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Enes Ata1,∗ , İ. Onur Kıymaz1

1Department of Mathematics, Faculty of Arts and Science, Kırşehir Ahi Evran University, 40100, Kırşehir, Turkey.
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Abstract. In this paper, we defined new two-fractional derivative operators with a Wright function in their
kernels. We also gave their Laplace and inverse Laplace transforms. Then, we presented some connections between
the new fractional operators. Furthermore, as examples, we obtained solutions of differential equations involving
new fractional operators. Finally, we examined the relations of the new fractional operators with the fractional
operators, which can be found in the literature.
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1. Introduction

Fractional order derivatives and integrals are generalizations of classical derivatives and integrals studied in detail
by Leibniz and Newton. What is meant to be expressed as a fractional-order derivative is actually any-order derivative.
The concepts of fractional order derivative and integral are as old as the concepts of integer derivative and integral, and
the expression of fractional derivative is first mentioned in letters between Leibniz and L’Hospital in 1695, as stated in
many sources [15, 20, 26, 27].

In the last decade, researchers have been doing a lot of work on fractional operators that have become popular. Very
recently, many studies on new fractional operators, which have various special functions in their kernels, can be found
in literature (see for example [1, 3, 4, 10–12, 14, 16–19, 21, 22, 24, 29, 30], and the references therein).

In the third section of this paper, we defined two new fractional derivatives in the sense of Riemann-Liouville and
Caputo fractional derivatives. These fractional derivatives includes a normalization function as a coefficient and a
Wright function in the kernel. In the same section, we also obtained the Laplece transformations of new fractional
derivatives. In the fourth section, we gave the solution of two differential equations using these fractional derivatives
as examples.
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https://orcid.org/0000-0001-6893-8693
https://orcid.org/0000-0003-2375-0202


New Fractional Operators Including Wright Function in Their Kernels 80

2. Preliminaries

In this section, we give relevant material which will be used throughout the paper.

Definition 2.1 (Gamma Function [5]). The gamma function is defined by

Γ(x) =
∫ ∞

0
tx−1 exp(−t)dt, (Re(x) > 0) .

The above integral for Γ(x) is sometimes called the Eulerian integral of the second kind. The gamma function has been
the focus of attention of many researchers and has been presented in the literature by making various generalizations
of this function. For some of these studies, see [2, 6–9, 13, 23, 25, 28].

Definition 2.2 (LT: Laplace Transform [15]). The LT of a function f (t) is defined as:

L { f (t)} = F(s) =
∫ ∞

0
f (t) exp(−st)dt,

(
Re(s) > 0

)
.

Clearly, the LT is a generalized integral and is calculated as follows:∫ ∞

0
f (t) exp(−st)dt = lim

A→∞

∫ A

0
f (t) exp(−st)dt.

The integral is convergent if the limit on the right hand side of the equation is present. In this case, the integral given
on the left has a certain value. Otherwise, the LT of f (t) does not exist.

Definition 2.3 (ILT: Inverse Laplace Transform [15]). The ILT of a function F(s) is defined as:

L
−1 {F(s)} = f (t) =

1
2πi

∫ c+i∞

c−i∞
F(s) exp(st)ds,

(
c > 0

)
.

Remark 2.4. Note that, L and L−1 are linear integral operators.

Definition 2.5 (Convolution [15]). The convolution of f (t) and g(t) is given by

f (t) ∗ g(t) =
∫ t

0
f (t − τ)g(τ)dτ. (2.1)

Theorem 2.6 (Convolution Theorem [15]). Let L { f (t)} = F(s) and L {g(t)} = G(s). Then, the following formulas
holds true:

L { f (t) ∗ g(t)} = F(s)G(s), (2.2)

and

L
−1 {F(s)G(s)} = f (t) ∗ g(t). (2.3)

Definition 2.7 (Riemann-Liouville and Caputo Fractional Derivatives [20]). Let Re(α) > 0 and n − 1 < Re(α) < n
for n ∈ N. Then, the Riemann-Liouville and Caputo fractional derivatives Dαa+y and CDαa+y of order α ∈ C are defined,
respectively: [

Dαa+y
]

(x) =
1

Γ(n − α)

(
d
dx

)n ∫ x

a
(x − t)n−α−1y(t)dt, (x > a) , (2.4)

and [
CDαa+y

]
(x) =

1
Γ(n − α)

