On Z-Symmetric Manifold Admitting Projective Curvature Tensor

Ayşe Yavuz Taşc1* and Füsun Özen Zengin
(Communicated by Levent Kula)

Abstract

The object of the present paper is to study the Z-symmetric manifold with the projective curvature tensor. At first, we study the case of Z-tensor and projective Ricci tensor being of Codazzi type. Next, we consider recurrent Z-tensor and recurrent projective Ricci tensor. We also study the Zsymmetric manifold with projective curvature tensor with divergence-free Z-tensor. Finally, we construct an example of the Z -symmetric manifold with projective curvature tensor.

Keywords: Projective curvature tensor, Z-symmetric tensor, Codazzi tensor, recurrent tensor.
AMS Subject Classification (2020): Primary: 53B20 ; Secondary: 53B15; 53C25.

1. Introduction

The projective curvature tensor is an important tensor from the differential geometric point of view. Let M be an n -dimensional Riemannian manifold. If there exists an one-to-one correspondence between each coordinate neighborhood of M and a domain in Euclidean space such that any geodesic of the Riemannian manifold corresponds to a straight line in the Euclidean space, then M is said to be locally projectively flat. For $n \geq 1, \mathrm{M}$ is locally projectively flat if and only if the well known projective curvature tensor P vanishes. The projective curvature tensor P of type $(0,4)$ is given by [1]

$$
\begin{equation*}
P(Y, Z, U, V)=R(Y, Z, U, V)-\frac{1}{n-1}[S(Z, U) g(Y, V)-S(Y, U) g(Z, V)] \tag{1.1}
\end{equation*}
$$

where R is the curvature tensor and S is the Ricci tensor. Let $\left\{e_{i}, \quad i=1,2, \ldots, n\right\}$ be an orthonormal basis of the tangent space at any point of the manifold. Then the Ricci tensor S of type $(0,2)$ and the scalar curvature r are given by the following:

$$
S(X, Y)=\sum_{i=1}^{n} R\left(e_{i}, X, Y, e_{i}\right) \quad \text { and } \quad r=\sum_{i=1}^{n} S\left(e_{i}, e_{i}\right)=\sum_{i=1}^{n} g\left(Q e_{i}, e_{i}\right)
$$

where Q is the Ricci-operator i.e., $g(Q X, Y)=S(X, Y)$.
Now, from (1.1), we have the following [2]:
(i) $\sum_{i=1}^{n} P\left(e_{i}, Z, U, e_{i}\right)=\sum_{i=1}^{n} P\left(e_{i}, e_{i}, U, V\right)=\sum_{i=1}^{n} P\left(Y, Z, e_{i}, e_{i}\right)=0$
(ii) $P(Y, Z, U, V)=-P(Z, Y, U, V)$
(iii) $P(Y, Z, U, V) \neq-P(Y, Z, V, U)$
(iv) $P(Y, Z, U, V) \neq P(U, V, Y, Z)$
$(v) P(Y, Z, U, V)+P(Z, U, Y, V)+P(U, Y, Z, V)=0$.

[^0]Also from (1.1), the projective Ricci tensor can be obtained as [3]

$$
\begin{equation*}
\bar{P}(Y, V)=\sum_{i=1}^{n} P\left(Y, e_{i}, e_{i}, V\right)=\frac{n}{n-1}\left[S(Y, V)-\frac{r}{n} g(Y, V)\right] \tag{1.3}
\end{equation*}
$$

By the aid of (1.3), we get the divergence of the projective Ricci tensor as the form

$$
\begin{equation*}
(\operatorname{div} \bar{P})(Y)=\frac{n-2}{2(n-1)}(\nabla r)(Y) \tag{1.4}
\end{equation*}
$$

In fact, M is projectively flat (that is, $P=0$) if and only if the manifold is of constant curvature [4]. Thus, the projective curvature tensor is a measure of the failure of a Riemannian manifold to be of constant curvature. A Riemannian or a semi-Riemannian manifold is said to be semi-symmetric [5-7] if $R(X, Y) \cdot R=0$, where R is the Riemannian curvature tensor and $R(X, Y)$ is considered as a derivation of the tensor algebra at each point of the manifold for the tangent vectors X, Y. If a Riemannian manifold satisfies $R(X, Y) . P=0$, then the manifold is said to be a projectively semi-symmetric manifold. In [5], it is proved that the projectively semi-symmetric spaces are also semi-symmetric.

