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Abstract: The conventional generators are equipped with power system stabilizers (PSS) to damp oscillations 

that follow disturbances. The inclusion of renewable energy sources within the existing power 

systems requires further investigations to enhance the performance of PSS. Several control 

strategies have been being used to design the PSS. In this paper, model predictive control (MPC) is 

investigated to be used as a PSS. It uses numerical optimization algorithms to get an optimal control 

output considering the system’s constraints. Therefore, It is designed and applied to a multi-machine 

power system with a wind power plant (WPP). Three disturbances are used to test the controllers 

including three-phase fault, transmission line outage, and voltage reference sudden change. 

MATLAB/SIMULINK is used in the simulation. Then, the results are compared to conventional 

multi-band controller (MB) and linear quadratic regulator (LQR). MPC shows efficient performance 

in handling the constraints and damping types of oscillations with the existence of the WPP in the 

case of partial power-sharing. 
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Nomenclature Description Symbols Description 

AC Alternating Current 𝑉𝐷𝐶 DC link voltage. 

AVR Automatic Voltage Regulator 𝑉𝐷𝐶,𝑟𝑒𝑓 DC link voltage reference 

MPC Model Predictive Control 𝑉𝑡,𝑎𝑏𝑐 terminal voltage in abc frame 

DC Direct Current 𝑉𝑔,𝑑𝑞 grid voltage in dq frame 

IEEE Institute of Electrical and Electronics Engineers 𝑃𝑤 wind-generated power 

LMI Linear Matrix Inequality 𝑃𝑔 power delivered to the grid 

LQR Linear Quadratic Regulator 𝑄𝑔 reactive power delivered to the grid 

MB Multi-Band Control 𝑄𝑔,𝑟𝑒𝑓 reactive power reference delivered to the grid 

MMPS Multi-Machine Power System 𝑖 𝑑𝑞 current delivered to the grid in dq frame 

MPC Model Predictive Control 𝑖 𝑑𝑞,𝑟𝑒𝑓 current reference delivered to the grid in dq frame 

N4SID Subspace State Space System Identification 𝜃 𝑝𝑙𝑙 phase-locked loop angle 

PI Proportional Integral Controller 𝑚 𝑑𝑞 modulation signal in dq frame 

PID Proportional Integral Derivative Controller 𝑚 𝑑𝑞 modulation signal in abc frame 

PLL Phase Locked Loop 𝐸𝑡 terminal voltage of the machine 

PSS Power System Stabilizer ω Angular frequency of the machine. 

PV Photo Voltaic 𝑢 Input signal.   

SFC State Feedback Control   

WPP Wind Power Plant   
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1. INTRODUCTION 

Worldwide, the installed wind-energy capacity reached 744 Gigawatts in 2020 [1] achieving a 12.5% 

rate of growth. The contribution of wind energy to the total power generated in a grid varies from one 

country to another. Many grids have had a target to generate 20% of their needs using renewable energy 

by the year 2020. These facts dictate a strong need to study the stability and performance of power 

networks that have partial generations coming from renewable resources such as wind farms. Our 

objective here is to consider a two-area power network that has both conventional and wind power 

generation. The network could, of course, suffer from different disturbances that lead to oscillations in 

the tie-line power.  Traditionally, power system stabilizers (PSS) are used to damp the oscillations. 

However, because of the system nonlinearities and the saturation limits imposed on the excitation, 

classical power system stabilizers may not perform optimally. This motivates the use of model predictive 

control algorithms to implement power system stabilizers that can abide by the system’s constraints. 

Practically, PSS is designed based on classical techniques in the frequency domain. According to the 

IEEE Standards [2], PSS includes single-input compensators such as PSS1A, and dual-input 

compensators such as PSS2B, PSS3B, and PSS4B. The PSS2B, PSS3B, and PSS4B have been enhanced 

by PSS2C, PSS3C, and PSS4C, respectively [3]. The enhancement is achieved by adding output logic 

functions in the case of PSS2C and PSS3C which define threshold values for passing the PSS control 

signal. Enhancement is also done by adding a fourth lead-lag block in the case of PSS2C and adding a 

very low-frequency band in the case of PSS4C for fine adjustment of the power frequency. Advanced 

design algorithms such as adaptive control [4, 5], robust control [4, 6], and intelligent control [7, 8, 9]  

have been investigated for the design of power system stabilizers. The main criticism of PSS based on 

advanced control algorithms is that they do not take the system constraints explicitly into consideration. 

Linear matrix inequality (LMI) techniques can accommodate constraints [10], but they are not popular 

yet because of the underlying mathematics. 

 Inclusion of wind power plants to cover partial load demands of a power system impose new challenges 

that should be addressed by designers to ensure stability following disturbances and comply with the 

system constraints. The authors in [11] investigate the challenges of wind power integration to the 

electrical grids and possible solutions. Wind power plants reduce the generation costs and pollution 

emissions of the fuelsHowever, there are also some challenges related to; power system quality like 

harmonics, frequency and voltage variations, power generation management due to the unpredicted 

wind energy nature, and power system control like the voltage, frequency, active, and reactive power. 

The difficulty increases with the high penetration of wind energy to the grid because it reduces the inertia 

of the power system [12].  

Predictive control emerges as a potential candidate to perform this task. Predictive controllers are 

currently strong competitors of the popular PID controllers in the industry. They are based on a clear 

intuition and can optimally accommodate constraints. This motivates us to propose predictive controllers 

as PSS for systems that combine traditional and renewable energy sources. The proposed algorithm uses 

a discrete-time model of the system to predict the future outputs over a specific prediction horizon. At 

every sampling instant, an optimization problem is solved over the prediction horizon to compute the 

control actions. According to the receding horizon policy, the first control action is executed. The whole 

optimization problem is repeated in the following sampling interval. This strategy allows us to handle 

input constraints such as the limits imposed on the excitation systems. We can also accommodate state 

constraints such as maximum allowable frequency deviations. Accordingly, researchers investigate 

MPC in different applications such as load frequency control [13], maximum wind-power generation 

[14], and wind-farm voltage control [15].  
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Therefore, to prove the effectiveness of model predictive control as an underlying strategy to design 

effective PSS, the power system model proposed by Kundur [16] is modified to include partial 

generation from a wind power plant. The objective of the PSS is to preserve stability and maintain the 

tie-line power and frequency at their rated values following disturbances. Sever scenarios such as a 

three-phase fault, a transmission line outage, and a voltage reference sudden change will be examined. 

