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Abstract
In recent years, the finite mixture lifetime models have frequently been used in chemical,
physical, social science, biological and other fields due to their methodological development
and practical applications. The Bayesian analysis of the mixture models has also developed
a significant interest among the statisticians especially in the last decade. However, the
most of these contributions are limited to the Bayes estimation for the parameters of
lifetime models under singly type I censoring. This paper discusses the Bayesian estimation
for the two-component mixture of the lifetime models under doubly censored samples with
a particular case for the Burr type VII model. A class of improved priors has been proposed
for the posterior estimation. The likelihood function, for doubly censored samples using
two-component mixture of life time distributions, has been introduced. The hazard rate
function for the mixture model has been compared for different parametric values. The
performance of various estimators has been compared under a simulation study along with
a real life example.
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1. Introduction
Burr [5] introduced a family of Burr distribution including twelve life time distributions.

These distributions can be used to model almost all kinds of failure time data. Among
these distributions, the Burr type VII distribution has rarely been considered by the
analysts, maybe due to its complex density function. This distribution can also be used for
analysis of the life time data. Recently, Feroze and Aslam [10] discussed some properties
of the distribution under a Bayesian framework using left, singly type II and doubly
type II censored samples. The distribution still requires much attention to explore its
applications in different real life situations. To deal with characteristics of such unfamiliar
distributions is always of great interest for the researchers. The insight we can get from
them can be beneficial to the professionals looking to use those distributions as models.
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Among the other members from the family of Burr distributions; the Burr type X and XII
have received the sizable attention of the researchers. For further details regarding these
contributions, the readers may refer to: [11, 12,28,33,40–44,46,49–51].

The finite mixture models are typically used to model data where each observation is
assumed to have come from more than one groups (sub-populations), each group being
suitably modeled by a density from some parametric family. The density representing each
group is referred to as a component of the mixture. These components are mixed accord-
ing to their proportions (relative frequencies) in the population. These mixture models
provide a convenient and flexible family of distributions for estimating or approximating
distributions which are not well modeled by any standard family, such as kernel density
estimation. In recent years, the finite mixture lifetime models have frequently been used
in chemical, physical, social science, biological and other fields due to their methodolog-
ical development and practical applications. These mixture models can analyze different
datasets when a population is categorized in number of sub-populations based on different
causes of failures. For example, a population of lifetimes of certain electrical elements can
be classified into number of sub-populations due to different causes of failures. Several
papers have been appeared on classical analysis of the mixture of life time distributions
under complete and censored data, these include: [1, 2, 8, 9, 19,23,24,26,27,30–32,45,47].

The analysis of mixture models under Bayesian framework has developed a significant
interest among the statisticians. The authors dealing with Bayesian analysis of mixture
models include: [25, 36–39]. But these contributions are limited to the Bayes point esti-
mation of the parameters under singly type I censored data. In singly type I censoring
there is one test termination point; however an analyst may be interested to have two
test termination times in situations where the equipment age is unknown at the start of
a period of equipment monitoring and the tracking of the equipment is stopped after a
predetermined observation interval. In such situation the use of doubly censored samples
can effectively be used. Doubly censoring is the device used to describe the methodologies
for analyzing duration times between two events. In this censoring, it is necessary to de-
fine two time points: the origin time corresponding to the time at which an original event
occurs and the failure time corresponding to the time at which the final event occurs. For
example, in the context of HIV/AIDS studies starting time may be taken as the infection
time of a patient, the termination time can be the time of the AIDS diagnosis of the
patients. The patients which at the end of the study have not developed the disease may
be considered as right censored. The elapsed time between these two points is the AIDS
latency time. For more illustrations on doubly type-II censoring, the reader may refer to:
[12,15,29,34,35,48].

In this paper, the two-component mixture of the Burr type VII has been considered
under doubly type II censored samples. An extended version of the likelihood function
under doubly type II censored samples has been introduced for two-component mixture
of lifetime distributions. A class of improved informative priors has been proposed for the
posterior analysis. The Bayes point and interval estimators along with posterior predictive
intervals have been derived and evaluated. The proposed method can be extended for more
than two component mixtures.

The organization of the paper is as follows: Section 2 contains of the model and the in-
troduction of likelihood function for two-component mixture of Burr type VII distribution
under doubly censored samples. The improved priors have been introduced and posterior
distributions have been derived in Section 3. Bayes point estimation has been discussed
in Section 4. The algorithm for prior elicitation has been given in Section 5. The results
of the simulation study have been presented in Section 6. A real life example has been
used to discuss the applicability of the results in Section 7. The hazard rate function for
the mixture model has been discussed in Section 8. Finally, the conclusions regarding the
study have been presented in Section 9.
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2. The model and likelihood function
The probability density function (pdf) of the Burr type VII distribution is

fj (xji) = θj2−θjsech2 (xji) {1 + tanh(xji)}θj−1,

− ∞ < xji < ∞, θj > 0, j = 1, 2 i = 1, 2, ..., n. (2.1)

The cumulative distribution function (CDF) of the distribution is

Fj (xji) = 2−θj {1 + tanh(xji)}θj ,

− ∞ < xji < ∞, θj > 0, j = 1, 2 i = 1, 2, ..., n. (2.2)

A density function for mixture of two components densities with mixing weights (π, 1 − π)
is

f (x) = πf1 (x) + (1 − π) f2 (x) , 0 < π < 1. (2.3)
The cumulative distribution function for the mixture model is

F (x) = πF1 (x) + (1 − π)F2 (x) . (2.4)

Consider a random sample of size n from Burr type VII distribution and let xr, xr +
1, . . . , xs be the ordered observations that can only be observed. The remaining r − 1
smallest observations and the n−s largest observations have been assumed to be censored.
Now based on causes of failure, the failed items are assumed to come either from sub-
population 1 or from sub-population 2; so that the x1r1 , . . . , x1s1 and x2r2 , . . . , x2s2 failed
items come from first and second sub-populations respectively. The rest of the observations
which are less than xr and greater than xs have been assumed to be censored from each
component where xs = max (x1,s1 , x2,s2) and xr = min (x1,r1 , x2,r2). Therefore, m1 =
s1 − r1 + 1 and m2 = s2 − r2 + 1 number of failed items can be observed from first and
second sub-population respectively. The remaining m = s− r+ 1 items are assumed to be
censored observations where r = r1+r2, s = s1+s2 and m = m1+m2. Then the likelihood
function for the type II doubly censored sample x = {(x1r1 , . . . , x1s1), (x2r2 , . . . , x2s2)},
assuming the causes of the failure of the left censored items are identified, can be written
as

L (θ1, θ2, π |x) ∝{F (x1,r1)}r1−1{F (x2,r2)}r2−1{1 − F (xs)}n−s

×


s1∏
i=r1

f (x1,i)




s2∏
i=r2

f (x2,i)

 . (2.5)

Putting vales in Equation (2.5) and simplifying, we get

L (θ1, θ2, π |x) ∝
r1−1∑
k1=0

r2−1∑
k2=0

n−s∑
k3=0

k3∑
k4=0

(−1)k3

(
r1 − 1
k1

)(
r2 − 1
k2

)(
n− s

k3

)(
k3
k4

)
πk1+k3+k4

× (1 − π)r1+r2+k3−k1−k2−k4−2θm1
1 e−θ1Ω(x1i)θm2

2 e−θ2Ω(x2i), (2.6)

where
Ω (x1i) = −

s1∑
i=r1

ln
{

1+tanh(x1i)
2

}
− k1 ln

{1+tanh(x1,r1 )
2

}
− k2 ln

{1+tanh(x2,r2 )
2

}
− k4 ln

{
1+tanh(xs)

2

}
and
Ω (x2i) = −

s2∑
i=r2

ln
{

1+tanh(x2i)
2

}
− (r1 − k1 − 1) ln

{1+tanh(x1,r1 )
2

}
− (r2 − k2 − 1) ln

{1+tanh(x2,r2 )
2

}
− (k3 − k4) ln

{
1+tanh(xs)

2

}
.

This can further be written as

L (θ1, θ2, π |x) ∝
r1−1∑
k1=0

r2−1∑
k2=0

n−s∑
k3=0

k3∑
k4=0

(
r1 − 1
k1

)(
r2 − 1
k2

)(
n− s

k3

)(
k3
k4

) 2∏
w=1

(−1)k3

×πk1+k3+k4(1 − π)r1+r2+k3−k1−k2−k4−2θmw
w e−θwΩ(xwi). (2.7)
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3. Prior and posterior distributions
There are several rules for defining a non-informative prior, such as the principle of

indifference and the Jeffreys rule. The principle of indifference is undoubtedly the simplest
and oldest rule. Using the principle of indifference, Laplace [20] has proposed one of the
most widely used non-informative prior, namely uniform prior. The expressions of uniform
prior for the parameters of the mixture model can be given as: g (θ1, θ2, π) ∝ 1. But it
seems to be inadequate to the specific situation. As prior is often used when the parameter
θ is defined on (−∞,∞). If the parametric range is restricted to be positive, then a non-
informative prior satisfying the Jeffreys rule is often considered as: g (θ) ∝ θ−1. Whereas, if
θ is defined in (0, 1), the non-informative prior is usually defined as: g (θ) ∝ θ− 1

2 (1 − θ)− 1
2 .

Whenever a specific rule is not defined and the resulting non-informative prior cannot
explicitly be derived, the following vague joint prior can be used for the parameters of the
mixed Burr type VII distribution:

g (θ1, θ2, π) ∝ θ−1
1 θ−1

2 π−1/2(1 − π)−1/2 ; θ1, θ2 > 0 (3.1)

The current literature regarding Bayesian analysis of the mixture models mostly includes
the assumption of non-informative uniform prior for the mixing parameter along with
informative priors for the parameters representing the different components of the model
(see [25, 36–39]). We have proposed the informative beta prior for the mixing parameter,
which has been combined with other priors to produce the improved informative priors
for the posterior analysis. The description of these priors has been given in the following.