It is interesting to note that the some curvatures restricted geometric structures formed by imposing a condition on P are equivalent to the similar structures formed by R. For example, (i) locally symmetric $(\nabla R=$ $0) \Leftrightarrow$ projectively symmetric $(\nabla P=0)$, (ii) recurrent $(\nabla R=\lambda R) \Leftrightarrow$ projectively recurrent $(\nabla P=\lambda P)$, (iii) semisymmetric $(R R=0) \Leftrightarrow$ projectively semisymmetric $(R P=0)$, (iv) pseudosymmetric $(R R=L Q(g, R)) \Leftrightarrow$ projectively pseudosymmetric $(R P=L Q(g, P))$, etc. For details about these facts we refer the reader to [8] and references therein. As $\mathrm{R} \cdot \mathrm{P}=0$ is equivalent to $\mathrm{R} \cdot \mathrm{R}=0$, the study of $\mathrm{R} \cdot \mathrm{P}=0$ is meaningless, however, many researchers (e.g. see [9-11], etc.) studied this condition in the context of the contact geometry.

It is noteworthy to mention that the different curvatures restricted geometric structures for P along with some additional assumptions were studied by several authors (see [10-13]).

A Riemannian manifold is said to have Codazzi type of Ricci tensor if its Ricci tensor S of type $(0,2)$ is non-zero and satisfy the following condition, [14]

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, W)=\left(\nabla_{Y} S\right)(X, W) \tag{1.5}
\end{equation*}
$$

A non-flat Riemannian manifold is said to be generalized Ricci-recurrent manifold if its Ricci tensor is nonvanishing and satisfies the following condition, [15]

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, Z)=\lambda(X) S(Y, Z)+\beta(X) g(Y, Z) \tag{1.6}
\end{equation*}
$$

where λ and β are two non-zero 1-forms.
A non-flat Riemannian manifold is called a recurrent manifold [16] if the curvature tensor of this manifold satisfies the relation

$$
\begin{equation*}
\left(\nabla_{W} R\right)(X, Y, Z, U)=A(W) R(X, Y, Z, U) \tag{1.7}
\end{equation*}
$$

where A is a non-zero 1-form. A non-flat Riemannian manifold is called a Ricci-recurrent manifold if the Ricci tensor of this manifold satisfies the relation([17-19])

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, Z)=A(X) S(Y, Z) \tag{1.8}
\end{equation*}
$$

where A is a non-zero 1-form.
This paper is organized as follows: In the first section of this paper, the definition of the projective curvature tensor of a Riemannian manifold is given. In the second section, the properties of the Z-symmetric tensor are considered. The third section deals with some theorems about the Z-symmetric tensor admitting projective curvature tensor. In the last section, an example for the existence of these manifolds is constructed.

2. The Z-Tensor on a Riemannian Manifold

The notion of the Z-tensor was introduced by Mantica and Molinari [20]. A (0,2) symmetric tensor is generalized Z-tensor if it satisfies

$$
\begin{equation*}
Z_{k l}=S_{k l}+\phi g_{k l}, \tag{2.1}
\end{equation*}
$$

where ϕ is an arbitrary scalar function. The scalar \bar{Z} is the trace of the Z-tensor and from (2.1), it can be written as

$$
\begin{equation*}
\bar{Z}=g^{k l} Z_{k l}=r+n \phi . \tag{2.2}
\end{equation*}
$$

