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ABSTRACT: A multi-channel measurement system used to measure electrocardiogram (ECG), 

electroencephalogram (EEG), electromyogram (EMG) and electrooculogram (EOG) biosignals has 

been designed and prototyped. The designed system has 16 configurable measurement channels.  Of the 

16 channels the developed system has, 8 have been designed for EEG, 2 for EMG, 2 for EOG, 1 for 

ECG measurements, the remaining 3 have been reserved as backup channels. In circuit design, biosignal 

amplifier design principles have been applied by taking into account the characteristics of the biosignal 

to be measured for each channel, such as bandwidth, frequency, amplitude, noise level. Modules such 

as instrumentation amplifier, filter, DC suppression unit, amplifier, DC level determination unit, analog-

digital converter, optical isolation unit, power supply have been designed to perform biosignal 

measurements through these channels. Biosignals measured by the developed system can be shifted to 

the desired threshold level with the help of the analog output reference voltage, converted to digital data 

10-bit resolution and transferred to the computer environment in real time. The data transferred to the 

computer can be used in C#, Excel, MATLAB, and LabVIEW platforms. The novelty of the developed 

system is that any of the four desired biosignal types can be measured from any channel. In addition, 

another feature of the system is that it can work with real-time data without being dependent on the 

databases serving for human-computer interface applications. In experimental studies with some 

researchers for the performance tests of the system, ECG, EEG, EMG and EOG signals have been 

recorded with different module configurations, and signal processing stages were carried out to be used 

for human-computer applications. 
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INTRODUCTION 

Human-computer interface (HCI) refers to a general expression used for methods that allow people 

to interact with computer programs (Zhang, 2010). When HCI concept is examined in detail, research 

areas such as the human-machine interface (HMI) and the brain-computer interface (BCI) are also 

important topics encountered in the literature (Usakli and Gurkan, 2010). 

HCI applications are mainly carried out with electroencephalogram (EEG), electromyogram 

(EMG) and electrooculogram (EOG) based biosignals (Gordleeva et al., 2020; Li et al., 2020; Martínez-

Cerveró et al., 2020; Ramakrishnan et al., 2020; Teng et al., 2020). Especially in EEG-based HCI 

systems, studies of the detection of ECG, EOG and EMG components (artifacts) and their removal from 

the EEG signal have been reported in the literature (Hu et al., 2015). By means of HCI applications using 

biosignals, paralyzed patients who have lost their speaking and movement abilities can be offered the 

opportunity to meet their basic needs on their own (Usakli et al., 2018; Chang, 2019). In addition, 

prostheses can be developed to replace the damaged limbs of some patients (Farooq et al., 2019), and 

channels can be created through which motor neuron patients (amyotrophic lateral sclerosis - ALS) can 

communicate with their environment (Usakli and Gurkan, 2010; Bozomitu et al., 2019). In parallel with 

the increase in the average human life expectancy, both the number of paralyzed patients in the society 

and the number of HCI applications aimed at improving the quality of life of patients are increasing. For 

example, wheelchair control, computer game applications, computer mouse control applications, virtual 

keyboard applications are some of the biosignal based HCI applications that have been implemented in 

recent years (Usakli and Gurkan, 2010; Usakli et al., 2011; Li et al., 2020). 

A researcher working in the field of HCI applications may have to use different measurement 

equipment for the biosignals to be measured. For example, in a wheelchair application, the 

equipment/hardware needed to evaluate EEG and EMG signals together will be different from the 

equipment/hardware needed to evaluate EOG and EMG signals together. As a result of this, the costs of 

the studies to be carried out will increase and extra time will be spent solving the compatibility problems 

between the equipment/hardware. 

Although there have been given EEG, EMG, EOG, EEG-EMG, EOG-EMG-based biosignal data 

capture applications developed for commercial or academic purposes in the literature, there isn’t any 

study that allows the simultaneous evaluation of EEG, EMG, EOG and ECG biosignals together (Collins 

et al., 2016; Balamurugan et al., 2020; Teng et al., 2020). Researchers working in the field of biosignal 

processing and HCI may also prefer to work with data they have purchased from database banks or 

accessed from open-source databases, due to difficulties and costs of obtaining biosignals from different 

sources (Cavanagh et al., 2017). 