Let θ1 ∼ Gamma(a1, b1) and θ2 ∼ Gamma(a2, b2) are the gamma priors for each
parameter and π ∼ Beta(a3, b3) is the beta prior for mixing parameter π . Under the
assumption of independence, these priors have been combined to produce a joint improved
gamma prior for parameter as

g (θ1, θ2, π) ∝ θ
a1−2
1 θa2−2

2 e−(θ1b1+θ2b2)πa3−1(1 − π)b3−1,

θ1, θ2 > 0, 0 < π < 1, a1, a2, a3, b1, b2, b3 > 0 (3.2)

where a1, a2, a3, b1, b2 and b3 are hyper-parameters. Another informative prior is the
Jeffreys gamma prior suggested by [18]. Let θ1 ∼ JeffreysGamma(a1, b1) and θ2 ∼
JeffreysGamma(a2, b2) are the Jeffreys gamma priors for each parameter and π ∼ Beta(a3, b3)
is the beta prior for mixing parameter π. Under the assumption of independence, these
priors have been combined to produce a joint improved Jeffreys gamma prior for parameter
as

g (θ1, θ2, π) ∝ θ
a1−2
1 θa2−2

2 e−(θ1b1+θ2b2)πa3−1(1 − π)b3−1,

θ1, θ2 > 0, 0 < π < 1, a1, a2, a3, b1, b2, b3 > 0 (3.3)

where a1, a2, a3, b1, b2 and b3 are hyper-parameters. Suppose θ1 ∼ InverseLevy (b4),
θ2 ∼ InverseLevy (b5) and π ∼ Beta(a3, b3) then these marginal priors can be united to
introduce a joint improved inverse levy prior as

g (θ1, θ2, π) ∝ (θ1θ2)−0.5e−0.5(b4θ1+b5θ2)πa3−1(1 − π)b3−1,

θ1, θ2 > 0, 0 < π < 1, a3, b3, b4, b5 > 0 (3.4)

where a3, b3, b4 and b5 are hyper-parameters. Further, suppose θ1 ∼ Exponential (d1),
θ2 ∼ Exponential (d2) and π ∼ Beta(a3, b3) then these marginal priors can be combined
to introduce a joint improved exponential prior as

g (θ1, θ2, π) ∝ e−(d1θ1+d2θ2)πa3−1(1 − π)b3−1,

θ1, θ2 > 0, 0 < π < 1, a3, d1, d2 > 0 (3.5)
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where a3, d1 and d2 are hyper-parameters. Finally, consider θ1 ∼ ChiSquare (d3) and
π ∼ Beta(a3, b3) then these marginal priors can be combined to introduce a joint improved
chi square prior as

g (θ1, θ2, π) ∝ θ
(d3/2)−1
1 θ

(d4/2)−1
2 e−0.5(θ1+θ2)πa3−1(1 − π)b3−1,

θ1, θ2 > 0, 0 < π < 1, a3, b3, d3, d4 > 0 (3.6)

where a3, b3, d3 and d4 are hyper-parameters. Using the prior distributions presented in
Equations (3.1)–(3.6) and the likelihood function in Equation (2.7), the posterior distri-
butions can respectively be obtained as

h1 (θ1, θ2, π |x) ∝
r1−1∑
k1=0

r2−1∑
k2=0

n−s∑
k3=0

k3∑
k4=0

2∏
w=1

(−1)k3

(
r1 − 1
k1

)(
r2 − 1
k2

)(
n− s

k3

)(
k3
k4

)

×πk1+k3+k4− 1
2 (1 − π)r1+r2+k3−k1−k2−k4− 5

2 θmw−1
w e−θwΩ(xwi), (3.7)

h1 (θ1, θ2, π |x) ∝
r1−1∑
k1=0

r2−1∑
k2=0

n−s∑
k3=0

k3∑
k4=0

2∏
w=1

(−1)k3

(
r1 − 1
k1

)(
r2 − 1
k2

)(
n− s

k3

)(
k3
k4

)

×πk1+k3+k4−a3−1(1 − π)r1+r2+k3−k1−k2−k4−2+b3−1θmw+aw−1
w

× e−θw{Ω(xwi)+bw}, (3.8)

h1 (θ1, θ2, π |x) ∝
r1−1∑
k1=0

r2−1∑
k2=0

n−s∑
k3=0

k3∑
k4=0

2∏
w=1

(−1)k3

(
r1 − 1
k1

)(
r2 − 1
k2

)(
n− s

k3

)(
k3
k4

)

×πk1+k3+k4−a3−1(1 − π)r1+r2+k3−k1−k2−k4−2+b3−1θmw+aw−2
w

× e−θw{Ω(xwi)+bw}, (3.9)

h1 (θ1, θ2, π |x) ∝
r1−1∑
k1=0

r2−1∑
k2=0

n−s∑
k3=0

k3∑
k4=0

2∏
w=1

(−1)k3

(
r1 − 1
k1

)(
r2 − 1
k2

)(
n− s

k3

)(
k3
k4

)

× πk1+k3+k4−a3−1(1 − π)r1+r2+k3−k1−k2−k4−2+b3−1θmw−0.5
w

× e−θw{Ω(xwi)+0.5bw+3}, (3.10)

h1 (θ1, θ2, π |x) ∝
r1−1∑
k1=0

r2−1∑
k2=0

n−s∑
k3=0

k3∑
k4=0

2∏
w=1

(−1)k3

(
r1 − 1
k1

)(
r2 − 1
k2

)(
n− s

k3

)(
k3
k4

)

× πk1+k3+k4−a3−1(1 − π)r1+r2+k3−k1−k2−k4−2+b3−1θmw
w

× e−θw{Ω(xwi)+dw}, (3.11)

h1 (θ1, θ2, π |x) ∝
r1−1∑
k1=0

r2−1∑
k2=0

n−s∑
k3=0

k3∑
k4=0

2∏
w=1

(−1)k3

(
r1 − 1
k1

)(
r2 − 1
k2

)(
n− s

k3

)(
k3
k4

)

× πk1+k3+k4−a3−1(1 − π)r1+r2+k3−k1−k2−k4−2+b3−1θmw+0.5dw+2
w

× e−θw{Ω(xwi)+0.5}. (3.12)
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The posterior distributions given in Equations (3.7) and (3.12) be combined to a single
equation as

h1 (θ1, θ2, π |x) ∝
r1−1∑
k1=0

r2−1∑
k2=0

n−s∑
k3=0

k3∑
k4=0

2∏
w=1

(−1)k3

(
r1 − 1
k1

)(
r2 − 1
k2

)(
n− s

k3

)(
k3
k4

)

× πk1+k3+k4−l1(a3−1)− 1
2 (1 − π)r1+r2+k3−k1−k2−k4+l1(b3−1)− 5

2

× θmw−l2+l3(aw−1−l4)−0.5l5+l7(0.5d2+w−1)
w

× e−θw{Ω(xwi)+l3bw+0.5l5bw+3+l6dw+0.5l7}. (3.13)
Here, the posterior distributions given in Equations (3.7)–(3.12) can be derived as a special
case of the above density Equation (3.13) by putting l1 = l2 = l3 = l4 = l5 = l6 = l7 = 0;
l1 = l3 = 1, l2 = l4 = l5 = l6 = l7 = 0; l1 = l3 = 1, l2 = l4 = l5 = l6 = l7 = 0;
l1 = l5 = 1, l2 = l3 = l4 = l6 = l7 = 0; l1 = l6 = 1, l2 = l3 = l4 = l5 = l7 = 0; and
l1 = l7 = 1, l2 = l3 = l4 = l5 = l6 = 0, respectively.

Let A1 = k1 +k3 +k4 +l1 (a3 − 1)−1/2, A2 = r1 +r2 +k3 −k1 −k2 −k4 +l1 (b3 − 1)−5/2,
Mw = mw − l2 + l3 (aw − 1 − l4) − 0.5l5 + l7 (0.5d2+w − 1) and ϕ (xwi) = Ω (xwi) + l3bw +
0.5l5bw+3 + l6dw + 0.5l7. Therefore, the model given in Equation (3.13) can be presented
as

h (θ1, θ2, π |x) ∝
r1−1∑
k1=0

r2−1∑
k2=0

n−s∑
k3=0

k3∑
k4=0

2∏
w=1

(−1)k3

(
r1 − 1
k1

)(
r2 − 1
k2

)(
n− s

k3

)(
k3
k4

)

× πA1(1 − π)A2θMw
w exp {−θwϕ (xwi)} . (3.14)

Consider that
∞∫

0

1∫
0

r1−1∑
k1=0

r2−1∑
k2=0

n−s∑
k3=0

k3∑
k4=0

2∏
w=1

(−1)k3

(
r1 − 1
k1

)(
r2 − 1
k2

)(
n− s

k3

)(
k3
k4

)
πA1(1 − π)A2θMw

w e−θwϕ(xwi)dπdθ1dθ2

=
r1−1∑
k1=0

r2−1∑
k2=0

n−s∑
k3=0

k3∑
k4=0

2∏
w=1

(−1)k3

(
r1 − 1
k1

)(
r2 − 1
k2

)(
n− s

k3

)(
k3
k4

)
×

∞∫
0

∞∫
0

∞∫
0

πA1(1 − π)A2θMw
w e−θwϕ(xwi)dπdθ1dθ2

=
r1−1∑
k1=0

r2−1∑
k2=0

n−s∑
k3=0

k3∑
k4=0

2∏
w=1

(−1)k3

(
r1 − 1
k1

)(
r2 − 1
k2

)(
n− s

k3

)(
k3
k4

)
B (A1 + 1, A2 + 1) Γ (Mw + 1)

{ϕ (xwi)}Mw+1 ,

where B(x, y) is a standard Beta function and Γ(x) is the gamma function. Therefore the
complete density for the posterior distributions given in Equation (3.14) can be obtained
as

h (θ1, θ2, π |x) =

r1−1∑
k1=0

r2−1∑
k2=0

n−s∑
k3=0

k3∑
k4=0

2∏
w=1

(−1)k3(r1−1
k1

)(r2−1
k2

)(n−s
k3

)(k3
k4

)πA1 (1−π)A2θMw
w exp{−θwϕ(xwi)}

r1−1∑
k1=0

r2−1∑
k2=0

n−s∑
k3=0

k3∑
k4=0

2∏
w=1

(r1−1
k1

)(r2−1
k2

)(n−s
k3

)(k3
k4

) B(A1+1,A2+1)Γ(Mw+1)

{ϕ(xwi)}Mw+1

.