The proposed PSS is compared to the conventional multi-band (MB) PSS and a linear quadratic 

regulator (LQR). 

The paper is organized as follows: Section 2 describes the system. Section 3 demonstrates the system 

identification process to get the state-space model of the conventional machines. Section 4 demonstrates 

the model predictive control. Section 5 explains the power system stabilizer. Section 6 includes the 

results and discussion. Section 7 summarizes and concludes the paper. 

 

2. SYSTEM DESCRIPTION 

The system as shown in Fig. 1 is developed based on Kundur’s model [17] by the authors in Ref.  [18], 

which consists of four conventional machines distributed into two areas, to study the performance of the 

PSS on the interarea oscillations. Each machine in this model is controlled by a governor, an AVR, and 

a PSS. A step-up transformer is installed to each machine to tie the two areas by two transmission lines 

(220𝐾𝑚 𝑙𝑒𝑛𝑔𝑡ℎ). The data of the machines of Kundur’s model are presented in Table 1. 

 
Figure 1. Schematic diagram of the system under study. 

 

Table 1. Data of Kundur’s model machines. 

 
Ratings 

Voltage (𝐾𝑣) Power (𝑀𝑉𝐴) Inertia Constant (𝑠𝑒𝑐) 

Machines (M1 & M2) 20 900 6.5 

Machines (M3 & M4) 20 900 6.175 

Transformers 20/230 900 - 
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Each area has a constant impedance load and a capacitor bank installed to enhance the voltage profile 

to unity because the surging impedance loading of the transmission lines is around (140𝑀𝑉𝐴𝑅) for the 

single line. Their data are illustrated in Table 2. 

Table 2. Data of the loads and capacitor banks. 

 MW MVAR 

Load (L1) 967 100 & -187 

Load (L2) 1767 100 & -187 

Capacitor Bank (C1) - -200 

Capacitor Bank (C2) - -350 

A wind power plant (WPP) is installed in parallel to Machine (M1) via two step-up transformers and a 

transmission system to expand the model’s function to study the performance of the PSS on the inter-

area oscillations with the existence of the WPP. The data of the added machines are presented in Table 

3.  

Table 3. Data of the added machines. 

 
Ratings 

Voltage (𝐾𝑣) Power (𝑀𝑉𝐴) 

WPP 0.575 500 

Transformers (connected to the WPP) 0.575/25 & 25/230 700 

The WPP has many wind turbines generation Type 4 but in this model, it is modeled as an equivalent 

large generator with (500𝑀𝑉𝐴) rating. This wind generation type consists of a wind turbine, 

synchronous generator, full-scale converter, filter, and controllers. The full-scale converter consists of 

a generator-side converter, DC link, and grid-side converter. The controller of the machine-side 

converter adjusts the active power and the stator voltage of the generator, meanwhile, that of the grid-

side adjusts the DC link voltage and reactive power exchange with the grid. The existence of the full-

scale converter and the DC link decouples the dynamics of the wind turbine from that of the grid. As a 

result, the used WPP model considers only the grid-side converter and its controllers. The components 

before the DC link are modeled as a power source obtained from the wind as presented in Fig. 2. 
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Figure 2. WPP block diagram 

The grid-side converter uses three PI controllers for the DC link voltage, current, and AC voltage. The 

AC voltage is regulated to the reference value (1 𝑝𝑢) by controlling the reactive power. The DC link 

consists of only a capacitance. In addition, there is a filter consisting of resistance and inductance on the 

output of the converter as presented in Fig. 2. The data of the grid-side converter is illustrated in Table 

4. 

Table 4. Data of the WPP model. 

Components 

 R (𝜇Ω) L (𝜇𝐻) C (𝑚𝑓) 

DC Link   760 

Filter 11.9 1  

Grid-Side Converter Controllers 

 P-gain I-gain Reference 

DC Link Voltage 500 500 1300VDC 

Current 0.001 0.0119  

Reactive Power 5 5 1pu (VAC) 

The transmission system has some underground cables but it is modeled as an equivalent pi-model 

transmission line with the data presented in Table 5. 

Table 5. Data of the transmission system. 

 Positive-Sequence Zero-Sequence Line Length (𝐾𝑚) 

Resistance (Ω/𝐾𝑚) 0.1153/100 0.413/100 

30 Inductance (𝐻/𝐾𝑚) 1.05𝑥10−3/50 3.32𝑥10−3/50 

Capacitance (𝑓/𝐾𝑚) 11.33𝑥10−9𝑥50 5.01𝑥10−9𝑥50 

The machines (M2, M3, M4) are set to supply (700 𝑀𝑊) meanwhile Machine (M1) and the WPP are 

set to supply (300 𝑀𝑊) and (400 𝑀𝑊) respectively. Therefore, the WPP partially shares the power 
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with Machine M1 to supply the grid together with (700 𝑀𝑊). This keeps the transferred power from 

Area 1 to Area 2 at (413 𝑀𝑊) as illustrated in the power flow analysis in Table 6. 

Table 6. Power flow analysis of the system 

Bus Voltage P (MW) Q (MVAR) 

B1 0.99 𝑝𝑢 | 230𝑘𝑉 -948.18 320.28 

B2 1.003 𝑝𝑢 | 230𝑘𝑉 -1776.08 479.09 

WPP 1 𝑝𝑢 | 0.575𝑘𝑉 400 -43.81 

M1 1 𝑝𝑢 | 20𝑘𝑉 300 -83.94 

M2 (Slack) 1 𝑝𝑢 | 20𝑘𝑉 708.47 -127.63 

M3 1 𝑝𝑢 | 20𝑘𝑉 719 -82.57 

M4 1 𝑝𝑢 | 20𝑘𝑉 700 -83.45 

 

3. SYSTEM IDENTIFICATION 

Each conventional machine in the system, as mentioned in Section 0, has a governor, AVR, and PSS. In 

this study, a new control technique is introduced to be a PSS and this requires getting the state-space 

model of the machine. So, a system identification method is used to get the model. In this method, only 

input-output data are needed to calculate the linearized model. The system is treated as a black box. A 

known signal is injected at the system input and the output signal is observed. Therefore, the MATLAB 

algorithm (N4SID) yields the state-space matrices. These matrices can be computed in continuous and 

discrete forms. N4SID [19] is a non-iterative algorithm that uses QR and singular value decompositions. 