It is obvious how useful the fixed platform-variable module structure is encountered in Arduino 

and Raspberry Pi platforms which their usages have become widespread in the last decade (Montironi 

et al., 2017; Papazoglou, 2018; Uyanik and Catalbas, 2018; Perenc et al., 2019). It is possible to develop 

a wide range of applications from simple to complex with these platforms used in many fields from 

student level to engineer level. In addition, it is possible to implement a large number of applications in 

many different fields at low cost with the help of modules that work in harmony with these platforms 

and perform different functions. The main motivation in this study is the idea that the fixed processor-

variable module structure will also be useful for other HCI studies. 

In this study, a system using a fixed measurement platform and a configurable module structure 

was proposed in which EEG, EMG, EOG, ECG biosignals can be measured and transferred to a 

computer environment simultaneously and in real time. In this way, it has been possible to develop a 



Poyraz Alper ÖNER et al. 12(1): 182-193, 2022 

Development of a Multichannel Bioinstrumentation System for Human-Computer Interface Applications 

 

184 

large number of HCI applications by using biosignals obtained from different sources. It is generally 

encountered two basic elements such as biosignal data capture and signal processing, when HCI studies 

are examined. In this study, it has been mainly focused on a multi-channel biosignal data capture part 

rather than signal processing. It is possible to obtain real biosignal data at low costs and quickly by using 

this developed measurement system. Of the 16 channels the developed system has, 8 have been designed 

for EEG, 2 for EMG, 2 for EOG, 1 for ECG measurements, the remaining 3 have been reserved as 

backup channels. Although such a channel allocation has been made, the desired biosignal measurement 

can be performed from the desired channel by making appropriate electrode connections and module 

configurations. 

In circuit design, biosignal amplifier design principles have been applied by taking into account 

the characteristics of the biosignal to be measured for each channel, such as bandwidth, amplitude, noise 

level, etc. The safety of the person whose biosignal measurement will be done has been taken into 

consideration as the main priority at each stage of the design. The analog data received from the amplifier 

outputs are sent to an analog output unit to be used in applications. This analog data is also sent to 

another unit to give digital output when it exceeds a reference value set by the researcher. In this unit, 

the analog data is converted to 10-bit digital data and sent to the digital output terminals. The digital data 

obtained from the channels are evaluated with the help of a microcontroller and transferred to the 

computer by optical isolation. Using this porotype, many types of data can be obtained that researchers 

may need in biosignal based HCI applications. The data transferred to the computer can be used in C#, 

Excel, MATLAB, and LabVIEW platforms. As a result, bio-signals can be sent to another external unit 

in digital format or in original analog form by using various transferring methods such as fiber optic, 

USB, or Bluetooth. Although the definitions are made for HCI applications in this study, the proposed 

system can also be used for HMI and BCI applications. 

MATERIALS AND METHODS 

The block diagram and some images of the developed system for multi-channel HCI applications 

have been given in Figure 1 and Figure 2, respectively. As can be seen from the block diagram given in 

Figure 1, it can be easily understood that the signals received by the electrodes are amplified to the 

required levels by the biosignal amplifiers, transferred to the microcontroller unit by providing optical 

insulation, and the data collected from all measurement channels are transferred to the computer with 

time sharing. The original (analog) signals of each channel are also transferred to the system output panel 

with Bayonet Neill-Concelman (BNC) connectors. In the system, analog outputs without optical 

insulation are applied to voltage comparators, providing digital outputs above the desired threshold level, 

and the resulting threshold outputs are transferred to the system panel with BNC connectors. The analog 

outputs of all measuring channels are connected to parallel type analog to digital converters. The digital 

data corresponding to the analog level of the desired channel can be used with a resolution of 10 bits, 

thanks to the address path and bus created in the D-type connector on the system panel. 

For user safety, measurement circuits and recording-imaging units are isolated from each other 

using an optical insulator. Analog data obtained from the optical isolator output are transferred to BNC 

connectors for each channel and are also connected to the fiber optic (F/O) outputs by the developed 

analog-to-optical converter. Optically isolated analog data obtained from all channels are evaluated in 

the microcontroller unit and transferred to a computer with time sharing. In addition, digital and optical 

data of all channels are serially transferred to two different outputs with the help of the microcontroller 

unit. Thanks to this developed system, it is possible to access many data types that will be needed in HCI 
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applications via any connection type. The developed system can be used in computer aided applications 

as well as in applications that do not require computer support. 