(3.15)
Let

D =
r1−1∑
k1=0

r2−1∑
k2=0

n−s∑
k3=0

k3∑
k4=0

2∏
w=1

(
r1 − 1
k1

)(
r2 − 1
k2

)(
n− s

k3

)(
k3
k4

)
B (A1 + 1, A2 + 1) Γ (Mw + 1)

{ϕ (xwi)}Mw+1 .

Therefore, Equation (3.15) can be presented as

h (θ1, θ2, π |x) = 1
D

r1−1∑
k1=0

r2−1∑
k2=0

n−s∑
k3=0

k3∑
k4=0

2∏
w=1

(−1)k3

(
r1 − 1
k1

)(
r2 − 1
k2

)(
n− s

k3

)(
k3
k4

)

×πA1(1 − π)A2θMw
w e−θwϕ(xwi). (3.16)
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The graphs for the marginal posterior distributions for the parameters of the mixture
density, given in Equation (2.3), under different priors are presented in Figures 1 and 2.
The graphs are based on the simulated data from the mixture model using a sample of size
50. The legends in the graphs contain following abbreviations: NIP: Non-informative prior;
GP: Gamma prior; JGP: Jeffreys Gamma prior; ILP: Inverse levy prior; EP: Exponential
prior; CSP: Chi square prior.

Figure 1. Graph for the marginal posterior distribution of θ1 using different
priors.

Figure 2. Graph for the marginal posterior distribution of θ2 using different
priors.

The graphs indicate that the marginal posterior distributions for the parameters θ1
and θ2 are slightly positively skewed. The tendency of skewness is higher for the sec-
ond component. In case of first component, it can be observed that height of posterior
distribution under inverse levy prior (ILP) is the most. The shape of posterior distribu-
tions under gamma and Jeffreys gamma priors are very close to each other. Similarly, the
shape of posterior distributions under non-informative prior and the exponential priors are
alike. In case second component, the posterior distributions under non-informative prior,
gamma prior and Jeffreys gamma prior are having similar shapes. Finally, the posterior
distributions based on exponential prior and chi square prior are identical.
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4. Loss functions and Bayes estimators
The decision theory suggests that in order to select the best estimator, a loss function

must be specified and used to estimate the risk associated with each of the possible esti-
mates. Since, there is no definite analytical process that allows us to identify the proper
loss function to be used, most of the analysts uses some symmetric loss functions, these
associate equal importance to the losses due to overestimation and underestimation of
equal magnitude and obtain the posterior mean as Bayesian estimate. In situations where
the loss is asymmetric, we have to employ some asymmetric loss functions. Therefore,
we have included both symmetric and asymmetric loss functions for posterior estimation.
The description of the both loss function is given as the followings.

4.1. Squared error loss function (SELF)
The squared error loss function proposed by [14] and [22] is defined as

L (θ, θSELF ) = (θ − θSELF )2.

The Bayes estimator under this loss function is

θSELF = E (θ) ,

where θ is the parameter. The risk associated with this loss function can be viewed as
variance of the estimator and is related to classical least square theory.

4.2. Squared logarithmic loss function (SLLF)
Another loss function due to Brown [4] is called squared logarithmic loss function. It

can be defined as

L (θSLLF , θ) = (log θSLLF − log θ)2.

The Bayes estimate under SLLF is

θSLLF = exp {E (log θ)} .

The generalized expressions for Bayes estimators and posterior risks under these loss func-
tions have been presented in the following.

The Bayes estimator of parameter under SELF, denoted by
(
θ̂1
)
SELF

, can be obtained
as

(
θ̂1
)
SELF

= E (θ1) = 1
D

r1−1∑
k1=0

r2−1∑
k2=0

n−s∑
k3=0

k3∑
k4=0

(−1)k3

(
r1 − 1
k1

)(
r2 − 1
k2

)(
n− s

k3

)(
k3
k4

)

×
∞∫

0

∞∫
0

1∫
0

πA1(1 − π)A2θM1+1
1 θM2

2 exp {−θ1ϕ (x1i)}

× exp {−θ2ϕ (x2i)} dπdθ1dθ2

= 1
D

r1−1∑
k1=0

r2−1∑
k2=0

n−s∑
k3=0

k3∑
k4=0

(−1)k3

(
r1 − 1
k1

)(
r2 − 1
k2

)(
n− s

k3

)(
k3
k4

)

×B (A1 + 1, A2 + 1) Γ (M1 + 2) Γ (M2 + 1)
{ϕ (x1i)}M1+2{ϕ (x2i)}M2+1 . (4.1)
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The Bayes estimator of parameter θ2 under SELF, denoted by
(
θ̂2
)
SELF

, can be derived
as

(
θ̂2
)
SELF

= E (θ1) = 1
D

r1−1∑
k1=0

r2−1∑
k2=0

n−s∑
k3=0

k3∑
k4=0

(−1)k3

(
r1 − 1
k1

)(
r2 − 1
k2

)(
n− s

k3

)(
k3
k4

)

×
∞∫

0

∞∫
0

1∫
0

πA1(1 − π)A2θM1+1
1 θM2+1

2 exp {−θ1ϕ (x1i)}

× exp {−θ2ϕ (x2i)} dπdθ1dθ2

= 1
D

r1−1∑
k1=0

r2−1∑
k2=0

n−s∑
k3=0

k3∑
k4=0

(−1)k3

(
r1 − 1
k1

)(
r2 − 1
k2

)(
n− s

k3

)(
k3
k4

)

×B (A1 + 2, A2 + 1) Γ (M1 + 1) Γ (M2 + 1)
{ϕ (x1i)}M1+1{ϕ (x2i)}M2+1 . (4.2)

The Bayes estimator of parameter π under SELF, denoted by (π̂)SELF , can be obtained
as

(π̂2)SELF = E (π) = 1
D

r1−1∑
k1=0

r2−1∑
k2=0

n−s∑
k3=0

k3∑
k4=0

(−1)k3

(
r1 − 1
k1

)(
r2 − 1
k2

)(
n− s

k3

)(
k3
k4

)

×
∞∫

0

∞∫
0

1∫
0

πA1+1(1 − π)A2θM1
1 θM2

2 exp {−θ1ϕ (x1i)}

× exp {−θ2ϕ (x2i)} dπdθ1dθ2

= 1
D

r1−1∑
k1=0

r2−1∑
k2=0

n−s∑
k3=0

k3∑
k4=0

(−1)k3

(
r1 − 1
k1

)(
r2 − 1
k2

)(
n− s

k3

)(
k3
k4

)

×B (A1 + 2, A2 + 1) Γ (M1 + 1) Γ (M2 + 1)
{ϕ (x1i)}M1+1{ϕ (x2i)}M2+1 . (4.3)

Similarly, the generalized expressions of the estimator for the posterior risk under SELF,
using the formula ρ(θ)SELF = E

(
θ2)− {E (θ)}2, have been presented in the followings.

The Bayes estimator of posterior risk for parameter θ1 under SELF, denoted by ρ(θ1)SELF ,
can be obtained as

ρ(θ1)SELF = 1
D

r1−1∑
k1=0

r2−1∑
k2=0

n−s∑
k3=0

k3∑
k4=0

(−1)k3

(
r1 − 1
k1

)(
r2 − 1
k2

)(
n− s

k3

)(
k3
k4

)

×B (A1 + 1, A2 + 1) Γ (M1 + 3) Γ (M2 + 1)
{ϕ (x1i)}M1+3{ϕ (x2i)}M2+1

−
[

1
D

r1−1∑
k1=0

r2−1∑
k2=0

n−s∑
k3=0

k3∑
k4=0

(−1)k3

(
r1 − 1
k1

)(
r2 − 1
k2

)(
n− s

k3

)(
k3
k4

)

× B(A1 + 1, A2 + 1)Γ(M1 + 2)Γ(M2 + 1)
{ϕ(x1i)}M1+2{ϕ(x2i)}M2+1

]2

. (4.4)
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The Bayes estimator of posterior risk for parameter θ2 under SELF, denoted by ρ(θ2)SELF ,
can be obtained as

ρ(θ2)SELF = 1
D

r1−1∑
k1=0

r2−1∑
k2=0

n−s∑
k3=0

k3∑
k4=0

(−1)k3

(
r1 − 1
k1

)(
r2 − 1
k2

)(
n− s

k3

)(
k3
k4

)

×B (A1 + 1, A2 + 1) Γ (M1 + 1) Γ (M2 + 3)
{ϕ (x1i)}M1+1{ϕ (x2i)}M2+3

−
[

1
D

r1−1∑
k1=0

r2−1∑
k2=0

n−s∑
k3=0

k3∑
k4=0

(−1)k3

(
r1 − 1
k1

)(
r2 − 1
k2

)(
n− s

k3

)(
k3
k4

)

× B(A1 + 1, A2 + 1)Γ(M1 + 1)Γ(M2 + 2)
{ϕ(x1i)}M1+2{ϕ(x2i)}M2+1

]2

. (4.5)

Similarly, the Bayes estimator of posterior risk for parameter under SELF, denoted by
ρ(π)SELF , can be presented as