It needs only the order of the system. Also, it can investigate the system’s order through the dominant 

singular values of a matrix computed during the identification. The calculated state-space matrices can 

be generated in canonical forms.  

The system has four conventional machines with the same ratings but three of them have the same 

operating points except that of the machine parallel to the WPP. As the PSS is a local controller 

implemented to the conventional machines, the model of each one should be calculated. Therefore, 

system identification is used to get a local state-space model for each of them. 

The input and output signals are chosen to be the input signal of the PSS and the frequency change of 

the machine, respectively, as shown in Fig. 3. The input signal should have enough excitation to get an 

accurate model. The excitation depends on the input signal amplitude and frequency. It is selected to be 

a square wave with 0.02 𝑝𝑢 and −0.02 𝑝𝑢 maximum and minimum limits respectively. Its duty period 

is 20 seconds with a 50% pulse width.  This signal is inserted for enough time to collect sufficient 

information about the system. The sampling period is chosen to be 0.005 seconds. 



Journal of Energy Systems 

194 

 
Figure 3. Machine preparation to system identification. 

The input and output signals, Fig. 4, are processed by the MATLAB system identification toolbox [20]. 

The predicted system’s order is chosen to be 4 to correspond to the typical dominant dynamics. The 

used identification algorithm is determined (N4SID). The state-space form is determined as the 

observable canonical form. These steps are repreated to get the model of the four machines. 

 
Figure 4. Input-output signals in system identifications. 
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The input and output are; the input signal of the PSS (𝑢) and the frequency change (Δ𝜔) respectively. 

The first state is defined as the output (Δ𝜔) and the others are defined as a mathematical combination 

of the input and the output. Then, the discrete state-space matrices, continuous transfer function, and 

poles of Machine (M1) are obtained in Eqs. 1, 2, 3, respectively.  

𝐴𝑀1 = [

0 1 0 0
0 0 1 0
0 0 0 1

0.9263 −1.837 −0.1029 2.0136

] 

𝐵𝑀1 = 10−4  [

−0.0241
−0.1586
−0.2836
−0.4101

] 

𝐶𝑀1 = [1 0 0 0] 

(1) 

 

𝑡𝑓𝑀1 =
−9357𝑠 − 3378

𝑠4 + 17450𝑠3 + 107200𝑠2 + 723500𝑠 + 626400
 (2) 

 

𝑃𝑀1 = {−17442,   − 3 + 5𝑗,   − 3 − 5𝑗,   − 1} (3) 

The data shows that there are; a pole near to the imaginary axis on the left side of the real axis, two 

complex poles near to the imaginary axis, and a pole so far on the left side of the real axis. The complex 

poles are dominant and make the system’s response oscillatory, meanwhile, the far pole effect vanishes 

quickly, and the near pole is slow. 

The data of the other machines are included in Appendix A. All machines have two complex poles near 

the imaginary axis and two real poles on the left side of the real axis. One of the real poles is far away 

from the other poles on the left side of the real axis. So, it has a small effect on the response as it vanishes 

quickly. 

 

4. MODEL PREDICTIVE CONTROL 

Model predictive control (MPC) uses mathematical optimization techniques to get the optimal control 

output as shown in Ref. [21]. It can handle large-scale systems and consider the input and states 

constraints. Consequently, it achieves a high degree of stability and robustness. For these merits, it is 

proposed to be used as a PSS because the PSS has constraints on the control signal as will be shown in 

Section 0. 

Its strategy starts with getting the state-space matrices of the system. Then, the states and control output 

are easily predicted. The prediction may be for a finite or infinite horizon. Then, a numerical 

optimization technique is used to get the optimal control action. The optimization algorithm considers 

the input and state constraints. After getting the state-space matrices Eq. 4 by system identification, the 

predicted states vector can be computed in Eq. 5 as follows: 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) 
𝑦(𝑘) = 𝐶𝑢(𝑘) 

(4) 

Here, 𝑥(𝑘) and 𝑢(𝑘) are the states and input vectors at instant 𝑘, respectively. 𝐴, 𝐵, and 𝐶 are the system 

matrices in this respect. 
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[
 
 
 
 
𝑥(𝑘 + 1|𝑘)

𝑥(𝑘 + 2|𝑘)

𝑥(𝑘 + 3|𝑘)
⋮

𝑥(𝑘 + 𝑁|𝑘)]
 
 
 
 

=

[
 
 
 
 
𝐴
𝐴2

𝐴3

⋮
𝐴𝑁]

 
 
 
 

𝑥(𝑘) +

[
 
 
 
 

𝐵 0 0 ⋯ 0
𝐴𝐵 𝐵 0 ⋯ 0
𝐴2𝐵 𝐴𝐵 𝐵 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮
𝐴𝑁−1𝐵 𝐴𝑁−2𝐵 ⋯ ⋯ 𝐵]

 
 
 
 

[
 
 
 
 

𝑢(𝑘|𝑘)

𝑢(𝑘 + 1|𝑘)

𝑢(𝑘 + 2|𝑘)
⋮

𝑢(𝑘 + 𝑁 − 1|𝑘)]
 
 
 
 

 

𝑋(𝑘) = 𝑀𝑥(𝑘) + 𝑐𝑈(𝑘) (5) 

Here, 𝑁 is the prediction horizon. 𝑥(𝑘|𝑘) & 𝑢(𝑘|𝑘) are the states and input vectors at 𝑘. 𝑥(𝑘 + 𝑖|𝑘) and 

𝑢(𝑘 + 𝑖|𝑘) are the predicted states and input vectors at 𝑘 + 𝑖 based on information available at 𝑘. 𝑋(𝑘) 

and 𝑈(𝑘) are the total predicted states and total input vectors based on information available at 𝑘. Then, 

the objective function, Eq. 6, which consists of the predicted states and control outputs, is minimized to 

get the optimal control action 𝑢(𝑘). 