 
Figure 1. The block diagram of the developed system 

 
Figure 2. Some images of the developed system for multi-channel HCI applications 

As can be seen in Figure 2, the system back panel has been arranged for electrode connections and 

energy input. All signal outputs and computer connection sockets are available on the front panel. When 

the inside of the system case is examined, there are three main units in it. The first of the units is the 

power circuit that converts the mains voltage into DC voltage levels to be used in the system. The second 

unit, called "application development unit" where biosignal measurement applications can be developed, 
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contains 20 cascaded sockets. The energies of the application modules and their connections between 

each other are made with the help of these sockets. Biosignal amplifiers can be developed by mounting 

portable circuits developed in this study to module sockets, and these can be used for bioinstrumentation 

studies. The third unit is the microcontroller unit. 

The most commonly preferred instrumentation amplifier being used in biosignal amplifiers, 2nd 

order low pass filter (LPF), 4th order LPF, 50 Hz notch filter, non-inverting amplifier, DC coupler, DC 

drift remover and optical transmitter modules have been designed for use in the application development 

unit.  

Design Principles of Application Development Modules 

There are some similarities in the processes such as EEG, EMG, EOG, ECG to get biosignals with 

the help of electrodes and making useful data by amplifying them. The methods given in the literature 

for the measurement of these signals have been searched and eight different modules have been designed 

to be used in experimental studies. The circuit schematic diagrams of the designed modules have been 

given in Figure 3. 

One of the most critical and important components for biosignal measurement systems is 

undoubtedly instrumentation amplifiers. In the designed system, AD620 instrumentation amplifier has 

been preferred. The circuit diagram and appearance of the instrumentation amplifier module has been 

given in Figure 3a. The voltage gain of the module (G) can be calculated by Equation (1). Since R1 is a 

constant value resistance (1 KΩ), the G value varies between 5.49 and 50.4 according to the value that 

RV1 takes between 0 and 10 KΩ.  

𝐺 =
49400

𝑅1+𝑅𝑉1
+ 1                                                                                                                                       (1) 

A 2nd order (20 dB/dec) LPF module that circuit diagram and appearance are given in Figure 3b 

has been designed to be used in the system. The cutoff frequency (fc) of the module is calculated to be 

49.41 Hz using Equation (2).   

𝑓𝑐 =
1

2𝜋√𝑅1𝑅2𝐶1𝐶2
                                                                                                                                     (2) 

A 4th order (40 dB/dec) LPF module that circuit diagram and appearance are given in Figure 3c 

has been designed to be used in the system. The fc of the module has been calculated to be 49.41 Hz as 

done in the previous LPF. 

The DC coupler module is designed to suppress DC levels occurring between components in the 

system during measurements. The circuit diagram and appearance of the designed module have been 

given in Figure 3d. As can be seen in the figure, an active high-pass filter with a cutoff frequency of 0.33 

Hz is encountered. 

In the system, a narrow band 50 Hz notch filter module has been designed to suppress 50 Hz noises 

originating from the electrical network. The circuit diagram and appearance of the designed module have 

been given in Figure 3e. The quality factor (Q) and bandwidth (BW) of the module are 4.87 Hz and 

10.26 Hz, respectively. 

The designed non-inverting amplifier module has adjustable voltage gain, and this gain value can 

be changed between 2 and 22. The circuit diagram and appearance of the module have been given in 

Figure 3f. When the jumper J2 in the module is open circuit, standard non-inverting amplifier operation 

is performed. When J2 is short-circuited, a non-inverting LPF of which gain can be adjusted in the range 

of 2 - 22 and the cutoff frequencies between 15.4 Hz - 338.8 Hz is obtained. 

The DC drift remover module, like the DC coupler module, has been designed to suppress the DC 

levels occurred between units during measurements. While the DC coupler module operates on the 
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principle of high pass filter, the DC drift remover module operates as a low pass filter. The circuit 

diagram, block diagram and appearance of the designed DC drift remover module have been given in 

Figure 3g. As can be seen in the figure, it is seen that the input signal is first passed through a 0.22 Hz 

low pass filter. This signal obtained at the filter output can be described as the DC component in the 

input signal. Then, the DC component is removed from the input signal with the help of a differential 

amplifier, and it means that the DC component in the input signal is suppressed. 

Optical isolator module allows analog signals obtained in measurements to be carried by fiber 

optic cable by converting them to light. The circuit diagram and appearance of the designed module have 

been given in Figure 3h. As can be seen in this figure, it is understood that the brightness of the 720nm 

wavelength light source varies according to the input voltage of U1:B. For ±5 V voltage values applied 

from the module input, the current passing through the 720 nm light source varies in the range of 10 mA 

- 30 mA. Thus, the analog signal is converted into an optical signal. 

