≥ 0 for all x ∈ X .

Recall that if B : X → X ∗ is a positive self-adjoint operator, then the Cauchy-
Schwartz inequality holds for the bilinear form ⟨Bx, y⟩ . In a natural way in func-
tional analysis, the norm of B is defined as

∥B∥ = sup
x∈X ,∥x∥=1

|⟨Bx, x⟩| (2)

Note that if X is a Hilbert space, then (2) would be coincides with the induced
norm of the inner product defined on X .

Let (Ω,F , µ) be a measure space and X a Banach space. A function f : Ω → X
is called simple if there exist x1, x2, . . . xn ∈ X and E1, E2, . . . , En ∈ F such that
f =

∑n
i=1 xiχEi

, where χEi
(ω) = 1 if ω ∈ Ei and χEi

(ω) = 0 if ω ̸= Ei. A
function f : Ω → X is called strong measurable if there exists a sequence of simple
functions (fn) with limn ∥fn−f∥ = 0, µ-almost everywhere. A function f : Ω → X
is called scalar measurable if for each x∗ ∈ X ∗ the numerical function x∗f is strong
measurable.

Further we will need the following lemma.

Lemma 1. [15, Proposition 32] Let (S,Σ) be a measurable space, H be a separable
Hilbert space, f : S → L (H ) be a scalar measurable self-adjoint operator-valued
function. Let F : R → R be locally bounded measurable. Then F (f) : S → L (H )
is a scalar measurable self-adjoint operator-valued function.
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That is trivial to think about the square root of a positive operator. It would be
appreciated if the square root drops us in to a Hilbert space, even in a special case.

Lemma 2. [19, Lemma 2.4] Let X be a reflexive separable Banach space, B :
X → X ∗ be a positive operator. Then there exists a separable Hilbert space H
and an operator B1/2 : X → H such that B = B1/2∗B1/2.

A scalar-valued process M is called a continuous local martingale if there exists
a sequence of stopping times (τn)n≥1 such that τn ↑ ∞ almost surely as n → ∞
and 1τn>0M

τn is a continuous martingale.

We denote by M and M loc the class of continuous and continuous local mar-
tingales, respectively. It is well known that M loc is a vector space with respect
to usual operations. Several topologies can be defined on M loc, for example UCP,
which is based on convergence in probability, or Emery topology [4, 7]. Although,
we can define a norm on M loc as

∥M∥M loc =

∞∑
n=1

2−nE[1 ∧ sup
t∈[0,n]

|Mt|]. (3)

It can be seen that the topology induced by the norm in (3) in coincides with the
UCP and Emery topology (because of the continuity property). That is proved in
several articles that M loc equipped with the norm (3) is a complete metric space.

Let X be a Banach space. In general, a cylindrical semi-martingale on X is
a continuous linear mapping φ : X ∗ → S0, where S0 denotes the space of real
semi-martingales with respect to a common stochastic basis (Ω,F , (Ft)0≤t≤1, P ),
endowed with the Emery topology. The general case is studied before in literature.
(see for example [10]). As a special case, a continuous linear mapping M : X ∗ →
M loc is called a cylindrical continuous local martingale.

In the following, we interested to study the continuous linear mapping M : X∗ →
S where S is the collection of locally integrable semi-martingales. Our motivation
comes from the collection of particular type of martingales, called as Special Semi-
martingales SSP, coincides with S.

A processes P = M +A which can be decomposed, by Doob decomposition, into
a local martingale M and a predictable cádlag locally finite variation process A is
known as special semimartingales. On the space of special semimartingales, we can
define p-norm for p > 0 as follows and denote the semimartingales with finite p
norm by Hp:

∥P∥Hp =

(
E

[
[M,M ]p/2∞ + (

∫ ∞

0

|dA|)p
])1/p

.

One of the most interesting properties of special semi-martingales is compatibility of
integration with the canonical decomposition in the construction of the stochastic
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integrals. That is, for a special semi-martingale P = M + A and a predictable
process ξ we have ∫

ξdP =

∫
ξdM +

∫
ξdA

3. Cylindrical Special Martingales

In this section, we define the notion of a cylindrical special martingale and inte-
gration with respect to a cylindrical special martingale.

Definition 1. Let X be a Banach space. A continuous linear mapping P : X ∗ →
SSP is called a cylindrical continuous special martingale. In this way, Px∗ = Mx∗+
Ax∗, where Mx∗ is a local martingale and Ax∗ is a finite variation process, for any
x∗ ∈ X∗,

For a cylindrical continuous special martingale P and a stopping time τ , one can
define P τ : X ∗ → SSP by P τx∗(t) = Px∗(t ∧ τ). Clearly P τ is also a cylindrical
continuous special martingale.