𝐽(𝑘) = ∑[𝑥𝑇(𝑘 + 𝑖|𝑘)𝑄𝑥(𝑘 + 𝑖|𝑘) + 𝑢𝑇(𝑘 + 𝑖|𝑘)𝑅𝑢(𝑘 + 𝑖|𝑘)]

𝑁−1

𝑖=0

+ 𝑥𝑇(𝑘 + 𝑁|𝑘)�̅�𝑥(𝑘 + 𝑁|𝑘) (6) 

Here, 𝑄 and 𝑅 are the weighting matrices. �̅� is the terminal weighting matrix which is calculated by 

solving the Lyapunov equation Eq. 7: 

�̅� − (𝐴 + 𝐵𝐾)𝑇�̅�(𝐴 + 𝐵𝐾) = 𝑄 + 𝐾𝑇𝑅𝐾 (7) 

Here, 𝐾 is feedback gain. By combining Eqs. 8 and 9, the objective function becomes as in Eq. 10: 

𝐽(𝑘) = 𝑈(𝑘)𝑇𝐻𝑈(𝑘) + 2𝑥𝑇(𝑘)𝐹𝑇𝑈(𝑘) + 𝑥𝑇(𝑘)𝐺𝑥(𝑘) (8) 

Here, 

𝐻 = 𝑐𝑇�̃�𝑐 + �̃� 

𝐹 = 𝑐𝑇�̃�𝑀 

𝐺 = 𝑀𝑇�̃�𝑀 + 𝑄 

(9) 

�̃� = [

𝑄 0 ⋯ 0
0 𝑄 ⋯ 0
0 ⋯ ⋱ 0
0 0 ⋯ �̅�

] 

�̃� = [

𝑅 0 ⋯ 0
0 𝑅 ⋯ 0
0 ⋯ ⋱ 0
0 0 ⋯ 𝑅

] 

(10) 

exist. The system has constraints in the control input which should be considered in the optimization 

process so they are written as in Eqs. 11, 12. 

[

𝑢𝑚𝑖𝑛

𝑢𝑚𝑖𝑛

⋮
𝑢𝑚𝑖𝑛

]

𝑁∗1

≤ [

𝑢(𝑘|𝑘)

𝑢(𝑘 + 1|𝑘)
⋮

𝑢(𝑘 + 𝑁 − 1|𝑘)

]

𝑁∗1

≤ [

𝑢𝑚𝑎𝑥

𝑢𝑚𝑎𝑥

⋮
𝑢𝑚𝑎𝑥

]

𝑁∗1

 

[𝑢𝑚𝑖𝑛]𝑁∗1 ≤ [𝐼𝑁]𝑈(𝑘) ≤ [𝑢𝑚𝑎𝑥]𝑁∗1 

(11) 
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[
𝐼𝑁

−𝐼𝑁
]
2𝑁∗𝑁

𝑈(𝑘) ≤ [
𝑢𝑚𝑎𝑥

−𝑢𝑚𝑖𝑛
]
2𝑁∗1

 

𝐴𝑐𝑈(𝑘) ≤ 𝑏0 

(12) 

By considering these constraints, the controller becomes nonlinear and the closed-loop system becomes 

nonlinear consequently. So the linear stability studying methods can’t be used. Lyapunov stability laws 

should be used instead which require three conditions to ensure the system’s stability.  According to 

Lyapunov, our case achieves two stability conditions; the weighting matrix 𝑄 is positive definite and 

the terminal weighting matrix �̅� ensures infinite perdition horizon. The last one is that the predicted 

control outputs at the next steps should satisfy the constraints as well. The predicted control outputs at 

the next steps are called the tail of the control output at (k) presented in Fig. 5. Hence, additional 

constraints are required to achieve the third condition. They are written in Eq. 13. 

 
Figure 5. The predicted control output and its tail graph. 

 

𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑘 + 𝑖|𝑘) ≤ 𝑢𝑚𝑎𝑥  (13) 

Here, 

𝑖 = 0, 1, 2, …… ,∞ 

stands. Instead of checking this constraint for infinite steps, it is enough to check it for enough finite 

number of steps which is called the minimum control horizon (𝑁𝑐). After these steps, the control action 

is decreasing so it keeps the constraints consequently. To investigate this number (𝑁𝑐) and its additional 

constraints, the general equation of the tail is calculated from the state space matrices as in Eq. 14. 

𝑢(𝑘 + 𝑖|𝑘) = 𝐾(𝐴 + 𝐵𝐾)𝑖𝑥(𝑘) (14) 

where, 

𝑖 = 0, 1, 2, …… ,𝑁𝑐   

So the additional constraints in Eq. 14 can be written as in Eq. 15. 

𝑢𝑚𝑖𝑛 ≤ 𝐾(𝐴 + 𝐵𝐾)𝑖𝑥(𝑘) ≤ 𝑢𝑚𝑎𝑥 (15) 
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The additional constraints are linear and can be solved by a linear programming algorithm. The 

flowchart of the used algorithm is illustrated in Fig. 6. The algorithm gives the tail matrix (𝐴𝑡𝑎𝑖𝑙) and 

the minimum control horizon (𝑁𝑐). Therefore, the tail equation is Eq. 16. 