 
Figure 3. Circuit schematic diagrams of the designed modules a) Instrumentation amplifier, b) 2th order 

low pass filter, c) 4th order low pass filter, d) DC coupler, e) 50 Hz notch filter, f) Noninverting amplifier, 

g) DC drift remover, h) Optical transmitter 
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Microcontroller Unit 

The microcontroller unit collects and evaluates the analog signals obtained in the application 

development unit and performs the necessary operations for transmission to the computer via the front 

panel communication terminals. The circuit schematic diagrams of the designed microcontroller unit 

have been given in Figure 4. 

 
Figure 4. Circuit schematic diagrams of the designed microcontroller unit a) Optical isolator, b) Data 

format convertor 

The first function of the microcontroller unit is to optically isolate the analog signals obtained in 

the application development unit and the communication terminals from each other. All amplified 

biosignals coming from the application development unit to the microcontroller pass through an opto-

coupler based isolator. The circuit diagram of one of the opto-coupler based insulators designed for each 

channel has been given in Figure 4a. The optical isolator circuit is used together with the optical 

transmitter circuit, and the D1 light source in Figure 3h and the component J2 in Figure 4a are mutually 

connected. Thanks to this structure, an optically isolated analog signal is obtained at the CH0 output in 

Figure 4a. 

Another process performed in the microcontroller unit is to produce 10-bit digital data for each of 

the 16 analog channels. An Atmega2560 has been used in the microcontroller unit for this process. 

Analog data applied to the A0-A15 analog inputs of the Atmega2560 are converted into 10bit digital 

data. The digital conversion for which analog input will be determined by the address data applied to the 

B0-B3 digital inputs. 10-bit digital data obtained as a result of analog-to-digital conversion are 

transferred to A0-A7 and C0-C1 digital outputs of Atmega2560. There is a D type connector on the front 

panel of the system for 4-bit address input and 10-bit digital output. 

The last process performed in the microcontroller unit is to obtain the data formats needed for the 

data transfer channels. A circuit part designed for this process in the microcontroller unit has been given 

in Figure 4b. As can be seen in this figure, isolated analog data of all channels are applied to the analog 

inputs of Atmega2560. Analog data of each channel is converted to serial digital data format in the 

Atmega2560 microcontroller and transferred to the USB port and TX0 pin. Serial digital data obtained 

from the TX0 pin is then applied to three Schmitt Triggers. By using the "U1:A" Schmitt Trigger with a 

720 nm light source, the optical form of the serial data is obtained. "U1:C" output is directly transferred 

to the front panel of the system and provides electrical serial digital data. "U1:B" output is connected to 

a Bluetooth module. Thus, biosignal data can be transferred to a computer wired or wirelessly using the 

USB port or Bluetooth module. 
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User Interface Software 

A user interface software has been designed to transfer the data collected in the system to the 

computer. Visual C# has been preferred for the interface software and the developed interface has been 

named as "BioInstDAQ". BioInstDAQ consists of three menus: "Main Menu", "Configuration Menu" 

and "Measurements Menu" and their screenshot images have been given in Figure 5.  

 
Figure 5. User interface software menus (a) Main menu, (b) Configuration menu, (c) Measurements 

menu 

"Main Menu" is the start menu and is used for switching between these menus. “Configuration 

Menu” is used for determining the connection type, connection port, connection speed and measurement 

channels. The menu where signals belonging to all channels can be displayed and recorded is the 

Measurement Menu. In this menu, the signals for the channels can be displayed individually or 

collectively. The digital data of the obtained biological signals can be saved in the computer in text (.txt) 

format. This recorded data can be used in platforms such as C #, Excel, MATLAB and LabVIEW. 

RESULTS AND DISCUSSION 

After testing all channels of the designed system, experimental studies have been carried out with 

a group of researchers working biomedical engineering field to test the system functions.  In these 

studies, researchers carried out biosignal measurement obtained from different sources and have been 

asked to evaluate the signals they recorded. 