ρ(π)SELF = 1
D

r1−1∑
k1=0

r2−1∑
k2=0

n−s∑
k3=0

k3∑
k4=0

(−1)k3

(
r1 − 1
k1

)(
r2 − 1
k2

)(
n− s

k3

)(
k3
k4

)

×B (A1 + 1, A2 + 1) Γ (M1 + 3) Γ (M2 + 1)
{ϕ (x1i)}M1+1{ϕ (x2i)}M2+1

−
[

1
D

r1−1∑
k1=0

r2−1∑
k2=0

n−s∑
k3=0

k3∑
k4=0

(−1)k3

(
r1 − 1
k1

)(
r2 − 1
k2

)(
n− s

k3

)(
k3
k4

)

× B(A1 + 1, A2 + 1)Γ(M1 + 1)Γ(M2 + 1)
{ϕ(x1i)}M1+1{ϕ(x2i)}M2+1

]2

. (4.6)

Again, the generalized expression for the Bayes estimators and posterior risks based on
SLLF are:
The Bayes estimator of under SLLF, can be obtained by using following formula.(

θ̂1
)
SLLF

= exp {E (log θ1)}

Consider that

E (logθ1) = 1
D

r1−1∑
k1=0

r2−1∑
k2=0

n−s∑
k3=0

k3∑
k4=0

(−1)k3

(
r1 − 1
k1

)(
r2 − 1
k2

)(
n− s

k3

)(
k3
k4

)

×
∞∫

0

∞∫
0

1∫
0

πA1(1 − π)A2θM1+1
1 θM2

2 exp {−logθ1ϕ (x1i)}

× exp {−θ2ϕ (x2i)} dπdθ1dθ2. (4.7)

Since
∞∫
0

log (x)xa−1e−bxdx = Γ(a)[ψ(a)−log(b)]
ba ,

E (log θ1) = 1
D

r1−1∑
k1=0

r2−1∑
k2=0

n−s∑
k3=0

k3∑
k4=0

2∏
w=1

(−1)k3

(
r1 − 1
k1

)(
r2 − 1
k2

)(
n− s

k3

)(
k3
k4

)

×B (A1 + 1, A2 + 1) (T1) Γ (Mw + 1)
{ϕ (xwi)}Mw+1 , (4.8)
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where T1 = ψ (M1 + 1) − ln {ϕ (x1i)} and ψ (x) is digamma function. Hence, the Bayes
estimator for θ1 under SLLF, denoted by

(
θ̂1
)
SLLF

, can be written as

(
θ̂1
)
SLLF

= exp

 1
D

r1−1∑
k1=0

r2−1∑
k2=0

n−s∑
k3=0

k3∑
k4=0

2∏
w=1

(−1)k3

(
r1 − 1
k1

)(
r2 − 1
k2

)(
n− s

k3

)(
k3
k4

)
×exp

{
B(A1 + 1, A2 + 1)(T1)Γ(Mw + 1)

{ϕ(xwi)}Mw+1

}
. (4.9)

Similarly, the Bayes estimator for θ2 under SLLF, denoted by
(
θ̂2
)
SLLF

, can be obtained
as

(
θ̂1
)
SLLF

= exp

 1
D

r1−1∑
k1=0

r2−1∑
k2=0

n−s∑
k3=0

k3∑
k4=0

2∏
w=1

(−1)k3

(
r1 − 1
k1

)(
r2 − 1
k2

)(
n− s

k3

)(
k3
k4

)
×exp

{
B(A1 + 1, A2 + 1)(T2)Γ(Mw + 1)

{ϕ(xwi)}Mw+1

}
, (4.10)

where T2 = ψ (M2 + 1) − ln {ϕ (x2i)}.
Similarly, the Bayes estimator for π under SLLF, denoted by (π̂)SLLF = exp {E (log π)},

can be obtained as

E (log π) = 1
D

r1−1∑
k1=0

r2−1∑
k2=0

n−s∑
k3=0

k3∑
k4=0

2∏
w=1

(−1)k3(r1−1
k1

)(r2−1
k2

)(n−s
k3

)(k3
k4

)

×
∞∫

0

∞∫
0

1∫
0

log (π)πA1(1 − π)A2θM1
1 θM2

2 exp {−θ1ϕ (x1i)}

× exp {−θ2ϕ (x2i)} dπdθ1dθ2. (4.11)

Since
1∫
0

log (x)xa−1(1 − x)b−1dx = B (a, b) {ψ (a) − ψ (a+ b)},

E (log π) = 1
D

r1−1∑
k1=0

r2−1∑
k2=0

n−s∑
k3=0

k3∑
k4=0

2∏
w=1

(−1)k3

(
r1 − 1
k1

)(
r2 − 1
k2

)(
n− s

k3

)(
k3
k4

)

×B (A1 + 1, A2 + 1) (W1) Γ (Mw + 1)
{ϕ (xwi)}Mw+1 , (4.12)

where W1 = ψ (A1) − ψ (A1 +A2) and ψ (x) is the digamma function. Hence, the Bayes
estimator for π under SLLF, denoted by (π̂)SLLF , can be given as

(π̂)SLLF =exp
{

1
D

r1−1∑
k1=0

r2−1∑
k2=0

n−s∑
k3=0

k3∑
k4=0

2∏
w=1

(−1)k3

(
r1 − 1
k1

)(
r2 − 1
k2

)(
n− s

k3

)(
k3
k4

)

× B(A1 + 1, A2 + 1)(W1)Γ(Mw + 1)
{ϕ (xwi)}Mw+1

}
. (4.13)

The formula for the derivation of estimator of posterior risk for the parameter θ under
SLLF is ρ(θ)SLLF = E(log θ)2 − {E (log θ)}2.
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Accordingly, the Bayes estimator of posterior risk for parameter under SLLF can be
obtained as ρ(θ1)SLLF . Consider that

E(log θ1)2 = 1
D

r1−1∑
k1=0

r2−1∑
k2=0

n−s∑
k3=0

k3∑
k4=0

2∏
w=1

(−1)k3(r1−1
k1

)(r2−1
k2

)(n−s
k3

)(k3
k4

)

×
∞∫

0

∞∫
0

1∫
0

πA1(1 − π)A2{log (θ1)}2θM1
1 θM2

2 exp {−θ1ϕ (x1i)}

× exp {−θ2ϕ (x2i)} dπdθ1dθ2. (4.14)

Since
∞∫
0

{log (x)}2xa−1e−bxdx = Γ(a)[{ψ(a)−log(b)}2−ψ1(a)]
ba ,

E(log θ1)2 = 1
D

r1−1∑
k1=0

r2−1∑
k2=0

n−s∑
k3=0

k3∑
k4=0

2∏
w=1

(−1)k3

(
r1 − 1
k1

)(
r2 − 1
k2

)(
n− s

k3

)(
k3
k4

)

×
B (A1 + 1, A2 + 1)

[
{T1}2 + ψ1 (M1 + 1)

]
{Γ (Mw + 1)}−1{ϕ (xwi)}Mw+1 (4.15)

where ψ1 (x) is a trigamma function. Hence, the estimator for θ1 posterior risk of under
SLLF can be given as

ρ(θ1)SLLF = 1
D

r1−1∑
k1=0

r2−1∑
k2=0

n−s∑
k3=0

k3∑
k4=0

2∏
w=1

(−1)k3

(
r1 − 1
k1

)(
r2 − 1
k2

)(
n− s

k3

)(
k3
k4

)

×
B (A1 + 1, A2 + 1)

[
{T1}2 + ψ1 (M1 + 1)

]
{Γ (Mw + 1)}−1{ϕ (xwi)}Mw+1

−
[

1
D

r1−1∑
k1=0

r2−1∑
k2=0

n−s∑
k3=0

k3∑
k4=0

2∏
w=1

(−1)k3

(
r1 − 1
k1

)(
r2 − 1
k2

)(
n− s

k3

)(
k3
k4

)

× B(A1 + 1, A2 + 1)(T1)Γ(Mw + 1)
{ϕ(xwi)}Mw+1

]2

. (4.16)

Similarly, by little modifications, the estimator for θ2 posterior risk of under SLLF,
denoted by ρ(θ2)SLLF can be presented as

ρ(θ2)SLLF = 1
D

r1−1∑
k1=0

r2−1∑
k2=0

n−s∑
k3=0

k3∑
k4=0

2∏
w=1

(−1)k3

(
r1 − 1
k1

)(
r2 − 1
k2

)(
n− s

k3

)(
k3
k4

)

×
B (A1 + 1, A2 + 1)

[
{T2}2 + ψ1 (M2 + 1)

]
{Γ (Mw + 1)}−1{ϕ (xwi)}Mw+1

−
[

1
D

r1−1∑
k1=0

r2−1∑
k2=0

n−s∑
k3=0

k3∑
k4=0

2∏
w=1

(−1)k3

(
r1 − 1
k1

)(
r2 − 1
k2

)(
n− s

k3

)(
k3
k4

)

× B(A1 + 1, A2 + 1)(T2)Γ(Mw + 1)
{ϕ(xwi)}Mw+1

]2

. (4.17)
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The Bayes estimator of posterior risk for π under SLLF can be derived by using the formula
ρ(π)SLLF = E(log π)2 − {E (log π)}2. Consider that

E(log π)2 = 1
D

r1−1∑
k1=0

r2−1∑
k2=0

n−s∑
k3=0

k3∑
k4=0

2∏
w=1

(−1)k3

(
r1 − 1
k1

)(
r2 − 1
k2

)(
n− s

k3

)(
k3
k4

)

×
∞∫

0

∞∫
0

1∫
0

πA1(1 − π)A2{log (π)}2θM1
1 θM2

2

× exp {−θ1ϕ (x1i)} exp {−θ2ϕ (x2i)} dπdθ1dθ2. (4.18)

Since
1∫
0

{log (x)}2xa−1(1 − x)b−1dx = B (a, b)
[
{ψ (a) − ψ (a+ b)}2 + {ψ1 (a) − ψ1 (a+ b)}