∫ x

a
(x − t)n−α−1y(n)(t)dt, (x > a) . (2.5)

Definition 2.8 (Wright Function [20]). The Wright function is defined by the series

0Ψ1(α, β; z) =
∞∑

n=0

1
Γ(αn + β)

zn

n!
, (2.6)

where α, β ∈ C and Re(α) > −1.
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3. New Fractional Derivatives and Their Properties

In this section, we give definitions of two new fractional derivatives. In one of them, the classical derivative op-
erator is outside the integral as in the Riemann-Liouville fractional derivative, and in the other, it is included in the
integral as in the Caputo fractional derivative. Therefore, we call these operators as ΨRL and ΨC fractional derivatives,
respectively.

Definition 3.1. Let 0 < α, ε < 1, 0 ≤ a ≤ t ≤ x < ∞, γ > −1, β > 0, f ∈ H1(a, b). Then, the new fractional derivatives
of a function f defined respectively as:

[
ΨRLDα,β,γ,εa+ f

]
(x) :=

N(α, β)
ε Γ(β)

d
dx

∫ x

a
(x − t)β−1 f (t) 0Ψ1

(
γ, β;−

α(x − t)γ

ε

)
dt, (3.1)

and

[
ΨCDα,β,γ,εa+ f

]
(x) :=

N(α, β)
ε Γ(β)

∫ x

a
(x − t)β−1 f ′(t) 0Ψ1

(
γ, β;−

α(x − t)γ

ε

)
dt, (3.2)

where N(α, β) is the normalization function and N(0, 0) = N(1, 1) = 1.

If we take α = 0 and β = ε = 1 in the ΨRL (3.1) and ΨC (3.2) fractional operators, we obtain the following
equations respectively: [

ΨRLD0,1,γ,1
a+ f

]
(x) = N(0, 1) f (x),

and [
ΨCD0,1,γ,1

a+ f
]

(x) = N(0, 1)
(
f (x) − f (a)

)
.

Now, let us give a lemma that will be used frequently in further theorems.

Lemma 3.2. Let γ > −1, s > 0. Then,

L
{
xβ−1

0Ψ1
(
γ, β; λxγ

)}
= s−β exp

(
λ

sγ

)
. (3.3)

Proof. Using the definition of LT, we have

L
{
xβ−1

0Ψ1
(
γ, β; λxγ

)}
=

∞∑
n=0

1
Γ(γn + β)

λn

n!
L

{
xγn+β−1

}
=

∞∑
n=0

1
Γ(γn + β)

λn

n!
Γ(γn + β)

sγn+β

= s−β
∞∑

n=0

(
λ

sγ

)n 1
n!

= s−β exp
(
λ

sγ

)
. □

Theorem 3.3. Let 0 < α, ε < 1, γ > −1, β > 0, s > 0. Then,

L
{[
ΨRLDα,β,γ,ε0+ f

]
(x)

}
=

N(α, β)
ε Γ(β)

s1−βF(s) exp
(
−
α

εsγ

)
. (3.4)
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Proof. Using the definition of ΨRL fractional operator and considering Eqs. (2.2) and (3.3), we get

L
{[
ΨRLDα,β,γ,ε0+ f

]
(x)

}
=

N(α, β)
ε Γ(β)

L

{
d
dx

∫ x

0
(x − t)β−1 f (t) 0Ψ1

(
γ, β;−

α(x − t)γ

ε

)
dt

}
=

N(α, β)
ε Γ(β)

sL
{∫ x

0
(x − t)β−1 f (t) 0Ψ1

(
γ, β;−

α(x − t)γ

ε

)
dt

}
=

N(α, β)
ε Γ(β)

sF(s)L
{

xβ−1
0Ψ1

(
γ, β;−

αxγ

ε

)}
=

N(α, β)
ε Γ(β)

sF(s)
∞∑

n=0

1
Γ(γn + β)

(
−
α

ε

)n 1
n!
L

{
xγn+β−1

}
=

N(α, β)
ε Γ(β)

sF(s)
∞∑

n=0

1
Γ(γn + β)

(
−
α

ε

)n 1
n!
Γ(γn + β)

sγn+β

=
N(α, β)
ε Γ(β)

s1−βF(s)
∞∑

n=0

(
−
α

εsγ

)n 1
n!