The classical Z tensor is obtained with the choice $\phi=-\frac{1}{n} r$. Shortly, the generalized Z-tensor is called as the Z-tensor. In some cases, the Z-tensor gives the several well known structures on Riemannian manifolds. For example, i) If $Z_{k l}=0$ (i.e, Z-flat) then this manifold reduces to an Einstein manifold, [21]; ii) If $\nabla_{j} Z_{k l}=\lambda_{j} Z_{k l}$ (Z-recurrent) then this manifold reduces to a generalized Ricci recurrent manifold [22]; iii) If $\nabla_{j} Z_{k l}=\nabla_{k} Z_{j l}$, (Codazzi tensor) then we find $\nabla_{j} S_{k l}-\nabla_{k} S_{j l}=\frac{1}{2(n-1)}\left(g_{k l} \nabla_{j}-g_{j l} \nabla_{k}\right) r$, [23]. This result gives us that this manifold is a nearly conformal symmetric manifold $\left((N C S)_{n}\right)$, [24]; iv) The relation between the Z-tensor and the energy-stress tensor of Einstein' s equations, [25], with cosmological constant Λ is $Z_{j l}=k T_{j l}$ where $\phi=-\frac{1}{2} r+\Lambda$ and k is the gravitational constant. In this case, the Z-tensor may be considered as a generalized Einstein gravitational tensor with arbitrary scalar function ϕ. The vacuum solution ($\mathrm{Z}=0$) determines an Einstein space with $\Lambda=\left(\frac{n-2}{2 n}\right) r$; the conservation of total energy-momentum $\left(\nabla^{l} T_{k l}=0\right)$ gives $\nabla_{j} Z_{k l}=0$ then this spacetime gives the conserved enery-momentum density.

This manifold has received a great deal of attention and is studied in considerable detail by many authors [2633]. Motivated by the above studies, in the present, we examine the properties of the Z-tensor of a Riemannian manifold admitting the projective curvature tensor.

3. The Z-Symmetric Manifold Admitting the Projective Curvature Tensor

In this section, we consider the Z-symmetric manifold admitting the projective curvature tensor. In the local coordinates, from (1.1) and (2.1), the relation between the Z-tensor and the projective curvature tensor can be found as

$$
\begin{equation*}
P_{h i j k}=R_{h i j k}-\frac{1}{n-1}\left(Z_{i j} g_{h k}-Z_{h j} g_{i k}-\phi\left(g_{i j} g_{h k}-g_{h j} g_{i k}\right)\right) \tag{3.1}
\end{equation*}
$$

By taking the covariant derivative of (3.1), we can find

$$
\begin{equation*}
P_{h i j k, l}=R_{h i j k, l}-\frac{1}{n-1}\left(Z_{i j, l} g_{h k}-Z_{h j, l} g_{i k}-\phi_{l}\left(g_{i j} g_{h k}-g_{h j} g_{i k}\right)\right) . \tag{3.2}
\end{equation*}
$$

Now, we have the following theorems:
Theorem 3.1. Let (M, g) be of Codazzi type Z-symmetric tensor. A necessary and sufficient condition for the projective Ricci tensor to be divergence-free is that the scalar function ϕ of (M, g) be constant.
Proof. Assume that (M, g) is of Codazzi type Z-symmetric tensor, then, we have from (1.5) and (2.1),

$$
\begin{equation*}
S_{i j, l}-S_{i l, j}=\phi_{j} g_{i l}-\phi_{l} g_{i j} . \tag{3.3}
\end{equation*}
$$

Multiplying (3.3) by $g^{i j}$, we get

$$
\begin{equation*}
r_{, l}=2(1-n) \phi_{l} . \tag{3.4}
\end{equation*}
$$

Differentiating covariantly of the projective Ricci tensor given as the equation (1.3), we obtain

$$
\begin{equation*}
\bar{P}_{i j, l}=\frac{n}{n-2}\left(S_{i j, l}-\frac{r_{, l}}{n} g_{i j}\right) . \tag{3.5}
\end{equation*}
$$

Multiplying (3.5) by $g^{i j}$, it can be found

$$
\begin{equation*}
\bar{P}_{l, j}^{j}=\frac{n-2}{2(n-1)} r_{, l} . \tag{3.6}
\end{equation*}
$$

Thus, if we use the equations (3.4) and (3.6), we can easily see that

$$
\begin{equation*}
\bar{P}_{l, j}^{j}=(2-n) \phi_{l} . \tag{3.7}
\end{equation*}
$$

In this case, if the projective Ricci tensor is divergence-free, the scalar function ϕ must be constant. The converse is also true. Thus, the proof is completed.