]
,

E(log π)2 = 1
D

r1−1∑
k1=0

r2−1∑
k2=0

n−s∑
k3=0

k3∑
k4=0

2∏
w=1

(−1)k3

(
r1 − 1
k1

)(
r2 − 1
k2

)(
n− s

k3

)(
k3
k4

)

×
B (A1 + 1, A2 + 1)

[
{W1}2 +W2

]
{Γ (Mw + 1)}−1{ϕ (xwi)}Mw+1 (4.19)

where W1 = ψ (A1) − ψ (A1 +A2), W2 = ψ1 (A1) − ψ1 (A1 +A2); B (x, y) is a standard
beta function; ψ (x) is a digamma function and ψ1 (x) is a trigamma function. Hence, the
estimator for posterior risk of can be obtained as

ρ(θ2)SLLF = 1
D

r1−1∑
k1=0

r2−1∑
k2=0

n−s∑
k3=0

k3∑
k4=0

2∏
w=1

(−1)k3

(
r1 − 1
k1

)(
r2 − 1
k2

)(
n− s

k3

)(
k3
k4

)

×
B (A1 + 1, A2 + 1)

[
{W2}2 +W2

]
{Γ (Mw + 1)}−1{ϕ (xwi)}Mw+1

−
[

1
D

r1−1∑
k1=0

r2−1∑
k2=0

n−s∑
k3=0

k3∑
k4=0

2∏
w=1

(−1)k3

(
r1 − 1
k1

)(
r2 − 1
k2

)(
n− s

k3

)(
k3
k4

)

× B(A1 + 1, A2 + 1)(W1)
{Γ(Mw + 1)}−1{ϕ(xwi)}Mw+1

]2

. (4.20)

5. Prior elicitation
The elicitation is method to formulate the prior beliefs regarding some quantities into a

probabilistic model. Under Bayesian inference it can be regarded as a technique to specify
the values of hyper-parameters in a prior distribution for one or more parameters of the
sampling distribution. It is not easy to have an accurate elicitation because in many real life
situations, the experts are often not familiar with the concept of probabilities. Even when
the expert is familiar with probabilities and their concept, it is by no means straightforward
to evaluate a probability value for an event exactly. In such cases, elicitation encourages
the expert and the facilitator to consider the meaning of the parameters being elicited.
This has two helpful consequences. First, it brings the analysis closer to the application
by demanding attention to what is being modeled and what is reasonable to believe about
it. Second, it helps to make the posterior distributions, once calculated, into meaningful
quantities. Some methods of prior elicitation can be seen from [3,6, 7, 13,16,17].

We have used the method suggested by [3] for the prior elicitation. This method uses the
prior predictive probabilities for elicitation. It compares the prior predictive distribution
with expert assessment about this distribution and then to choose the hyper-parameters
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that make the assessment agree closely with the member of the family. The prior predictive
distribution can be defined as

g (y) =
∞∫

0

∞∫
0

1∫
0

g(θ1, θ2, π)f (y |θ1, θ2, π ) dπdθ1dθ2. (5.1)

where g(θ1, θ2, π) is the prior distribution, f (y |θ1, θ2, π ) is mixture density for future
observation from Equation (2.3). According to Equation (5.1) the prior predictive distri-
bution under improved gamma prior, presented in Equation (2.1), is

g (y) = sech2 (y)
B(a3, b3) {1 + tanh(y)}

×
[

a1b
a1
1 B(a3 + 1, b3)

{b1 − ln {0.5 (1 + tanh(y))}}a1+1 + a2b
a2
2 B(a3, b3 + 1)

{b2 − ln {0.5 (1 + tanh(y))}}a2+1

]
(5.2)

As we have to elicit six hyper-parameters so we have to consider six integrals. The set
of hyper-parameters with minimum values has been chosen to be the elicited values of the
hyper-parameters. By considering the prior predictive distribution in Equation (5.2), we
have assumed the experts probabilities to be 0.10 for each integral. We considered the
following integrals:

−20∫
−30

g (y) = 0.10,
−10.0∫

−19.9

g (y) = 0.10,
0.0∫

−9.9

g (y) = 0.10,

10.0∫
0.1

g (y) = 0.10,
20∫

10.1

g (y) = 0.10,
30.0∫

20.1

g (y) = 0.10.

In order to solve these integrals simultaneously, a program has been framed in SAS pack-
age using the PROC SYSLIN command and the elicited values of the hyper-parameters
have been found to be

(a1, b1, a2, b2, a3, b3) = (0.8545, 1.3184, 0.9426, 1.6789, 0.0216, 0.0321) .

Same integrals have been assumed for the elicitation of the hyper-parameters for the
remaining priors. However, the above mentioned program has been slightly modified
according to the expressions of the respective prior predictive distribution. The prior
predictive distribution for improved Jeffreys gamma prior using Equations (2.3) and (3.2)
is

g (y) = ba1
1 b

a2
2 sech

2 (y)
Γ (a1) Γ (a2)B(a3, b3) {1 + tanh(y)}

×
[

Γ(a1)Γ(a2 − 1)B(a3 + 1, b3)
{b1 − ln{0.5(1 + tanh(y))}}a1ba2−1

2
+ Γ(a1 − 1)Γ(a2)B(a3, b3 + 1)
ba1−1

1 {b2 − ln{0.5(1 + tanh(y))}}a2

]
.

(5.3)

The elicited values of the hyper-parameters in Equation (5.3) are

(a1, b1, a2, b2, a3, b3) = (0.7317, 1.2183, 0.7962, 1.4841, 0.0196, 0.0275) .
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Similarly, the prior predictive distribution for improved inverse levy prior using Equations
(2.3) and (3.3) is

g (y) = (b4b5)
1
2 sech2 (y)

4B(a3, b3) {1 + tanh(y)}

×
[{

b4
2

− ln
{1 + tanh(y)

2

}}− 3
2
(
b5
2

)− 1
2
B(a3 + 1, b3)

+
(
b4
2

)− 1
2
{
b5
2

− ln
{1 + tanh(y)

2

}}− 3
2
B(a3, b3 + 1)

]
. (5.4)

The elicited values of the hyper-parameters in Equation (5.4) are

(a3, b3, b4, b5) = (0.06315, 0.0825, 1.0174, 0.8526) .

Using Equations (2.3) and (3.4), the prior predictive distribution for improved exponential
prior is

g (y) = sech2 (y)
B(a3, b3) {1 + tanh(y)}

×
[

d1B(a3 + 1, b3)
{d1 − ln {0.5 (1 + tanh(y))}}2 + d2B(a3, b3 + 1)

{d2 − ln {0.5 (1 + tanh(y))}}2

]
. (5.5)

The elicited values of the hyper-parameters in Equation (5.5) are

(a3, b3, d1, d2) = (0.0316, 0.0418, 0.0745, 0.0587) .

Finally, Equations (2.3) and (3.5), the prior predictive distribution for improved chi square
prior is:

g (y) = sech2 (y)
2d3/22d4/22B(a3, b3) {1 + tanh(y)}

×
[

0.5d3B(a3 + 1, b3)
{1.19 − ln {1 + tanh(y)}}0.5d3+1(0.5)0.5d4

+ 0.5d4B(a3, b3 + 1)
(0.5)0.5d3{1.19 − ln {1 + tanh(y)}}0.5d4+1

]
. (5.6)

The elicited values of the hyper-parameters in Equation (5.6) are

(a3, b3, d3, d4) = (0.0295, 0.0364, 1.8169, 1.7852) .

6. Simulation study
The simulation study is a useful technique to assess the behavior and performance

of a proposed system. The results from the study often mimic the real life situations.
Therefore, in order to assess and compare the performance of the Bayes estimators with
respect to different priors and loss functions and to investigate the impact of sample size
on the estimators, a simulation study has been conducted using the parametric space:
(θ1, θ2, π) ∈ (1, 2, 0.45), (1, 2, 0.55), (2, 4, 0.45), (2, 4, 0.55). The probabilistic mixing have
been used to draw samples of sizes n = 20, 50, 100, 150 and 200 from two components
mixture of Burr type VII distribution under 10000 replications. The observations in the
respective sample have been assumed to be 20% censored. In each case, only failures were
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identified to be a member of either first or second sub-population of the mixture. These
samples have been drawn by following the listed steps:

(1) Draw samples of size n from the mixture model.
(2) Generate a uniform random no. µ for each observation.
(3) If µ ≤ π, the take the observation from first sub-population otherwise from the

second sub-population.
(4) Determine the test termination points on left and right, that is, determine the

values of xr and xs.
(5) The observations which are < xr and > xs have been considered to be censored

from each component.
(6) Use the remaining observations from each component for the analysis.

The mathematica software was used to obtain the numerical estimates. The amounts
of posterior risks associated with each Bayes estimate have been given in the parenthesis
in the tables. The abbreviations used in the tables are: PS: Parametric Set, PS1: θ1 = 1,
θ2 = 2 and π = 0.45; PS2: θ1 = 1, θ2 = 2 and π = 0.55; PS3: θ1 = 2, θ2 = 4 and π = 0.45;
PS4: θ1 = 2, θ2 = 4 and π = 0.55; LL: lower limit; UL: upper limit; NP: Non-informative
prior; IGP: Improved Gamma Prior; IJP: Improved Jeffreys Prior; IILP: Improved Inverse
Levy Prior; IEP: Improved Exponential Prior; ICSP: Improved Chi Square Prior.