We expect that our definition of a cylindrical continuous special martingale be a
generalization of a cylindrical continuous local martingale. A characteristic prop-
erty of a local martingale is its quadratic variation. Thanks to the finite variation
part of P , which has the zero quadratic variation, we can easily define the qua-
dratic variation [[P ]] of P similar to the quadratic variation of mapping to its local
martingale part M .

Recall that If M is a continuous local martingale with values in a Hilbert space,
then it is well known that it has a classical quadratic variation [M ] in the sense
that there exists an a.s. unique increasing continuous process [M ] starting at zero
such that ∥M∥2 − [M ] is a continuous local martingale again.

Definition 2. Let P : X ∗ → SSP be a linear mapping. The quadratic variation
[[P ]] of P is defined as

[[P ]]t = sup
N∈N

N∑
n=1

sup
m

([Mx∗
m]ti+1 − [Mx∗

m]ti), t ≥ 0,

where Mx∗ is the local martingale part of Px∗ and the limit is taken over all rational
partitions 0 = t0 < · · · < tN = t and (x∗

m)m≥1 is a dense subset of the unit ball in
X∗.

Note that existence of (x∗
m)m≥1 follows from the separability of X ∗. For a

cylindrical special semi-martingale P on a Banach space X , one can think about
covariance [Px∗, Py∗]t for any x∗, y∗ ∈ X∗. However, by the ineffectiveness of finite
variation part A of P , we have [Px∗, Py∗]t = [Mx∗,My∗]t. Therefore, by the polar
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decomposition, there exists a process QP : R+ × Ω → L (X ∗,X ∗∗) such that for
almost surly t > 0

[Px∗, Py∗]t =

∫ t

0

QPx
∗(y∗)d[[P ]]s, x∗, y∗ ∈ X∗.

The process QP is self-adjoint and ∥QP (t)∥ = 1.

Let X ,Y be two Banach spaces. For any x∗ ∈ X ∗, y ∈ Y , we can define the
linear operator x∗⊛y ∈ L (X ,Y ) such that x∗⊛y : x 7→ x∗(x)y. Using the defined
operator, the process ϕ : R+×Ω → L (H ,X ) is called elementary progressive with
respect to the filtration F = (Ft)t∈R+

if it is of the form

ϕ(t, ω) =

N∑
n=1

M∑
m=1

1(tn−1,tn]×Bmn
(t, ω)

K∑
k=1

vk ⊛ xkmn,

where 0 ≤ t0 < · < tn < ∞, for each n = 1, ·, N the sets B1n, . . . , BMn ∈ Ftn−1

and vectors v1, . . . , vK are orthogonal.

For each elementary progressive ϕ we define the stochastic integral with respect
to X ∈ M sp

var(H ) as an element of L0(Ω;Cb(R+;X )) as

∫ t

0

ϕ(s) dP (s) =

N∑
n=1

M∑
m=1

1Bmn

K∑
k=1

(M(tn ∧ t)vk −M(tn−1 ∧ t)vk +Vn(A)vk)xkmn,

(4)

where Vn(A) is the total variation of process A in the n-th interval, [tn−1, tn],
and Cb is the set of all continuous and bounded mappings. This is usual to use the
notation ϕ · P for the process

∫ ·
0
ϕ(s) dP (s).

Clearly, the definition in (4) is a generalization of integration with respect to a
cylindrical local martingale.

Lemma 3. For all progressively measurable processes ϕ : R+×Ω → L (H ,R) with
ϕQ

1/2
P ∈ L2(R+, [[P ]];L (H ,R)) we have[∫ ·

0

ϕdP

]
t

=

∫ t

0

ϕ(s)QP (s)ϕ
∗(s) d[[P ]]s. (5)

Proof. Note that our definition of quadratic variation for cylindrical special semi-
martingales P is reduced to its local martingale part M . Therefore, the proof is
similar to the proof of [13, Theorem 14.7.4]. □

It is important to note that for any (t, ω) in R+ ×Ω, the mapping QP (t, ω) is a
positive mapping from X ∗ to X ∗∗. Therefore, there exists a Hilbert space H such

that Q
1/2
P (t, ω) maps X ∗ to H and QP (t, ω) = Q

1/2∗
P (t, ω)Q

1/2
P (t, ω). Moreover,

ϕ(t, ω)Q
1/2
P (t, ω) is an operator and we may think about (ϕ(t, ω)Q

1/2
P (t, ω))∗ =

Q
1/2
P (t, ω)∗ϕ(t, ω)∗. On the other hand, ϕ(t, ω) is an operator from H to R and
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ϕ(t, ω)∗ is well defined. Breaking the QP appears in (5) to its roots and have an
inner product scheme can make a transparent illustration of the idea behind the
lemma.