Theorem 3.2. Let (M, g) be of Codazzi type projective Ricci tensor. A necessary and sufficient condition for the Zsymmetric tensor to be Codazzi type is that the scalar function ϕ of (M, g) be constant.

Proof. Assume that the projective Ricci tensor of (M, g) is Codazzi type. Thus, we have from the equations (1.3) and (1.5)

$$
\begin{equation*}
S_{i j, k}-\frac{r_{, k}}{n} g_{i j}-S_{i k, j}+\frac{r_{, j}}{n} g_{i k}=0 \tag{3.8}
\end{equation*}
$$

Multiplying (3.8) by $g^{i j}$, we get

$$
\begin{equation*}
S_{k, j}^{j}=\frac{1}{n} r_{, k} . \tag{3.9}
\end{equation*}
$$

Now, using the expression $S_{k, j}^{j}=\frac{1}{2} r_{, k}$, known as Ricci Identity, in (3.9), we find

$$
\begin{equation*}
r_{, k}=0 \tag{3.10}
\end{equation*}
$$

By the aid of the equations (1.5) and (2.1), if the Z-tensor is Codazzi type, we have

$$
\begin{equation*}
0=Z_{i j, k}-Z_{i k, j}=S_{i j, k}-S_{i k, j}+\phi_{k} g_{i j}-\phi_{j} g_{i k} \tag{3.11}
\end{equation*}
$$

Thus, multiplying (3.11) by $g^{i j}$, the equation (3.11) reduces to

$$
\begin{equation*}
r_{, k}-S_{k, j}^{j}=(1-n) \phi_{k} . \tag{3.12}
\end{equation*}
$$

In this case, comparing the equations (3.10) and (3.12), one can obtain

$$
\begin{equation*}
\phi_{k}=0 \tag{3.13}
\end{equation*}
$$

Conversely, from the equations (3.8), (3.10) and (3.11), if the equation (3.13) is satisfied then it can be obtained that the Z-tensor is Codazzi type. Thus, the proof is completed.

Theorem 3.3. Let the projective Ricci tensor of (M, g) be a Codazzi type tensor. The trace function of the Z-tensor is harmonic if and only if the 1-from ϕ_{l} generated by the scalar function ϕ is divergence-free.

Proof. Assume that the projective Ricci tensor of (M, g) is Codazzi type. In this case, we have from (2.2) and (3.10)

$$
\begin{equation*}
\bar{Z}_{, k}=n \phi_{k} \tag{3.14}
\end{equation*}
$$

Hence, by taking the covariant derivative of (3.14), we find

$$
\begin{equation*}
\bar{Z}_{, k l}=n \phi_{k, l} . \tag{3.15}
\end{equation*}
$$

Now, multiplying (3.15) by $g^{k l}$, we get

$$
\begin{equation*}
g^{k l} \bar{Z}_{, k l}=\Delta \bar{Z}=n \phi_{, l}^{l} . \tag{3.16}
\end{equation*}
$$

In this case, if the trace of the Z-tensor is harmonic, then the vector field ϕ_{l} is divergence-free. The converse is also true. Thus, the proof is completed.

Theorem 3.4. If the projective curvature tensor of (M, g) is recurrent tensor with the recurrence vector field λ_{l} then the Z-symmetric tensor is generalized recurrent as the form

$$
Z_{i j, l}=\lambda_{l} Z_{i j}+\beta_{l} g_{i j}
$$

where $\beta_{l}=\frac{1}{n}\left(r_{, l}-\lambda_{l} r\right)+\phi_{l}-\lambda_{l} \phi$.