=
N(α, β)
ε Γ(β)

s1−βF(s) exp
(
−
α

εsγ

)
. □

Theorem 3.4. Let 0 < α, ε < 1, γ > −1, β > 0, s > 0. Then,

L
{[
ΨCDα,β,γ,ε0+ f

]
(x)

}
=

N(α, β)
ε Γ(β)

(
sF(s) − f (0)

)
s−β exp

(
−
α

εsγ

)
. (3.5)

Proof. Using the definition of ΨC fractional operator and considering Eqs. (2.2) and (3.3), we obtain

L
{[
ΨCDα,β,γ,ε0+ f

]
(x)

}
=

N(α, β)
ε Γ(β)

L

{∫ x

0
(x − t)β−1 f ′(t) 0Ψ1

(
γ, β;−

α(x − t)γ

ε

)
dt

}
=

N(α, β)
ε Γ(β)

L
{
f ′(t)

}
L

{
xβ−1

0Ψ1

(
γ, β;−

αxγ

ε

)}
=

N(α, β)
ε Γ(β)

(
sF(s) − f (0)

) ∞∑
n=0

1
Γ(γn + β)

(
−
α

ε

)n 1
n!
L

{
xγn+β−1

}
=

N(α, β)
ε Γ(β)

(
sF(s) − f (0)

) ∞∑
n=0

1
Γ(γn + β)

(
−
α

ε

)n 1
n!
Γ(γn + β)

sγn+β

=
N(α, β)
ε Γ(β)

(
sF(s) − f (0)

)
s−β

∞∑
n=0

(
−
α

εsγ

)n 1
n!

=
N(α, β)
ε Γ(β)

(
sF(s) − f (0)

)
s−β exp

(
−
α

εsγ

)
. □

Theorem 3.5. Let 0 < α, ε < 1, x ≥ 0, γ > −1, β > 0. Then,[
ΨCDα,β,γ,ε0+ f

]
(x) =

[
ΨRLDα,β,γ,ε0+ f

]
(x) −

N(α, β) f (0)
ε Γ(β)

xβ−1
0Ψ1

(
γ, β;−

αxγ

ε

)
.

Proof. Using Eq. (3.5) and considering Eq. (3.4), we have

L
{[
ΨCDα,β,γ,ε0+ f

]
(x)

}
=

N(α, β)
ε Γ(β)

(
sF(s) − f (0)

)
s−β exp

(
−
α

εsγ

)
=

N(α, β)
ε Γ(β)

s1−βF(s) exp
(
−
α

εsγ

)
−

N(α, β) f (0)
ε Γ(β)

s−β exp
(
−
α

εsγ

)
= L

{[
ΨRLDα,β,γ,ε0+ f

]
(x)

}
−

N(α, β) f (0)
ε Γ(β)

s−β exp
(
−
α

εsγ

)
. (3.6)
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Application of the ILT to Eq. (3.6) gives[
ΨCDα,β,γ,ε0+ f

]
(x) =

[
ΨRLDα,β,γ,ε0+ f

]
(x) −

N(α, β) f (0)
ε Γ(β)

L
−1

{
s−β exp

(
−
α

εsγ

)}
. (3.7)

Taking λ = −α
ε

in Eq. (3.3) and applying the ILT to both sides, and then using in Eq. (3.7), we obtain[
ΨCDα,β,γ,ε0+ f

]
(x) =

[
ΨRLDα,β,γ,ε0+ f

]
(x) −

N(α, β) f (0)
ε Γ(β)

xβ−1
0Ψ1

(
γ, β;−

αxγ

ε

)
, (3.8)

which completes the proof. □

Remark 3.6. If we take f (0) = 0 in Eq. (3.8), we get that the ΨRL and ΨC fractional operators are equal.

Theorem 3.7. Let 0 < α, ε < 1, x ≥ 0, γ > −1, β > 0. Then, the solution of fractional differential equation[
ΨRLDα,β,γ,ε0+ f

]
(x) = g(x)

can be found as

f (x) =
ε Γ(β)
N(α, β)

∫ x

0
g(t)(x − t)−β 0Ψ1

(
γ, 1 − β;

α(x − t)γ

ε

)
dt. (3.9)

Proof. Application of the LT to the fractional differential equation gives

G(s) =
N(α, β)
ε Γ(β)

s1−βF(s) exp
(
−
α

εsγ

)
.