 
Figure 6. Additional stability constraints algorithm flowchart 

𝑈(𝑘 + 1) = 𝐴𝑡𝑎𝑖𝑙𝑥(𝑘) 

𝐴𝑡𝑎𝑖𝑙 = [

𝐾
𝐾(𝐴 + 𝐵𝐾)

⋮
𝐾(𝐴 + 𝐵𝐾)𝑁𝑐   

]

(𝑁𝑐+1)∗𝑁

 
(16) 

The predicted control actions satisfy the tail constraints until (𝑁 − 1). That’s why it is already considered 

with the inputs and states constraints. So the tail of the final predicted term at (𝑁) only needs to satisfy 

the constraints. From  Eqs. 16, 17, the tail equation of the final predicted term at (𝑁) is Eq. 18. 

𝑈(𝑘 + 𝑁 + 1) = 𝐴𝑡𝑎𝑖𝑙{𝐴
𝑁𝑥(𝑘) + [𝐴𝑁−1𝐵 𝐴𝑁−2𝐵 ⋯ 𝐵]𝑈(𝑘)} = 𝐴1𝑥(𝑘) + 𝐴2𝑈(𝑘) 

𝐴1 = 𝐴𝑡𝑎𝑖𝑙𝐴
𝑁 

𝐴2 = 𝐴𝑡𝑎𝑖𝑙[𝐴𝑁−1𝐵 𝐴𝑁−2𝐵 ⋯ 𝐵] 
(17) 

So the additional constraints Eq. 17 can be written as Eq. 18. 

[

𝑢𝑚𝑖𝑛

⋮
𝑢𝑚𝑖𝑛

]

(𝑁𝑐+1)∗1

≤ 𝐴1𝑥(𝑘) + 𝐴2𝑈(𝑘)  ≤ [

𝑢𝑚𝑎𝑥

⋮
𝑢𝑚𝑎𝑥

]

(𝑁𝑐+1)∗1

 (18) 

Then, it can be reduced to Eq. 19. 

[
𝐴2

−𝐴2
]
2(𝑁𝑐+1)∗𝑁

𝑈(𝑘) ≤ [
𝑢𝑚𝑎𝑥

−𝑢𝑚𝑖𝑛
]
2(𝑁𝑐+1)∗1

+ [
−𝐴1

𝐴1
]
2(𝑁𝑐+1)∗𝑁

𝑥(𝑘) (19) 

Therefore, the total constraints can be collected from Eqs. 19, and written as Eq. 20. 

[

𝐼𝑁
−𝐼𝑁
𝐴2

−𝐴2

]

2(𝑁+𝑁𝑐+1)∗𝑁

𝑈(𝑘) ≤ [

𝑢𝑚𝑎𝑥

−𝑢𝑚𝑖𝑛

𝑢𝑚𝑎𝑥

−𝑢𝑚𝑖𝑛

]

2(𝑁+𝑁𝑐+1)∗1

+ [

0𝑁

0𝑁

−𝐴1

𝐴1

]

2(𝑁+𝑁𝑐+1)∗𝑁

𝑥(𝑘) 
(20) 
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𝐴𝑐𝑜𝑛𝑠𝑈(𝑘) ≤ 𝐵𝑐𝑜𝑛𝑠 + 𝐶𝑐𝑜𝑛𝑠𝑥(𝑘) 

Thus, the objective function Eq. 19 can be optimized by considering the constraints Eq. 20 to get the 

optimal control output by using quadratic programming techniques like active-set or interior-point 

methods. The control output is computed repeatedly at each step by solving a quadratic optimization 

problem using the MATLAB command as in Eq. 21. 

𝑢(𝑘) = 𝑞𝑢𝑎𝑑𝑝𝑟𝑜𝑔(𝐻, 𝐹𝑥(𝑘), 𝐴𝑐𝑜𝑛𝑠, 𝐵𝑐𝑜𝑛𝑠 + 𝐶𝑐𝑜𝑛𝑠𝑥(𝑘)) (21) 

 

5. POWER SYSTEM STABILIZER 

The PSS is a local controller installed in conventional machines to damp the frequency oscillations via 

the excitation system as shown in Fig. 7. To keep the excitation system working properly, the PSS has 

limits on its control output in the range of (± 0.1 𝑝𝑢). A state observer is needed due to the unmeasurable 

states of the system as mentioned in Section 0. 

 
Figure 7. Closed-loop system block diagram. 

In this paper, two other controllers are implemented and compared to the MPC; conventional multi-band 

control (MB) and linear quadratic regulator (LQR). The controllers are designed and applied to the four 

conventional machines. Then, the performance of the controllers is investigated and compared to each 

other. 
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Before starting in MPC design, a state observer is firstly considered to estimate the states which are used 

in the controller. A full state observer is designed because most of the states are mathematical and cannot 

be measured practically. 

5.1. State Observer 

The observability matrices of the machines have full rank, so their systems are completely observable. 

The desired observer poles are chosen to be faster than that of the systems. Then, they are computed in 

the discrete form as in [22]. Hence, the desired observer poles of Machine (M1) are given in Eq. 22. Its 

observer gain is calculated via Ackerman’s formula. The result is given by Eq. 23. Similarly, the results 

for the other machines are computed and included in Appendix A. 

𝑃𝑜𝑀1
= {0,   0.9494 + 0.0259𝑗,   0.9494 − 0.0259𝑗,   0.9805} (22) 

 

𝐾𝑜𝑀1
= [−0.8656,   0.9177,   − 0.7844,   0.8426] (23) 

The design is performed as shown in Section 2. The weighted matrices are chosen as in Eq. 24 so the 

weighting matrices become equal for all of the machines. Then, the prediction horizon is chosen to be 

(𝑁 = 10).  

𝑄 = 100  𝐼4∗4 = [

100 0 0 0
0 100 0 0
0 0 100 0
0 0 0 100

] 

𝑅 = 0.0001 

(24) 

So the minimum control horizon for Machine (M1) is in Eq. 25. Hence, the control inputs are calculated 

repeatedly at each sample as in Eq. 24. The results for the other machines are computed and included in 

Appendix A.  

𝑁𝑐𝑀1
= 32 (25) 

5.2. Linear Quadratic Regulator 

The state observers designed in Section 0 will provide state information for the LQR. In addition, the 

weighting matrices are chosen typically like MPC as in Eq. 24. Therefore, the LQR gain for Machine 

(M1) is calculated as in Ref. [22] in Eq. 26. Similarly, gains of the other machines are computed and 

included in Appendix A.  