Proof. Let (M, g) be a Riemannian manifold with the recurrent projective curvature tensor admitting the recurrence vector field λ_{l}. By the aid of the equation (1.7), we get

$$
\begin{equation*}
P_{h i j k, l}=\lambda_{l} P_{h i j k} . \tag{3.17}
\end{equation*}
$$

Thus, multiplying (3.17) by $g^{i j}$ and using the equation (1.3), we have

$$
\begin{equation*}
S_{i j, l}=\lambda_{l} S_{i j}+\frac{1}{n}\left(r_{, l}-\lambda_{l} r\right) g_{i j} . \tag{3.18}
\end{equation*}
$$

Now, putting the equation (3.18) in the equation (2.1), we find

$$
\begin{equation*}
Z_{i j, l}=\lambda_{l} S_{i j}+\frac{1}{n}\left(r_{, l}-\lambda_{l} r\right) g_{i j}+\phi_{l} g_{i j} . \tag{3.19}
\end{equation*}
$$

Thus, we conclude from (3.19) that

$$
\begin{equation*}
Z_{i j, l}=\lambda_{l} Z_{i j}+\left(\frac{1}{n}\left(r_{, l}-\lambda_{l} r\right)+\phi_{l}-\lambda_{l} \phi\right) g_{i j} . \tag{3.20}
\end{equation*}
$$

Hence, if we take $\beta_{l}=\frac{1}{n}\left(r_{, l}-\lambda_{l} r\right)+\phi_{l}-\lambda_{l} \phi$ in the equation (3.20) and if we use (1.6), then the Z-tensor reduces to a generalized recurrent tensor in the form $Z_{i j, l}=\lambda_{l} Z_{i j}+\beta_{l} g_{i j}$. Thus, the proof is completed.
Theorem 3.5. If the Z-tensor of (M, g) is a recurrent tensor with the recurrence vector field λ_{l} then the projective Ricci tensor is a recurrent tensor with the recurrence vector field λ_{l}.
Proof. Assume that (M, g) is of the recurrent Z -tensor admitting the recurrence vector field λ_{l}. Thus, from (1.7) it can be written as

$$
\begin{equation*}
Z_{i j, k}=\lambda_{k} Z_{i j} . \tag{3.21}
\end{equation*}
$$

Now, if we use the equations (3.2) and (3.21), we obtain

$$
\begin{equation*}
P_{h i j k, l}=R_{h i j k, l}-\frac{1}{n-1}\left(\lambda_{l}\left(Z_{i j} g_{h k}-Z_{h j} g_{i k}\right)-\phi_{l}\left(g_{i j} g_{h k}-g_{h j} g_{i k}\right)\right) . \tag{3.22}
\end{equation*}
$$

Hence, multiplying the equation (3.22) by $g^{i j}$, we find

$$
\begin{equation*}
\bar{P}_{h k, l}=\frac{n}{n-1} \lambda_{l}\left(S_{h k}-\frac{r}{n} g_{h k}\right)=\lambda_{l} \bar{P}_{h k} . \tag{3.23}
\end{equation*}
$$

It is clear from (3.23) that the projective Ricci tensor is also recurrent tensor. This completes the proof.
Theorem 3.6. Let the Z-tensor of (M, g) be divergence-free. A necessary and sufficient condition the projective Ricci tensor to be divergence-free is that the scalar function ϕ to be a constant.
Proof. Let (M, g) be of divergence-free Z-tensor generated by the scalar function ϕ. Thus, we have

$$
\begin{equation*}
Z_{j, l}^{l}=0 \tag{3.24}
\end{equation*}
$$

Using the Ricci identity and the equation (2.1), the equation (3.24) takes the form

$$
\begin{equation*}
r_{, j}=-2 \phi_{j} . \tag{3.25}
\end{equation*}
$$

By the aid of (1.4) and (3.25), the divergence of the projective Ricci tensor is found as

$$
\begin{equation*}
\bar{P}_{j, l}^{l}=\frac{2-n}{n-1} \phi_{j} . \tag{3.26}
\end{equation*}
$$

Now, we assume that the projective Ricci tensor is divergence-free, i.e., the condition

$$
\begin{equation*}
\bar{P}_{j, l}^{l}=0 \tag{3.27}
\end{equation*}
$$

is satisfied. Thus, from (3.26) and (3.27), we obtain

$$
\begin{equation*}
\phi_{j}=0 . \tag{3.28}
\end{equation*}
$$

Conversely, if the equation (3.28) holds then it can be obtained from (1.4) that the projective Ricci tensor is divergence-free. Thus, the proof is completed.