Tables 1-4 represent the amounts of the Bayes estimates and posterior risks for the pa-
rameters of the mixture of Burr type VII distribution under doubly censored samples using
different priors. From the analysis, it can be assessed that the parameter representing the
first component (θ1) has been overestimated, while the parameter representing the second
component (θ2) has been underestimated. The mixing parameter (π) has been under esti-
mated for most of the cases. Nonetheless, the Bayes estimates (either under estimated or
over estimated) converge to the true value of the parameter as sample size increases. The
rate of convergence is bit slower for larger values of the parameters. However, the increase
in the values of the mixing parameter leads to relative faster convergence of the estimates
(towards the true values of the parameter) of the concerned component. The estimates
under the assumption of improved informative priors have faster convergence than those
under non-informative prior. On the whole, the rate of convergence is the most under the
assumption of improved inverse levy prior. On the other hand, the SLLF provides better
convergence than SELF. To be more specific, the estimates under improved inverse levy
prior using SLLF are associated with the highest convergence rate. It is interesting to
note that the amounts of posterior risks associated with each Bayes estimate decreases by
increasing the sample size. This simply indicates that the estimates are consistent. The
amounts of posterior risks increase for larger choice of true parametric values; however,
the moderate to large sample sizes can face off this problem. In comparison of priors,
it has been found that the improve informative priors work better than non-informative
prior under both loss functions, as the amounts of posterior risks associated with esti-
mates based on improved informative priors are smaller than those under non-informative
prior. The minimum amounts of posterior risks have been observed for the estimates
on the basis of improved inverse levy prior. In order of efficiency (amounts of posterior
risks), the performance of the priors can be ranked as: improved inverse levy prior (1),
improved Jeffreys gamma prior (2), improved chi square prior (3), improved gamma prior
(4), improved exponential prior (5), non-informative prior (6) with some exceptions. In
contrast, the estimates under SLLF are superior to those under SELF. Hence, for the point
estimation of the parameters of the mixed Burr type VII model, the use of inverse levy
prior under SLLF may be preferred.
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Table 1. The Bayes estimates and posterior risks based on NP, IGP and IJP
under SLLF using PS1, PS2, PS3 and PS4, respectively.

n Non-informative Prior Improved Gamma Prior Improved Jeffreys Gamma
Prior

θ̂1 θ̂2 π̂ θ̂1 θ̂2 π̂ θ̂1 θ̂2 π̂

20 1.36678 1.65857 0.43948 1.36102 1.64905 0.43769 1.33324 1.64487 0.43591
(0.00627) (0.00706) (0.00490) (0.00524) (0.00664) (0.00449) (0.00501) (0.00602) (0.00578)

50 1.17319 1.74046 0.44222 1.16824 1.73046 0.44042 1.14439 1.72608 0.43862
(0.00570) (0.00643) (0.00434) (0.00477) (0.00604) (0.00398) (0.00449) (0.00548) (0.00511)

100 1.08085 1.80232 0.44428 1.07630 1.79196 0.44247 1.05433 1.78742 0.44066
(0.00513) (0.00549) (0.00371) (0.00428) (0.00517) (0.00340) (0.00403) (0.00469) (0.00438)

150 1.05023 1.89440 0.44644 1.04579 1.88351 0.44462 1.02445 1.87875 0.44280
(0.00419) (0.00439) (0.00296) (0.00349) (0.00412) (0.00271) (0.00329) (0.00374) (0.00349)

200 1.01715 1.94293 0.45011 1.01286 1.93178 0.44827 1.01699 1.92688 0.44644
(0.00315) (0.00342) (0.00231) (0.00263) (0.00322) (0.00212) (0.00247) (0.00291) (0.00272)

20 1.34688 1.63262 0.52737 1.34119 1.62324 0.52523 1.31382 1.61914 0.52308
(0.00568) (0.00738) (0.00562) (0.00474) (0.00694) (0.00514) (0.00454) (0.00629) (0.00662)

50 1.15610 1.71323 0.53066 1.15122 1.70339 0.52850 1.12773 1.69908 0.52634
(0.00517) (0.00672) (0.00497) (0.00432) (0.00632) (0.00455) (0.00407) (0.00573) (0.00586)

100 1.06511 1.77411 0.53313 1.06061 1.76393 0.53096 1.03897 1.75946 0.52880
(0.00464) (0.00575) (0.00425) (0.00388) (0.00541) (0.00390) (0.00366) (0.00491) (0.00502)

150 1.03494 1.86475 0.53572 1.03056 1.85404 0.53354 1.00954 1.84935 0.53136
(0.00379) (0.00457) (0.00339) (0.00316) (0.00431) (0.00310) (0.00298) (0.00391) (0.00399)

200 1.02584 1.91253 0.54013 1.02150 1.90155 0.53793 1.02568 1.89673 0.53572
(0.00285) (0.00357) (0.00265) (0.00238) (0.00336) (0.00242) (0.00224) (0.00305) (0.00312)

20 2.53951 3.32142 0.42825 2.67466 3.47754 0.43408 2.50496 3.28757 0.43991
(0.00759) (0.00870) (0.00805) (0.00957) (0.01163) (0.00787) (0.00576) (0.00740) (0.00576)

50 2.17980 3.48540 0.43092 2.29581 3.64923 0.43678 2.15015 3.44987 0.44264
(0.00690) (0.00792) (0.00713) (0.00871) (0.01059) (0.00696) (0.00524) (0.00674) (0.00511)

100 2.12875 3.60927 0.43293 2.24203 3.77893 0.43881 2.09978 3.57249 0.44470
(0.00620) (0.00678) (0.00611) (0.00783) (0.00906) (0.00596) (0.00471) (0.00577) (0.00437)

150 2.08642 3.79367 0.43503 2.19746 3.97199 0.44095 2.05803 3.75501 0.44686
(0.00506) (0.00541) (0.00486) (0.00639) (0.00722) (0.00475) (0.00384) (0.00459) (0.00348)

200 2.03753 3.89086 0.43860 2.14597 4.07375 0.44457 2.02991 3.85121 0.45054
(0.00381) (0.00422) (0.00380) (0.00480) (0.00564) (0.00371) (0.00289) (0.00359) (0.00272)

20 2.50253 3.26946 0.51390 2.63571 3.42313 0.52089 2.46848 3.23614 0.52789
(0.00687) (0.00910) (0.00923) (0.00867) (0.01215) (0.00901) (0.00522) (0.00774) (0.00660)

50 2.14806 3.43086 0.51711 2.26237 3.59213 0.52414 2.11883 3.39591 0.53118
(0.00625) (0.00830) (0.00817) (0.00789) (0.01107) (0.00798) (0.00475) (0.00705) (0.00585)

100 2.09774 3.55280 0.51950 2.20938 3.71981 0.52657 2.06920 3.51659 0.53364
(0.00562) (0.00709) (0.00700) (0.00709) (0.00948) (0.00683) (0.00427) (0.00603) (0.00501)

150 2.05603 3.73432 0.52204 2.16545 3.90985 0.52914 2.02806 3.69626 0.53624
(0.00459) (0.00564) (0.00557) (0.00578) (0.00755) (0.00544) (0.00348) (0.00480) (0.00399)

200 2.05495 3.83000 0.52632 2.16430 4.01002 0.53348 2.04725 3.79096 0.54064
(0.00344) (0.00442) (0.00435) (0.00435) (0.00589) (0.00425) (0.00262) (0.00375) (0.00311)



1526 N. Feroze and M. Aslam

Table 2. The Bayes estimates and posterior risks based on NP, IGP and IJP
under SELF using PS1, PS2, PS3 and PS4 respectively .

n Non-informative Prior Improved Gamma Prior Improved Jeffreys Gamma
Prior

θ̂1 θ̂2 π̂ θ̂1 θ̂2 π̂ θ̂1 θ̂2 π̂

20 1.39412 1.62540 0.43377 1.38824 1.61607 0.43200 1.37842 1.61197 0.43024
(0.01037) (0.01230) (0.00803) (0.00919) (0.01223) (0.00780) (0.00853) (0.01110) (0.01003)

50 1.19665 1.70565 0.43647 1.19160 1.69586 0.43470 1.18317 1.69156 0.43292
(0.00944) (0.01121) (0.00710) (0.00836) (0.01114) (0.00691) (0.00777) (0.01011) (0.00889)

100 1.10247 1.76627 0.43850 1.09782 1.75612 0.43672 1.09005 1.75167 0.43493
(0.00849) (0.00957) (0.00608) (0.00752) (0.00954) (0.00591) (0.00698) (0.00866) (0.00761)

150 1.07123 1.85651 0.44064 1.06671 1.84584 0.43884 1.05917 1.84117 0.43705
(0.00693) (0.00765) (0.00484) (0.00613) (0.00760) (0.00471) (0.00569) (0.00689) (0.00606)

200 1.03749 1.90407 0.44426 1.03312 1.89314 0.44244 1.02580 1.88834 0.44064
(0.00521) (0.00596) (0.00378) (0.00461) (0.00593) (0.00368) (0.00428) (0.00538) (0.00473)

20 1.37381 1.59997 0.52052 1.36801 1.59078 0.51840 1.35834 1.58675 0.51628
(0.00940) (0.01287) (0.00920) (0.00832) (0.01279) (0.00894) (0.00773) (0.01161) (0.01150)

50 1.17922 1.67896 0.52377 1.17424 1.66932 0.52163 1.16594 1.66509 0.51950
(0.00856) (0.01171) (0.00815) (0.00757) (0.01165) (0.00791) (0.00703) (0.01057) (0.01018)

100 1.08641 1.73863 0.52620 1.08182 1.72865 0.52405 1.07418 1.72427 0.52192
(0.00768) (0.01002) (0.00697) (0.00681) (0.00997) (0.00678) (0.00632) (0.00905) (0.00871)

150 1.05564 1.82746 0.52876 1.05117 1.81696 0.52661 1.04375 1.81236 0.52445
(0.00627) (0.00797) (0.00555) (0.00555) (0.00794) (0.00539) (0.00516) (0.00720) (0.00694)

200 1.04635 1.87428 0.53311 1.04193 1.86352 0.53093 1.03457 1.85880 0.52876
(0.00471) (0.00623) (0.00433) (0.00417) (0.00620) (0.00421) (0.00388) (0.00562) (0.00542)