Theorem 1. Let H be a Hilbert space and P ∈ M sp
var(H ). Let ϕ : R+ × Ω →

L (H ,X ) be such that ϕ∗x∗ is progressively measurable for each x∗ ∈ X ∗, and
assume ϕ(ω)QP (ω)ϕ

∗(ω)x∗(x∗) ∈ L1
loc(R+, [[P ]](ω)), for all x∗ ∈ X ∗, ω ∈ Ω. Set

M := ϕ · P by

Mx∗(t) :=

∫ t

0

ϕ∗x∗ dP, x∗ ∈ X ∗. (6)

If ∥ϕQPϕ
∗∥∞ < ∞ then M ∈ M sp

var(X ).

Proof. It is clear that for each x∗ ∈ X ∗, mapping Mx∗ is a continuous local
martingale. We need just to show theta the mapping x∗ 7→ Mx∗ is continuous in
the UPC topology. Fix T > 0 and set Ω0 be a subset of Ω such that for almost
every ω ∈ Ω0 we have

t 7→ ⟨ϕ(t, ω)QN (t, ω)∗ϕ(t, ω)∗x∗, x∗⟩ ∈ L 1(0, T ).

Therefore, we have a bounded operator and there exists a constant C such that

∥⟨ϕ(·, ω)QN (·, ω)∗ϕ(·, ω)∗x∗, y∗⟩∥L1(0,T,[[N ]](ω)) ≤ C∥x∗∥ ∥y∗∥.

Moreover, we have

[Mx∗]t =

∫ t

0

⟨ϕ(s)QPϕ
∗(s)x∗, x∗⟩d[[P ]], for all x∗ ∈ X ∗.

Note that ∥ϕ(s)QP
1/2∥∞ < ∞ by definition of ϕ and QP . Now let (x∗

n) be a
sequence in X ∗ and limn→∞ xn = x. We have

∥[Mx∗
n]t − [Mxn]t∥

=

∥∥∥∥∫ t

0

⟨ϕ(s)QPϕ
∗(s)x∗

n, x
∗
n⟩d[[P ]]−

∫ t

0

⟨ϕ(s)QPϕ
∗(s)x∗, x∗⟩d[[P ]]

∥∥∥∥
1

=

∥∥∥∥∫ t

0

⟨ϕ(s)QPϕ
∗(s)x∗

n, x
∗
n⟩ − ⟨ϕ(s)QPϕ

∗(s)x∗, x∗⟩d[[P ]]

∥∥∥∥
1

≤ ∥ϕ(s)QPϕ
∗(s)∥∞∥xn − x∥ → 0

□

Corollary 1. Let M be the cylindrical continuous local martingale defined in The-
orem 1. Then we have

[[M ]]t =

∫ t

0

∥ϕ(s)QP (s)ϕ
∗(s)∥ d[[P ]], t ≥ 0.
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Proof. To prove the equivalence it suffices to observe that

[[M ]]t = lim

J∑
j=1

sup
x∗∈X ∗,∥x∗∥=1

([Px∗]tj − [Px∗]tj−1
)

= lim

J∑
j=1

sup
x∗∈X ∗,∥x∗∥=1

∫ tj

tj−1

⟨ϕ(s)QP (s)ϕ
∗(s)x∗, x∗⟩d[[P ]]s

=

∫ t

0

∥ϕ(s)QP (s)ϕ
∗(s)∥d[[P ]]s.

The limit takes when the partition of 0 = t0 < t1 < · · · < tn = t of [0, t] becomes
refined, when n tends to infinity. Note that the space X ∗ is assumed to be a
separable space which helps us to justify the last equation. □

Corollary 2. Let M be the cylindrical continuous local martingale defined in The-
orem 1. Then we have

ϕ(s)QP (s)ϕ
∗(s) = QM (s)∥ϕ(s)QP (s)ϕ

∗(s)∥

Proof. By the Corollary 1, we have

[[M ]]t =

∫ t

0

∥ϕ(s)QP (s)ϕ
∗(s)∥d[[P ]]

⇒ d

d[[P ]]
[[M ]]t =

d

d[[P ]]

(∫ t

0

∥ϕ(s)QP (s)ϕ
∗(s)∥d[[P ]]

)
⇒ d[[M ]]s = ∥ϕ(s)QN (s)ϕ∗(s)∥ d[[P ]]s. (7)

In the other way,

[Mx∗,My∗]t =

∫ t

0

⟨QP (s)ϕ
∗(s)x∗, ϕ∗(s)y∗⟩d[[P ]]s

=

∫ t

0

⟨ϕ(s)QP (s)ϕ
∗(s)x∗, y∗⟩d[[P ]]s. (8)

Replacing (7) in (8) implies the statement. □

Conclusion

The stochastic integration with respect to a cylindrical Semi-martingale is stud-
ied before in general case. In this research, we specified the general case to special
semi-martingales and used their specific properties to refine the definition. Since
the case of semi-martingales would be studied in relation with the Banach space
and some convergence theorems, our refined definition would affect the convergence
accuracy.
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