Theorem 3.7. Assume that a manifold (M, g) with a constant scalar curvature admits the recurrent projective curvature tensor with the recurrence vector field λ_{l}. If the Z-symmetric tensor is recurrent with the same recurrence vector field λ_{l} then the vector fields ϕ_{l} and λ_{l} are parallel and they satisfy the following form

$$
\phi_{l}=\left(\frac{r}{n}+\phi\right) \lambda_{l}
$$

Proof. Let us assume that (M, g) with a constant scalar curvature is of the recurrent projective curvature tensor with the recurrence vector field λ_{l}. Then, we have the equation (3.18). Also, assuming that the Z-symmetric tensor is a recurrent tensor with the recurrence vector field λ_{l}, from the equation (2.1) and (3.21), we obtain

$$
\begin{equation*}
S_{i j, l}+\phi_{l} g_{i j}=\lambda_{l}\left(S_{i j}+\phi g_{i j}\right) \tag{3.29}
\end{equation*}
$$

Since (M, g) has a constant scalar curvature then we get from (3.18)

$$
\begin{equation*}
S_{i j, l}=\lambda_{l} S_{i j}-\frac{r}{n} \lambda_{l} g_{i j} \tag{3.30}
\end{equation*}
$$

So, comparing the equations (3.29) and (3.30), we find

$$
\begin{equation*}
\phi_{l}=\left(\frac{r}{n}+\phi\right) \lambda_{l} . \tag{3.31}
\end{equation*}
$$

In this case, the proof is completed.

4. An Example for the Existence of These Manifolds

We define a Riemannian metric on the 4-dimensional real number space \mathbb{R}^{4} by the formula

$$
\begin{equation*}
d s^{2}=g_{i j} d x^{i} d x^{j}=\left(d x^{1}\right)^{2}+e^{x^{1}}\left[e^{x^{2}}\left(d x^{2}\right)^{2}+e^{x^{3}}\left(d x^{3}\right)^{2}+e^{x^{4}}\left(d x^{4}\right)^{2}\right] \tag{4.1}
\end{equation*}
$$

Then, the only non-vanishing components of the Christoffel symbols, the curvature tensor, the Ricci tensor and the scalar curvature are found as, respectively,

$$
\begin{gather*}
\Gamma_{22}^{1}=-\frac{e^{x^{1}+x^{2}}}{2}, \quad \Gamma_{33}^{1}=-\frac{e^{x^{1}+x^{3}}}{2}, \quad \Gamma_{44}^{1}=-\frac{e^{x^{1}+x^{4}}}{2} \\
\Gamma_{12}^{2}=\Gamma_{13}^{3}=\Gamma_{14}^{4}=\Gamma_{22}^{2}=\Gamma_{33}^{3}=\Gamma_{44}^{4}=\frac{1}{2} \\
R_{1221}=\frac{e^{x^{1}}+x^{2}}{4}, \quad R_{1331}=\frac{e^{x^{1}}+x^{3}}{4}, \quad R_{1441}=\frac{e^{x^{1}}+x^{4}}{4}, \\
R_{2332}=\frac{e^{2 x^{1}}+x^{2}+x^{3}}{4}, \quad R_{2442}=\frac{e^{2 x^{1}}+x^{2}+x^{4}}{4}, \quad R_{3443}=\frac{e^{2 x^{1}}+x^{3}+x^{4}}{4}, \\
S_{11}=\frac{3}{4}, \quad S_{22}=\frac{3 e^{x^{1}+x^{2}}}{4}, \quad S_{33}=\frac{3 e^{x^{1}+x^{3}}}{4}, \quad S_{44}=\frac{3 e^{x^{1}+x^{4}}}{4}, \\
r=3 \tag{4.2}
\end{gather*}
$$

and the components obtained by the symmetry properties. Then, by using the equation (4.2), the only non-zero components of the Z-symmetric tensor are found as

$$
\begin{align*}
& Z_{11}=\frac{3}{4}+\phi, \quad Z_{22}=e^{x^{1}+x^{2}}\left(\frac{3}{4}+\phi\right), \\
& Z_{33}=e^{x^{1}+x^{3}}\left(\frac{3}{4}+\phi\right), \quad Z_{44}=e^{x^{1}+x^{4}}\left(\frac{3}{4}+\phi\right) \tag{4.3}
\end{align*}
$$