Then,

F(s) =
ε Γ(β)
N(α, β)

G(s)sβ−1 exp
(
α

εsγ

)
. (3.10)

Taking H(s) = sβ−1 exp
(
α
εsγ

)
in Eq. (3.10), we obtain

F(s) =
ε Γ(β)
N(α, β)

G(s)H(s). (3.11)

Application of the ILT to Eq. (3.11) gives

f (x) =
ε Γ(β)
N(α, β)

L
−1 {G(s)H(s)} . (3.12)

Writing β→ 1 − β and λ→ α
ε

in Eq. (3.3), we have

L

{
x−β0Ψ1

(
γ, 1 − β;

αxγ

ε

)}
= sβ−1 exp

(
α

εsγ

)
. (3.13)

Application of the ILT to Eq. (3.13) gives

x−β0Ψ1

(
γ, 1 − β;

αxγ

ε

)
= L−1

{
sβ−1 exp

(
α

εsγ

)}
= L−1 {H(s)}
= h(x). (3.14)

Using Eqs. (2.3) and (2.1) in Eq. (3.12) and considering Eq. (3.14), we have

f (x) =
ε Γ(β)
N(α, β)

(
g(x) ∗ h(x)

)
=
ε Γ(β)
N(α, β)

∫ x

0
g(t)h(x − t)dt

=
ε Γ(β)
N(α, β)

∫ x

0
g(t)(x − t)−β0Ψ1

(
γ, 1 − β;

α(x − t)γ

ε

)
dt. □
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Theorem 3.8. Let 0 < α, ε < 1, x ≥ 0, γ > −1, β > 0. Then, the solution of fractional differential equation[
ΨCDα,β,γ,ε0+ f

]
(x) = g(x)

can be found as

f (x) =
ε Γ(β)
N(α, β)

∫ x

0
g(t)(x − t)−β 0Ψ1

(
γ, 1 − β;

α(x − t)γ

ε

)
dt + f (0). (3.15)

Proof. Application of the LT to the fractional differential equation gives

G(s) =
N(α, β)
ε Γ(β)

(
sF(s) − f (0)

)
s−β exp

(
−
α

εsγ

)
=

N(α, β)
ε Γ(β)

s1−β exp
(
−
α

εsγ

)
F(s) −

N(α, β)
ε Γ(β)

s−β f (0) exp
(
−
α

εsγ

)
.

Then,

F(s) =
ε Γ(β)
N(α, β)

G(s)sβ−1 exp
(
α

εsγ

)
+

f (0)
s
. (3.16)

Application of the ILT to Eq. (3.16) gives

L
−1 {F(s)} =

ε Γ(β)
N(α, β)

L
−1

{
G(s)sβ−1 exp

(
α

εsγ

)}
+ f (0)L−1

{
1
s

}
. (3.17)

Taking H(s) = sβ−1 exp
(
α
εsγ

)
and using Eqs. (2.3) and (2.1) in Eq. (3.17), we have

f (x) =
ε Γ(β)
N(α, β)

(
g(x) ∗ h(x)

)
+ f (0)

=
ε Γ(β)
N(α, β)

∫ x

0
g(t)h(x − t)dt + f (0)

=
ε Γ(β)
N(α, β)

∫ x

0
g(t)(x − t)−β 0Ψ1

(
γ, 1 − β;

α(x − t)γ

ε

)
dt + f (0). □

Remark 3.9. If we take f (0) = 0 in Eq. (3.15), we get that Eqs. (3.9) and (3.15) are equal.

Corollary 3.10. Let 0 < α, ε < 1, x ≥ 0, γ > −1, β > 0. Then, the functions f1(x) = 0 and f2(x) = f (0) are the
solutions of the following differential equations, respectively:[

ΨRLDα,β,γ,ε0+ f1
]

(x) = 0,

and [
ΨCDα,β,γ,ε0+ f2

]
(x) = 0.