𝐾𝐿𝑄𝑅𝑀1
= [−23810 28858 25446 −32296] (26) 

5.3. Multi-Band Controller 

The used MB PSS is implemented with the simplified parameters (PSS4B) according to IEEE standards 

421.5 [17].  Its parameters are listed in Table 7. 

Table 7. MB PSS parameters 

Global Gain 1 

Low Frequency Band 𝐹𝐿 = 0.2 𝐻𝑧, 𝐾𝐿 =    30 

Intermediate Frequency Band 𝐹𝐼 = 1.25 𝐻𝑧, 𝐾𝐼 =  40 

High Frequency Band 𝐹𝐻 = 12 𝐻𝑧, 𝐾𝐻 =  160 

Signals Limits 𝑉𝐿max
=  𝑉𝐼max

= 𝑉𝐻max 
= 𝑉𝑆max

=  0.1 
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6. RESULTS AND DISCUSSION 

After applying the proposed PSSs to the machines, the system reaches a steady state. To analyze and 

study the performance of the PSSs, three common tests are nominated; three-phase fault, transmission 

line outage, and voltage reference of a machine sudden change. This study monitors the settling time 

(𝑇𝑠) and the peak value (𝑃. 𝑉. ) of the machines’ frequency deviation and the tie-line power oscillations 

in each test. 

6.1. Three-Phase Fault 

While the system operates normally, a three-phase fault suddenly happens in the middle of one of the 

inter-area transmission lines. This fault lasts for 200 𝑚𝑠 before the protection devices clear it. All 

controllers damp the tie-line power and frequency oscillations well as shown in Figs. 8 and 9, 

respectively.  

The constrained MPC and LQR outperform the MB controller. They give the shortest settling time 

nearly (7.6 sec) in the tie-line power. The MB comes lastly in the third position with around (13 sec), 

see Fig. 8. In addition, their response gets approximately the same peak value (0.69 𝑝𝑢) which is slightly 

high because the PSS controls directly the frequency deviation and therefore it affects and controls the 

tie-line power indirectly.  

 
Figure 8. Time response of the tie-line power in the three-phase fault test. 

Focusing on the frequency deviation of the machines, MPC and LQR damp the oscillations faster than 

MB, Fig. 9. However, the frequency deviation is small for all controllers.  There is no need to exceed 

the constraints of the actuator, so the results of the MPC and LQR are slightly the same.  
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Figure 9. Time response of frequency deviation in three-phase fault test. 

Also, the relative frequencies of the machines are so small in most of the cases but their values with 

MPC are smaller than that with LQR in some cases like between M3 and M4, Fig. 10. 

 
Figure 10. Relative frequency deviation in three-phase fault test. 

6.2. Transmission Line Outage 

While the system operates normally, one of the inter-area transmission lines is suddenly cut for 135 ms 

and then it is back. The system still operates without that transmission line during this period. All 

controllers damp the tie-line power and frequency oscillations as exposed in Figs. 11 and 12, 

respectively. 
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The constrained MPC and LQR outperform the MB controller. MPC performs slightly faster than LQR 

and gives the shortest settling time nearly (3.53 sec) in the tie-line power meanwhile LQR comes 

secondly with (4.3 sec) and MB in the third position, Fig. 11. Accordingly, that proves the efficiency of 

MPC in handling the input constraints. In addition, their response gets approximately the same peak 

value (0.6 𝑝𝑢). 

 
Figure 11. Time response of the tie-line power in the transmission line outage test. 

For the frequency deviation of the machines, MPC and LQR damp the oscillations faster than MB as 

well, but MPC is slightly faster in some machines, Fig. 12. Still, the frequency deviation is small with 

all of the controllers.  

 
Figure 12. Time response of frequency deviation in the transmission line outage test. 
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Figure 13. Relative frequency deviation of the machines in the transmission line outage test 

Moreover, the relative frequencies of the machines are shown in Fig. 13. MPC and LQR exhibit smaller 

oscillations compared to that with the MB in some cases like the relative oscillations between M1 and 

M3. 

6.3. Voltage Reference Sudden Change 

During the normal operation of the power system, the voltage reference of Machine (M1) is suddenly 

changed from 1 𝑝𝑢 to 1.05 𝑝𝑢 and then back to 1 𝑝𝑢 after 200 milliseconds. All of the controllers damp 

the tie-line power and frequency oscillations well as presented in Figs. 14 and 15 in turn.  

The constrained MPC gives the shortest settling time (3.29 sec) to retrieve the tie-line power. 

Meanwhile, the LQR comes in the second position with (3.47 sec) and the MB is in the last position, 

Fig. 14. In addition, their response gets approximately the same peak value (0.47 𝑝𝑢). So, that 

demonstrates the productivity of MPC in handling the constraints. 

 
Figure 14. Time response of the tie-line power in the voltage reference sudden change test 

In the frequency deviation of the machines, MPC and LQR damp the oscillations faster than MB as well 

but MPC is slightly faster in some machines (Fig. 15).  
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Figure 15. Time response of frequency deviation in the voltage reference sudden change test. 

The relative frequencies of the machines using MPC and LQR controllers are smaller than that with MB 

in some cases as well (Fig. 16). 

 
Figure 16. Relative frequency deviation in the voltage reference sudden change test. 

The characteristics of the time response of the controllers in each test are summarized in Table 8. They 

include the settling time (𝑇𝑠) in seconds, the peak value (𝑃. 𝑉.) in per-unit and the damping ratio (𝜁). 

The system with all of the controllers is underdamped because the damping ratio is in the range of (0 <
𝜁 < 1) [22]. The overall results indicate that the conventional MB PSS may need to be replaced by the 

proposed controller. 
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Table 8. Comparison of the closed-loop response of the PSSs. 