20 2.59030 3.25499 0.42268 2.72816 3.40799 0.42843 2.55506 3.22182 0.43419
(0.01255) (0.01518) (0.01319) (0.01680) (0.02143) (0.01367) (0.01011) (0.01365) (0.01002)

50 2.22340 3.41569 0.42531 2.34173 3.57624 0.43111 2.19315 3.38088 0.43689
(0.01142) (0.01381) (0.01168) (0.01529) (0.01952) (0.01210) (0.00920) (0.01243) (0.00887)

100 2.17132 3.53709 0.42730 2.28687 3.70335 0.43311 2.14178 3.50104 0.43892
(0.01026) (0.01183) (0.01000) (0.01374) (0.01671) (0.01036) (0.00827) (0.01064) (0.00760)

150 2.12815 3.71779 0.42937 2.24141 3.89255 0.43521 2.09919 3.67991 0.44106
(0.00838) (0.00943) (0.00796) (0.01121) (0.01331) (0.00825) (0.00674) (0.00847) (0.00605)

200 2.07828 3.81305 0.43290 2.18889 3.99228 0.43879 2.07051 3.77419 0.44468
(0.00630) (0.00735) (0.00622) (0.00843) (0.01039) (0.00644) (0.00507) (0.00662) (0.00472)

20 2.55258 3.20407 0.50722 2.68842 3.35467 0.51412 2.51785 3.17141 0.52102
(0.01136) (0.01586) (0.01511) (0.01521) (0.02241) (0.01566) (0.00915) (0.01427) (0.01148)

50 2.19102 3.36225 0.51039 2.30762 3.52029 0.51733 2.16121 3.32799 0.52427
(0.01034) (0.01447) (0.01338) (0.01384) (0.02041) (0.01387) (0.00833) (0.01299) (0.01016)

100 2.13969 3.48175 0.51275 2.25356 3.64541 0.51973 2.11058 3.44626 0.52671
(0.00929) (0.01236) (0.01146) (0.01244) (0.01747) (0.01187) (0.00749) (0.01113) (0.00870)

150 2.09715 3.65963 0.51525 2.20876 3.83165 0.52226 2.06862 3.62233 0.52927
(0.00759) (0.00984) (0.00912) (0.01015) (0.01391) (0.00945) (0.00611) (0.00886) (0.00693)

200 2.09604 3.75340 0.51948 2.20758 3.92982 0.52655 2.08819 3.71514 0.53361
(0.00570) (0.00771) (0.00712) (0.00763) (0.01086) (0.00738) (0.00459) (0.00691) (0.00541)
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Table 3. The Bayes estimates and posterior risks based on IILP, IEP and ICSP
under SLLF using PS1, PS2, PS3 and PS4 respectively.

n Non-informative Prior Improved Gamma Prior Improved Jeffreys Gamma
Prior

θ̂1 θ̂2 π̂ θ̂1 θ̂2 π̂ θ̂1 θ̂2 π̂

20 1.35139 1.73396 0.43833 1.34733 1.63605 0.43655 1.34433 1.63191 0.43477
(0.00486) (0.00563) (0.00391) (0.00591) (0.00681) (0.00490) (0.00526) (0.00668) (0.00527)

50 1.15997 1.81957 0.44106 1.15649 1.71682 0.43927 1.15391 1.71247 0.43748
(0.00443) (0.00500) (0.00343) (0.00529) (0.00604) (0.00429) (0.00471) (0.00592) (0.00461)

100 1.06868 1.88424 0.44311 1.06547 1.77783 0.44131 1.06309 1.77333 0.43951
(0.00398) (0.00427) (0.00293) (0.00476) (0.00517) (0.00367) (0.00423) (0.00507) (0.00395)

150 1.03840 1.90301 0.44527 1.03528 1.79554 0.44346 1.03298 1.79100 0.44165
(0.00324) (0.00340) (0.00233) (0.00388) (0.00412) (0.00292) (0.00345) (0.00404) (0.00314)

200 1.00569 1.95177 0.44894 1.02774 1.84155 0.44710 1.02545 1.83689 0.44528
(0.00244) (0.00265) (0.00182) (0.00292) (0.00322) (0.00228) (0.00260) (0.00315) (0.00246)

20 1.33171 1.70684 0.52600 1.32770 1.61045 0.52386 1.32474 1.60637 0.52172
(0.00440) (0.00588) (0.00448) (0.00535) (0.00712) (0.00561) (0.00476) (0.00698) (0.00604)

50 1.14308 1.79111 0.52928 1.13965 1.68996 0.52713 1.13710 1.68568 0.52498
(0.00401) (0.00522) (0.00392) (0.00479) (0.00632) (0.00491) (0.00427) (0.00619) (0.00528)

100 1.05312 1.85476 0.53174 1.04995 1.75002 0.52958 1.04761 1.74559 0.52741
(0.00360) (0.00447) (0.00336) (0.00431) (0.00541) (0.00420) (0.00383) (0.00530) (0.00452)

150 1.02328 1.87323 0.53433 1.02020 1.76746 0.53215 1.01793 1.76298 0.52998
(0.00294) (0.00355) (0.00268) (0.00351) (0.00431) (0.00335) (0.00313) (0.00422) (0.00360)

200 1.01428 1.92123 0.53872 1.03652 1.81274 0.53652 1.03420 1.80814 0.53433
(0.00221) (0.00277) (0.00209) (0.00264) (0.00336) (0.00261) (0.00235) (0.00329) (0.00281)

20 2.47719 3.47239 0.42714 2.64776 3.45012 0.43295 2.49187 3.26165 0.43876
(0.00606) (0.00695) (0.00643) (0.01079) (0.01194) (0.00858) (0.00623) (0.00821) (0.00526)

50 2.12630 3.64383 0.42980 2.27272 3.62046 0.43565 2.13891 3.42268 0.44149
(0.00543) (0.00617) (0.00563) (0.00968) (0.01059) (0.00751) (0.00558) (0.00728) (0.00460)

100 2.11568 3.77333 0.43180 2.26137 3.74914 0.43767 2.12822 3.54432 0.44355
(0.00488) (0.00529) (0.00482) (0.00870) (0.00906) (0.00643) (0.00502) (0.00623) (0.00394)

150 2.05573 3.81092 0.43390 2.19729 3.78648 0.43980 2.06792 3.57963 0.44571
(0.00398) (0.00420) (0.00383) (0.00709) (0.00722) (0.00512) (0.00409) (0.00496) (0.00314)

200 2.04076 3.90855 0.43746 2.18128 3.88349 0.44341 2.05285 3.67134 0.44936
(0.00299) (0.00328) (0.00299) (0.00533) (0.00563) (0.00400) (0.00308) (0.00387) (0.00245)

20 2.44111 3.41807 0.51256 2.60920 3.39615 0.51953 2.45557 3.21062 0.52651
(0.00548) (0.00728) (0.00737) (0.00977) (0.01248) (0.00984) (0.00564) (0.00858) (0.00603)

50 2.09534 3.58682 0.51576 2.23963 3.56382 0.52278 2.10775 3.36913 0.52979
(0.00492) (0.00644) (0.00645) (0.00876) (0.01107) (0.00860) (0.00505) (0.00761) (0.00527)

100 2.08486 3.71430 0.51816 2.22842 3.69048 0.52520 2.09721 3.48888 0.53225
(0.00442) (0.00553) (0.00552) (0.00787) (0.00947) (0.00737) (0.00454) (0.00652) (0.00452)

150 2.02580 3.75129 0.52068 2.16529 3.72724 0.52776 2.03780 3.52362 0.53485
(0.00360) (0.00439) (0.00440) (0.00642) (0.00754) (0.00587) (0.00370) (0.00519) (0.00360)

200 2.05819 3.84741 0.52496 2.19992 3.82274 0.53210 2.07038 3.61391 0.53923
(0.00271) (0.00343) (0.00343) (0.00483) (0.00589) (0.00458) (0.00279) (0.00405) (0.00281)
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Table 4. The Bayes estimates and posterior risks based on IILP, IEP and ICSP
under SELF using PS1, PS2, PS3 and PS4 respectively.

n Non-informative Prior Improved Gamma Prior Improved Jeffreys Gamma
Prior

θ̂1 θ̂2 π̂ θ̂1 θ̂2 π̂ θ̂1 θ̂2 π̂

20 1.35991 1.69928 0.43263 1.37428 1.60333 0.43088 1.37121 1.59927 0.42912
(0.00828) (0.00981) (0.00641) (0.01036) (0.01256) (0.00851) (0.00922) (0.01232) (0.00916)

50 1.16728 1.78317 0.43533 1.17962 1.68248 0.43356 1.17699 1.67822 0.43179
(0.00742) (0.00872) (0.00561) (0.00929) (0.01114) (0.00745) (0.00827) (0.01092) (0.00801)

100 1.07542 1.84655 0.43735 1.08678 1.74228 0.43558 1.08436 1.73787 0.43380
(0.00667) (0.00744) (0.00480) (0.00835) (0.00954) (0.00638) (0.00743) (0.00935) (0.00686)

150 1.04494 1.86495 0.43948 1.05599 1.75963 0.43770 1.05364 1.75518 0.43591
(0.00544) (0.00593) (0.00382) (0.00681) (0.00759) (0.00508) (0.00606) (0.00744) (0.00546)

200 1.03733 1.91273 0.44310 1.04829 1.80472 0.44129 1.04596 1.80015 0.43949
(0.00409) (0.00462) (0.00299) (0.00512) (0.00593) (0.00397) (0.00456) (0.00581) (0.00427)

20 1.34009 1.67270 0.51916 1.35426 1.57824 0.51705 1.35124 1.57424 0.51494
(0.00751) (0.01026) (0.00734) (0.00938) (0.01313) (0.00976) (0.00835) (0.01288) (0.01050)