By, using the equations (3.6) and (4.2), it can be obtained that the projective Ricci tensor satisfies the relation

$$
\begin{equation*}
\bar{P}_{i j, k}-\bar{P}_{i k, j}=0 \quad i=1,2,3,4 \tag{4.4}
\end{equation*}
$$

Now, we will show that \mathbb{R}^{4} given by the metric (4.1) satisfies the condition of Theorem 3.2. To verify the relation (3.8), it is sufficient to check that the following equations

$$
\begin{equation*}
Z_{i j, k}-Z_{i k, j}=0 \quad i=1,2,3,4 \tag{4.5}
\end{equation*}
$$

are satisfied. Hence, by taking the covariant derivative of the Z-tensor in the form (4.3) and putting them in the equation (4.5), we find

$$
\begin{array}{cc}
Z_{11, j}=\phi_{j}=0 & j=2,3,4 \\
Z_{22, j}=e^{x^{1}+x^{2}} \phi_{j}=0 & j=1,3,4 \\
Z_{33, j}=e^{x^{1}+x^{3}} \phi_{j}=0 & j=1,2,4 \\
Z_{44, j}=e^{x^{1}+x^{4}} \phi_{j}=0 & j=1,2,3 \tag{4.6}
\end{array}
$$

It, it can be seen that the scalar function ϕ is independent of the coordinates $x^{1}, x^{2}, x^{3}, x^{4}$. Thus, the scalar function ϕ must be constant. Finally, we can say that this manifold endowed by the metric (4.1) is an example to satisfy Theorem 3.2.