Controller Type 
Three-Phase Fault Transmission Line Outage Voltage Reference Sudden Change 

𝑇𝑠 𝑃. 𝑉. 𝜁 𝑇𝑠 𝑃. 𝑉. 𝜁 𝑇𝑠 𝑃. 𝑉. 𝜁 

Frequency Deviation of Machine (M1) 

MB 17.4 0.0095 0.99 5.8 0.0012 0.99 3.6 0.0008 0.99 

LQR 5.02 0.0097 0.99 3.25 0.0014 0.99 2.8 0.0004 0.99 

MPC 5.1 0.0097 0.99 3.47 0.0012 0.99 2.8 0.0004 0.99 

Frequency Deviation of Machine (M2) 

MB 17.4 0.0094 0.99 5.68 0.0011 0.99 6.16 0.0004 0.99 

LQR 6 0.0097 0.99 3.5 0.0011 0.99 4.2 0.0001 0.99 

MPC 5.68 0.0097 0.99 3.5 0.0011 0.99 4.2 0.0001 0.99 

Frequency Deviation of Machine (M3) 

MB 17.8 0.0076 0.99 6.6 0.0009 0.99 8.34 0.0003 0.99 

LQR 5.26 0.0077 0.99 4.7 0.0005 0.99 3.97 0.00004 0.99 

MPC 5.19 0.0077 0.99 4.7 0.0005 0.99 3.96 0.00004 0.99 

Frequency Deviation of Machine (M4) 

MB 17.8 0.0076 0.99 6.6 0.0009 0.99 8.4 0.0003 0.99 

LQR 5.98 0.0078 0.99 4.8 0.0008 0.99 4.1 0.00007 0.99 

MPC 5.9 0.0078 0.99 4.8 0.0008 0.99 4.1 0.00007 0.99 

Tie-Line Power 

MB 21.1 0.69 0.2 5.06 0.62 0.31 5.07 0.47 0.8 

LQR 7.56 0.69 0.2 4.3 0.59 0.34 3.47 0.47 0.8 

MPC 7.66 0.69 0.2 3.53 0.6 0.34 3.29 0.47 0.8 

 

7. CONCLUSIONS 

This paper proposes a PSS design based on constrained MPC. The objective is to damp the inter-area 

oscillations of a multi-machine power system that includes a wind power plant. For comparison 

purposes, the conventional MB-PSS and LQR are implemented. All PSSs are tested against 

disturbances, three-phase fault, a transmission line outage, and a sudden change of a generator’s 

reference voltage.  

The study has shown that all the controllers have succeeded in damping the frequency and tie-line 

oscillations in the presence of the WPP in the case of partial power-sharing. The PSS design based on 

constrained MPC has handled the input constraints efficiently, and this has been evident in the used 

tests. LQR performs well in damping the frequency oscillations and generally acts similar to MPC in 

the absence of constraints. Although the conventional MB damps the frequency and tie-line power 

oscillation, the other controllers are faster. This indicates that MPC-PSS and LQR-PSS outperform the 

conventional MB-PSS may need to be re-tuned with the integration of the WPP to the grid. 

To conclude, PSSs can still succeed in damping the oscillations that follow disturbances in power 

systems that have wind penetrations. Constrained MPC can handle the input constraints and effectively 

damp the oscillations. 

 

REFERENCES 

[1] Renewable Capacity Statistics 2020. International Renewable Energy Agency (IRENA), 2020. 

[2] IEEE Recommended Practice for Excitation System Models for Power System Stability Studies. IEEE Std 

421.5-2005 (Revision of IEEE Std 421.5-1992) 2006; 10 Aug. 1992: IEEE, pp. 1-93. 

[3] IEEE Recommended Practice for Excitation System Models for Power System Stability Studies. IEEE Std 

421.5-2016 (Revision of IEEE Std 421.5-2005) 2016; 15 May 2016: IEEE: pp. 1-207. 



Journal of Energy Systems 

207 

[4] Chen, S, Malik, OP, Chen, T. A Robust Power System Stabilizer Design. Optimal Control Applications and 

Methods 1997; 18(3): 179-193. DOI:10.1002/(SICI)1099-1514(199705/06)18:3<179::AID-

OCA597>3.0.CO;2-5 

[5] Abdelazim, T, Malik, OP. Power System Stabilizer Based on Model Reference Adaptive Fuzzy Control. 

Electrical Power Components and Systems 2005; 33(9): 985-998. DOI:10.1080/15325000590921017 

[6] Harmas, N, Essounbouli, H. A New Robust Adaptive Fuzzy Sliding Mode Power System Stabilizer. 

Electrical Power and Energy Systems 2012; 42: 1-7. DOI:10.1016/j.ijepes.2012.03.032 

[7] Yee, SK, Milanović, JV. Fuzzy logic controller for decentralized stabilization of multimachine power 

systems. IEEE Transactions on Fuzzy Systems 2008; 16(4): 971-981. DOI:10.1109/TFUZZ.2008.917296 

[8] Changaroon, B., Srivastava, SC, Thukaram, D. A neural network-based power system stabilizer suitable for 

an online training-a practical case study for EGAT system. IEEE Transactions on Energy Conversion 2000; 

15(1): 103-109. DOI:10.1109/60.849124 

[9] Chaturvedi, DK, Malik OP. Neuro-fuzzy Power System Stabilizer. IEEE Transactions on Energy 

Conversion 2008; 23(3): 887-894. DOI:10.1109/TEC.2008.918633 

[10] Soliman, M, Elshafei, AL, Bendary, F, Mansour, and W. Robust Decentralized PID-based Power System 

Stabilizer Design Using an ILMI Approach. Electric Power System Research 2010; 80(12): 1488-1497. 

DOI:10.1016/j.epsr.2010.06.008 

[11] Ibrahim, H, Ghandour, M, Dimitrova, M, Ilinca, A, Perron, J. Integration of Wind Energy into Electricity 

Systems. Technical Challenges and Actual Solutions. Energy Procedia 2011: 6: 815-824. 

DOI:10.1016/j.egypro.2011.05.092 

[12] Kalogiannis, T, Llano, EM, Hoseinzadeh, B, da Silva, FF. Impact of high level penetration of wind turbines 

on power system transient stability: IEEE Eindhoven PowerTech 2015; 7232312: 1-6. 