50 1.15028 1.75528 0.52240 1.16244 1.65616 0.52027 1.15984 1.65197 0.51815
(0.00673) (0.00910) (0.00643) (0.00841) (0.01165) (0.00853) (0.00749) (0.01142) (0.00918)

100 1.05975 1.81766 0.52483 1.07095 1.71502 0.52270 1.06857 1.71068 0.52056
(0.00605) (0.00780) (0.00550) (0.00756) (0.00997) (0.00731) (0.00673) (0.00978) (0.00786)

150 1.02973 1.83577 0.52739 1.04061 1.73211 0.52524 1.03829 1.72772 0.52309
(0.00493) (0.00620) (0.00438) (0.00616) (0.00794) (0.00582) (0.00549) (0.00778) (0.00626)

200 1.04619 1.88281 0.53172 1.05725 1.77648 0.52955 1.05489 1.77198 0.52739
(0.00370) (0.00483) (0.00342) (0.00464) (0.00620) (0.00454) (0.00413) (0.00608) (0.00489)

20 2.52673 3.40295 0.42158 2.70071 3.38112 0.42732 2.54171 3.19642 0.43305
(0.01003) (0.01212) (0.01053) (0.01894) (0.02201) (0.01492) (0.01093) (0.01514) (0.00914)

50 2.16883 3.57095 0.42421 2.31818 3.54805 0.42999 2.18169 3.35423 0.43575
(0.00898) (0.01076) (0.00922) (0.01698) (0.01952) (0.01305) (0.00979) (0.01343) (0.00800)

100 2.15799 3.69787 0.42619 2.30659 3.67415 0.43198 2.17078 3.47344 0.43778
(0.00808) (0.00922) (0.00789) (0.01526) (0.01671) (0.01117) (0.00880) (0.01150) (0.00685)

150 2.09685 3.73470 0.42826 2.24124 3.71075 0.43408 2.10928 3.50803 0.43991
(0.00658) (0.00732) (0.00628) (0.01244) (0.01330) (0.00890) (0.00718) (0.00915) (0.00545)

200 2.08157 3.83038 0.43177 2.22491 3.80582 0.43765 2.09391 3.59792 0.44352
(0.00495) (0.00572) (0.00490) (0.00936) (0.01039) (0.00695) (0.00540) (0.00714) (0.00426)

20 2.48993 3.34971 0.50590 2.66138 3.32822 0.51278 2.50468 3.14641 0.51967
(0.00907) (0.01269) (0.01207) (0.01715) (0.02301) (0.01709) (0.00989) (0.01583) (0.01047)

50 2.13724 3.51508 0.50906 2.28442 3.49254 0.51598 2.14991 3.30175 0.52290
(0.00814) (0.01123) (0.01056) (0.01537) (0.02040) (0.01495) (0.00887) (0.01404) (0.00916)

100 2.12656 3.64001 0.51142 2.27299 3.61667 0.51838 2.13916 3.41910 0.52533
(0.00731) (0.00963) (0.00904) (0.01382) (0.01747) (0.01280) (0.00797) (0.01202) (0.00785)

150 2.06631 3.67627 0.51391 2.20860 3.65269 0.52090 2.07856 3.45315 0.52789
(0.00596) (0.00765) (0.00720) (0.01127) (0.01391) (0.01019) (0.00650) (0.00957) (0.00625)

200 2.09935 3.77046 0.51813 2.24391 3.74628 0.52518 2.11179 3.54163 0.53222
(0.00449) (0.00599) (0.00562) (0.00847) (0.01086) (0.00796) (0.00489) (0.00747) (0.00488)
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7. Real life example
This section covers the analysis of real life data set regarding the breaking strengths of

64 single carbon fibers of length 10, presented by [21]. The idea has been to see whether the
results and properties of the Bayes estimators, explored by simulation study, are applicable
to a real life situation. We have taken n = 64, r = 7 and s = 58 in order to have censoring
rate close to 20% (that has been used in simulation study). The results of the analysis
have been reported in the following tables. The amounts of posterior risks associated with
each estimate have been presented in the parenthesis in the tables.

Table 5 contain the Bayes estimates and posterior risks for the mixture distribution
using real life data. In case of point estimation, the performance of improved informative
priors is better than non-informative prior. The minimum amounts of posterior risks have
been observed under the assumption of improved inverse levy prior using SLLF. Therefore,
the findings from the analysis of real life data are in accordance with the simulation study.

Table 5. Bayes estimates and posterior risks under real life data.

LF π = 0.45
θ̂1 θ̂2 π̂ θ̂1 θ̂2 π̂ θ̂1 θ̂2 π̂

Non-informative Prior Improved Gamma Prior Improved Jeffreys Gamma
Prior

SLLF 254.532 280.913 0.390 256.355 280.383 0.392 259.469 283.789 0.393
(0.51382) (0.27110) (0.20301) (0.46501) (0.24650) (0.18934) (0.41666) (0.22110) (0.16351)

SELF 260.936 268.699 0.383 262.806 268.192 0.385 265.998 271.449 0.386
(0.64342) (0.33944) (0.25420) (0.58222) (0.30864) (0.23707) (0.52205) (0.27651) (0.20480)

Improved Inverse Levy
Prior

Improved Exponential
Prior

Improved Chi Square
Prier

SLLF 255.690 279.349 0.411 250.825 276.518 0.468 252.622 275.997 0.470
(0.37755) (0.18838) (0.15292) (0.46529) (0.28342) (0.23256) (0.42104) (0.21789) (0.21692)

SELF 262.124 267.203 0.404 257.136 264.495 0.460 258.978 263.997 0.462
(0.49625) (0.24759) (0.20105) (0.61170) (0.37267) (0.30581) (0.55353) (0.28646) (0.28517)

π = 0.55
Non-informative Prior Improved Gamma Prior Improved Jeffreys Gamma

Prior
SLLF 251.106 277.192 0.475 252.905 276.670 0.478 255.977 280.030 0.479

(0.48973) (0.38929) (0.25093) (0.44321) (0.35396) (0.23402) (0.39713) (0.31749) (0.20210)
SELF 257.424 265.140 0.467 259.269 264.639 0.469 262.418 267.854 0.471

(0.61939) (0.48742) (0.31420) (0.56048) (0.44319) (0.29302) (0.50255) (0.39705) (0.25313)
Improved Inverse Levy

Prior
Improved Exponential

prior
Improved Chi Square

Prior
SLLF 252.249 275.649 0.501 247.449 272.856 0.571 249.222 272.341 0.573

(0.35985) (0.27050) (0.18900) (0.44348) (0.40698) (0.28745) (0.40130) (0.31289) (0.26811)
SELF 258.596 263.663 0.492 253.675 260.991 0.561 255.493 260.500 0.563

(0.45497) (0.33860) (0.23667) (0.56082) (0.50965) (0.35998) (0.50748) (0.39175) (0.33569)

8. Hazard rate for the mixture of Burr type VII distribution
The hazard rate is a useful way of describing the distribution of time to event because

it has a natural interpretation that relates to the aging of a population. The hazard
function is the risk of failure in a small time interval, given survival at the beginning of
the time interval. As a function of time, a hazard function may be increasing; meaning as
time increases the rate for failure increases, for example, when a patient is untreated for
a disease such as cancer or the medication do not work properly; may be decreasing, for
example, as a person is recovering from severe trauma like a surgery, or may be constant,
meaning the rate of failure is the same regardless of how much time has passed. The
constant hazard rate is mostly unrealistic. The hazard rate for the mixture of Burr type
VII distribution has been compared under a range of parametric values.
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Hazard rate function for mixture of Burr Type VII distribution is

H (t) = πθ12−θ1sech2(t){1+tanh(t)}θ1−1+(1−π)θ22−θ2sech2(t){1+tanh(t)}θ2−1

1−{π2−θ1 {1+tanh(t)}θ1 +(1−π)2−θ2 {1+tanh(t)}θ2} . (8.1)

The graphs for the hazard rate of the mixture model, for different parametric values and
for the various ranges of the variable, are presented in Figures 3 to 6. The abbreviations
in the graphs are: H(t): Hazard rate; PR1: θ1 = 0.50, θ2 = 0.75; PR2: θ1 = 50, θ2 = 75;
PR3: θ1 = 0.50, θ2 = 75; PR4: θ1 = 50, θ2 = 0.75; PR5: θ1 = 100, θ2 = 120; PR6:
θ1 = 100, θ2 = 0.75; PR7: θ1 = 0.50, θ2 = 120.

Figure 3. Graph of hazard rates for mixture of model using π = 0.25.

Figure 4. Graph of hazard rates for mixture of model using π = 0.75.

Figure 5. Graph of hazard rates for mixture of model using π = 0.50.
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Figure 6. Graph of hazard rates for mixture of model using π = 0.90.

The graphs suggest that the hazard rate for the mixture model tend to decrease for
t < 2 for closer choice of the values of the parameters. However, when the θ1 and θ2
differ significantly, the increase in the values of t shows ebbs and flows in the curves of the
hazard rate. Except PR5 and PR6, the curves of hazard rate functions tend to converge
to each other for t > 4.

9. Conclusion
The study has been carried out to introduce the methodology for Bayesian analysis of

mixed lifetime models under doubly censored samples: with an application to Burr type
VII distribution. A class of improved informative priors have been proposed and elicited
for the analysis. A couple of loss functions have been assumed for the Bayes estimation.
After a detailed analysis, it has been assessed that the improved inverse levy prior has
provided the supreme results. Furthermore, the employment of the squared logarithmic
loss function can produce the significantly better estimates for the parameters of the
mixed Burr type VII distribution. The proposed estimators are consistent and capable
of providing the stable results from moderate to large samples. The analysis of real life
data further strengthened the findings of the simulation study. The study is useful for the
analysts from different fields dealing with the analysis of the lifetime models when cases
of failure are more than one and the duration time of the analysis is between two events.
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