Measurement and Evaluation of EEG Signals 

In this experimental study called “Task 1”, the researchers were given the task of establishing the 

necessary configuration for measuring the EEG signals, and they were asked to record the EEG signals 

obtained as a result of the right-fist clenching movement. Then, they were asked to determine the 

moment of fist-clenching using signal processing techniques. The filtered resultant EEG signal obtained 

from the measurement channels and the MATLAB printout showing the detection of the fist-clenching 

moment are given in Figure 6. In this study, Ag-AgCl electrodes were used for the measurements, three 
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Laplacian derivations were preferred for the placement of the electrodes, and the center electrodes were 

placed at the C3, C4 and Cz points. The reference electrode was placed in the left mastoid and the ground 

electrode in the right mastoid. As a result of the measurements conducted via 15 channels, it is observed 

that the EEG signals can be measured successfully, the obtained EEG signals are compatible with those 

given in the literature, and the moment of fist-clenching can be detected. Results clearly show that the 

obtained signals can be used in HCI and BCI systems (Hu et al., 2015; Collins et al., 2016; Cavanagh et 

al., 2017; Gordleeva et al., 2020; Hooda et al., 2020). 

 
Figure 6. EEG signal and detection the moment of the fist-clenching for "Task 1" 

Measurement and Evaluation of EMG Signals 

In this experimental study called “Task 2”, the researchers were given the task of establishing the 

necessary configuration for measuring EMG signals, and they were asked to record the EMG signals 

obtained as a result of the left-fist clenching movement. Then, they were asked to determine the moment 

of fist-clenching with signal processing techniques. The EMG signal obtained from the measurement 

channel and the MATLAB printout showing the detection of the fist-clenching moment have been given 

in Figure 7. As a result of the measurements conducted via single channel, it is observed that EMG 

signals can be measured successfully. The obtained EMG signals are compatible with those given in the 

literature, and the fist clenching movement can be detected. Results clearly show that the obtained 

signals can be used in HCI systems (Hu et al., 2015; Farooq et al., 2019; Gordleeva et al., 2020). 

 
Figure 7. EMG signal and detection the moment of the fist-clenching in "Task 2" 

Measurement and Evaluation of EOG Signals 

In this experimental study called "Task 3", researchers were given the task of establishing the 

necessary configuration for measuring EOG signals, and they were asked to detect upward, downward, 

left and right movements of the eye using signal processing techniques. The EOG signals obtained from 

the measurement channels and the MATLAB printout showing the detection of eye movements have 

been given in Figure 8.  
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Figure 8. EOG signals and detection of the eye moments for "Task 3" 

Ag-AgCl electrodes were used for the measurements and as a result of the measurements 

conducted with these electrodes via two channels, it is observed that the EOG signals can be measured 

successfully, the obtained EOG signals are compatible with those given in the literature, and eye 

movements can be detected. Results clearly show that the obtained signals can be used in HCI systems 

(Usakli and Gurkan, 2010; Hu et al., 2015; Usakli et al., 2018; Martínez-Cerveró et al., 2020). 

Measurement and Evaluation of ECG Signals 

In this experimental study called "Task 4", the researchers were given the task of establishing the 

necessary configuration for measuring ECG signals, and they were asked to determine the heart rate per 

minute using signal processing techniques. The ECG signals obtained from the measurement channels 

and the MATLAB printout showing the heart rates have been given in Figure 9. Left foot was taken as 

reference in measurements, and right and left arm derivations were used. As a result of single channel 

measurements, it is observed that ECG signals can be measured successfully, heartbeats can be detected, 

and the obtained ECG signals are compatible with those given in the literature. Results clearly show that 

the obtained signals can be used in HCI systems (Kashou et al., 2020; Panganiban et al., 2021). 

 
Figure 9. ECG signals and detection of the heartbeats for "Task 4" 
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CONCLUSION 

In this study, a multi-channel biosignal measurement system has been designed and prototyped to 

be used in biomedical engineering schools and laboratories where HCI researches are conducted. 

Experimental studies have been conducted with a group of 6 researchers using this designed system. It 

has been shown that the measurement of basic biological signals such as EEG, EMG, EOG and ECG is 

possible by this system having 16-channels. Of the 16 channels the developed system has, 8 have been 

designed for EEG, 2 for EMG, 2 for EOG, 1 for ECG measurements, the remaining 3 have been reserved 

as backup channels. The designed system has the output types needed for the development of HCI, HMI 

and BCI systems. All channels have a configurable hardware structure with the designed development 

modules, and it is possible for develop HCI applications. The fact that biosignals recorded in 

experimental studies with a group of 6 researchers are compatible with those given in the literature shows 

that the system works correctly and fulfills its function. In addition, it is possible that many new studies 

can be published in the literature both by evaluating the relationships between biosignals obtained from 

different sources and by developing new HCI applications. 
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