DOI:10.1109/PTC.2015.7232312 

[13] Yang, J, Sun, X, Liao, K, He, Z, Cai, L. Model predictive control-based load frequency control for power 

systems with wind-turbine generators. IET Renewable Power Generation 2019; 13(15): 2871–2879. DOI: 

10.1049/iet-rpg.2018.6179 

[14] Dang, DQ, Wu, S, Wang, Y, Cai, W. Model Predictive Control for maximum power capture of variable 

speed wind turbines. In: IPEC 2010 International Power Engineering Conference; 27-29 Oct. 2010: IEEE, 

pp.274-279. DOI:10.1109/IPECON.2010.5697119 

[15] Zhao, H, Wu, Q, Guo, Q, Sun, H, Huang, S, Xue, Y. Coordinated Voltage Control of a Wind Farm Based on 

Model Predictive Control. IEEE Transactions on Sustainable Energy 2016; 7(4): 1440-1451. 

DOI:10.1109/TSTE.2016.2555398 

[16] Kundur, P. Power System Stability, and Control. New York, USA: McGraw-Hill, Inc, 1994. 

[17] Klein, M, Rogers, GJ, Moorty, S, Kundur, P. Analytical investigation of factors influencing power system 

stabilizers performance. IEEE Transactions on Energy Conversion 1992; 7(3): 382-390. DOI: 

10.1109/60.148556. 

[18] Ashraf, M, Elshafei, AL, Eldeeb, A. Wind Power Plant Modeling and Control Design for Inter-Area 

Oscillation Damping. MSc. Cairo University, Giza, Egypt, 2019. 

[19] Overschee, PV, Moor, BD. N4SID Subspace Algorithms for the Identification of Combined Deterministic-

Stochastic Systems. Automatica 1994; 30: 75-93. DOI:10.1016/0005-1098(94)90230-5 

[20] Ljung, L. System Identification Toolbox User's Guide, MATLAB. Mathworks, 2012. 

[21]  Kouvaritakis, B, Cannon, M. Model Predictive Control: Classical, Robust and Stochastic.  Oxford, UK. 

Springer, 2016. 
[22]  Ogata, K. Discrete-Time Control Systems.New Jersey, USA: Prentice-Hall, 1995.  



Journal of Energy Systems 

208 

APPENDIX A 

Machines M2, M3 and M4 system identification and controllers data 

Table 9. Machine M2 system identification and controllers data 
Machine M2 

Discrete State-space Model 

𝐴𝑀2 = [

0 1 0 0
0 0 1 0
0 0 0 1

0.909 −1.77 −0.18 2.04

] 

𝐵𝑀2 = 10−5  [

−0.68
−3
−5
−7

] 

𝐶𝑀2 = [1 0 0 0] 
Continuous Transfer Function 

𝑡𝑓𝑀2 =
−10770𝑠 − 5634

𝑠4 + 11240 + 54340𝑠2 + 61120𝑠 + 145400
 

Continuous Poles 𝑃𝑀2 = {−11237,   − 2 + 7𝑗,   − 2 − 7𝑗,   − 0.24} 
State Observer Poles 𝑃𝑜𝑀2

= {0,   0.95 + 0.033𝑗,   0.95 − 0.033𝑗,   0.995} 

State Observer Gain 𝐾𝑜𝑀2
= [−0.86   0.87,   − 0.74,   0.76] 

Min Control Horizon 𝑁𝑐𝑀2
= 26 

LQR Gain 𝐾𝐿𝑄𝑅𝑀2
= 104 [−1. 2 1.5 1.3 −1.8] 

 

Table 10. Machine M3 system identification and controllers data 

Machine M3 

Discrete State-space Model 

𝐴𝑀3 = [

0 1 0 0
0 0 1 0
0 0 0 1

0.9 −1.7 −0.2 2

] 

𝐵𝑀3 = 10−4  [

−0.0631
−0.2939
−0.5178
−0.7384

] 

𝐶𝑀3 = [1 0 0 0] 
Continuous Transfer Function 

𝑡𝑓𝑀3 =
−9061𝑠 − 3963

𝑠4 + 9719 + 44190𝑠2 + 424900𝑠 + 517900
 

Continuous Poles 𝑃𝑀3 = {−9714,   − 1.6 + 6.1𝑗,   − 1.6 − 6.1𝑗,   − 1.4 } 
State Observer Poles 𝑃𝑜𝑀3

= {0,   0.97 + 0.03𝑗,   0.97 − 0.03𝑗,   0.97} 

State Observer Gain 𝐾𝑜𝑀3
= [−0.85,   0.85,   − 0.72,   0.73] 

Min Control Horizon 𝑁𝑐𝑀3
= 5 

LQR Gain 𝐾𝐿𝑄𝑅𝑀3
= 104 [−1. 18 1.49 1.3 −1.8] 

 

Table 11. Machine M4 system identification and controllers data 
Machine M4 

Discrete State-space Model 

𝐴𝑀4 = [

0 1 0 0
0 0 1 0
0 0 0 1

−0.1 1.29 −3.26 3.08

] 

𝐵𝑀4 = 10−3  [

−0.01
−0.04
−0.08
−0.12

] 

𝐶𝑀4 = [1 0 0 0] 
 

Continuous Transfer Function 
𝑡𝑓𝑀4 =

−39.18𝑠 − 10

𝑠4 + 20.51𝑠3 + 138.4𝑠2 + 798𝑠 + 206.2
 

Continuous Poles 𝑃𝑀4 = {−451.7,   − 2.17 + 6.97𝑗,   − 2.17 − 6.697𝑗, −0.27} 
State Observer Poles 𝑃𝑜𝑀4

= {0,   0.9569 + 0.03𝑗,   0.9569 − 0.03𝑗,   0.99} 

State Observer Gain 𝐾𝑜𝑀4
= [0.17,   0.08,   0.08,   0.08] 

Min Control Horizon 𝑁𝑐𝑀4
= 21 

LQR Gain 𝐾𝐿𝑄𝑅𝑀4
= 104 [0. 12 −1.45 3.05 −1.89] 

 