References

[1] Mishra, R. S.: Structures on a differentiable manifold and their applications. Chandrama Prakasana. Allahabad, India (1984).
[2] Shaikh, A. A., Hui, S. K.: On weakly projective symmetric manifolds. Acta Math. Acad. Paedagog. Nyhazi (N.S.) 25 (2), 247-269 (2009).
[3] Chaki, M. C., Saha, S. K.: On pseudo-projective Ricci symmetric manifolds. Bulgar. J. Phys. 21, 1-7 (1994).
[4] Yano, K., Bochner, S.: Curvature and Betti Numbers. Princeton University Press. (1953).
[5] Mikesh, J.: Differential Geometry of Special Mappings. Palacky University, Faculty of Science. Olomouc (2015).
[6] Sinyukov, N. S.: Geodesic Mappings of Riemannian Spaces. Nauka, Moscow (1979).
[7] Szabo, Z. I.: Structure theorems on Riemannian spaces satisfying $R(X, Y) . R=0$. J. Diff. Geom. 17, 531-582 (1982).
[8] Shaikh, A. A., Kundu, H.: On equivalency of various geometric structures. J. Geom. 105, 139-165 (2014).
[9] Shaikh, A. A., Baishya, K. K.: On (k, μ)-contact metric manifolds. An. Stiint. Univ. Al. I. Cuza Iasi Mat. (N.S.) LI (2), 405-416 (2005).
[10] De, U. C., Sarkar, A.: On the projective curvature tensor of generalized Sasakianspace-forms. Quaest. Math. 33 (2), 245-252 (2010).
[11] Satyanarayana, T., Prasad, K. L. S.: On Semi-symmetric Para Kenmotsu Manifolds. Turkish J. Anal. Number Theo. 3 (6), 145-148 (2015).
[12] Deprez, J., Roter, W., Verstraelen, L.: Conditions on the projective curvature tensor of conformally flat Riemannian manifolds. Kyungpook Math. J. 29 (2), 153-166 (1989).
[13] Petrovic-Torgasev, M., Verstraelen, L.: On the concircular curvature tensor, the projective curvature tensor and the Einstein curvature tensor of Bochner-Kaehler manifolds. Math. Rep. Toyama Univ. 10, 37-61 (1987).
[14] Gray, A.: Einstein-like manifolds which are not Einstein. Geom. Dedicata 7, 259-280 (1978).
[15] De, U. C., Guha, N., Kamilya, D.: On generalized Ricci-recurrent manifolds. Tensor(NS) 56, 312-317 (1995).
[16] Ruse, H.S.: Three-Dimensional Spaces of Recurrent Curvature. Proc. Lond. Math. Soc. 50, 438-446 (1949).
[17] Chaki, M.C.: Some theorems on recurrent and Ricci-recurrent spaces. Rendiconti del Seminario Matematico della Universita di Padova 26, 168-176 (1956).
[18] Prakash, N.: A note on Ricci-recurrent and recurrent spaces. Bull. Calcutta Math. Soc. 54, 1-7 (1962).
[19] Yamaguchi, S., Matsumoto, M.: On Ricci-recurrent spaces. Tensor (N.S) 19, 64-68 (1968).
[20] Mantica, C.A., Molinari, L.G.: Weakly Z-symmetric manifold. Acta Math. Hungar. 135, 80-96 (2012).
[21] Besse, A. L.: Einstein Manifolds. Springer-Verlag, Berlin Heidelberg (1987).
[22] De, U. C., Guha, N., Kamilya, D.: On generalized Ricci-recurrent manifolds. Tensor (N.S) 56, 312-317 (1995).
[23] Derdzinski, A., Shen, C.L.: Codazzi tensor fields, curvature and Pontryagin forms. Proc. Lond. Math. Soc. 47, 15-26 (1983).
[24] Roter, W.: On a generalization of conformally symmetric metrics. Tensor (NS) 46, 278-286 (1987).
[25] de Felice, F., Clarke, C. J. S.: Relativity on curved manifolds. Cambridge University Press. (1990).
[26] De, U. C., Mantica, C. A., Suh, Y. J.: On weakly cyclic Z symmetric manifolds. Acta Math. Hungar. 146 (1), 153-167 (2015).
[27] Mantica, C. A., Suh, Y. J.: Pseudo Z symmetric riemannian manifolds with harmonic curvature tensors. Int. J. Geom. Meth. Mod. Phys. 9 (1), 1250004 1-21 (2012).
[28] Mantica, C. A., Suh, Y. J.: Pseudo-Z symmetric spacetimes. J. Math. Phys. 55 (4), 042502, 12pp (2014).
[29] Mantica, C.A., Suh, Y. J.: Recurrent Z forms on Riemannian and Kaehler manifolds. Int. J. Geom. Meth. Mod. Phys. 9 (7), 1250059 1-26 (2012).
[30] De, U. C., Pal, P.: On almost pseudo-Z-symmetric manifolds. Acta Univ. Palacki., Fac. rer. nat., Mathematica 53 (1), 25-43 (2014).
[31] De, U. C.: On weakly Z symmetric spacetimes. Kyungpook Math. J. 58, 761-779 (2018).
[32] Yavuz Taşcı, A., Özen Zengin, F.: Concircularly flat Z-symmetric manifolds. An. Stiint. Univ. Al. I. Cuza Iasi TomLXV (2), 241-250 (2019).
[33] Yavuz Taşcı, A., Özen Zengin, F.: Z-symmetric manifold admitting concircular Ricci symmetric tensor. Afrika Matematika 31, 1093-1104 (2020).

Affiliations

Ayşe Yavuz Taşci
Address: Piri Reis University, 34940, Istanbul-Türkiye.
E-MAIL: aytasci@pirireis.edu.tr
ORCID ID: 0000-0003-2939-3330

FÜsun Özen Zengin
ADDRESS: Istanbul Technical University, Dept. of Mathematics, 34469, Istanbul-Türkiye.
E-MAIL: fozen@itu.edu.tr
ORCID ID: 0000-0002-5468-5100

[^0]: Received: 25-08-2021, Accepted: 26-11-2021

 * Corresponding author