Proof. The desired results are easily obtained by choosing g(x) = 0 in Eqs. (3.9) and (3.15). □

Theorem 3.11. Let g be a differentiable function and the integral
∫ x

0 g(t)dt is valid. Then, the following equation holds
true for 0 < α, β, ε < 1, x ≥ 0, γ > −1:∫ x

0

[
ΨRLD−α,1−β,γ,ε0+ g

]
(t)dt =

[
ΨCD−α,1−β,γ,ε0+

∫ x

0
g(t)dt

]
(x). (3.18)

Proof. Rewriting Eq. (3.9), we have

f (x) =
ε Γ(β)
N(α, β)

∫ x

0
g(t)(x − t)−β0Ψ1

(
γ, 1 − β;

α(x − t)γ

ε

)
dt. (3.19)

Taking the differential of Eq. (3.19), we get

f ′(x) =
ε Γ(β)
N(α, β)

d
dx

∫ x

0
g(t)(x − t)−β0Ψ1

(
γ, 1 − β;

α(x − t)γ

ε

)
dt

=
ε2 Γ(β) Γ(1 − β)

N(α, β)N(−α, 1 − β)

[
ΨRLD−α,1−β,γ,ε0+ g

]
(x). (3.20)
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Taking the integral of Eq. (3.20) and considering the formula
∫ x

0 f ′(t)dt = f (x) − f (0), we obtain

f (x) =
ε2 Γ(β) Γ(1 − β)

N(α, β)N(−α, 1 − β)

∫ x

0

[
ΨRLD−α,1−β,γ,ε0+ g

]
(t)dt + f (0). (3.21)

Let v(x) =
∫ x

0 g(t)dt and v′(x) = g(x). Then, substituting in Eq. (3.15), we have

f (x) =
ε Γ(β)
N(α, β)

∫ x

0
v′(t)(x − t)−β0Ψ1

(
γ, 1 − β;

α(x − t)γ

ε

)
dt + f (0)

=
ε2 Γ(β) Γ(1 − β)

N(α, β)N(−α, 1 − β)

[
ΨCD−α,1−β,γ,ε0+ v

]
(x) + f (0)

=
ε2 Γ(β) Γ(1 − β)

N(α, β)N(−α, 1 − β)

[
ΨCD−α,1−β,γ,ε0+

∫ x

0
g(t)dt

]
(x) + f (0). (3.22)

Considering Eqs. (3.21) and (3.22) together, we get∫ x

0

[
ΨRLD−α,1−β,γ,ε0+ g

]
(t)dt =

[
ΨCD−α,1−β,γ,ε0+

∫ x

0
g(t)dt

]
(x). □

Theorem 3.12. Let 0 < α, β, ε < 1, x ≥ 0, γ > −1. Then,∫ x

0

[
ΨRLD−α,1−β,γ,ε0+ g′

]
(t)dt =

[
ΨCD−α,1−β,γ,ε0+ g

]
(x).

Proof. The desired result is obtained substituting g′ for g in Eq. (3.18). □

4. Solutions of Differential Equations Involving New Fractional Derivative Operators

In this section, as examples, we find the solution of two fractional differential equations, for both of the fractional
operators. The theorems given above will be used to obtain the solutions of differential equations.

Example 4.1. Let γ, ρ > −1, 0 < α, ε < 1, β > 0, x ≥ 0. Assume that, the fractional differential equation[
ΨRLDα,β,γ,ε0+ f

]
(x) = xρ

is given. Taking g(t) = tρ in Eq. (3.9), we have

f (x) =
ε Γ(β)
N(α, β)

∫ x

0
tρ(x − t)−β0Ψ1

(
γ, 1 − β;

α(x − t)γ

ε

)
dt. (4.1)

Application of the LT to Eq. (4.1) gives

L { f (x)} =
ε Γ(β)
N(α, β)

L {xρ}L
{

x−β0Ψ1

(
γ, 1 − β;

αxγ

ε

)}
=
ε Γ(β)
N(α, β)

Γ(ρ + 1)
sρ+1 sβ−1 exp

(
α

εsγ

)
=
ε Γ(β) Γ(ρ + 1)

N(α, β)
sβ−ρ−2 exp

(
α

εsγ

)
. (4.2)

Application of the ILT to Eq. (4.2) gives

f (x) =
ε Γ(β) Γ(ρ + 1)

N(α, β)
L
−1

{
sβ−ρ−2 exp

(
α

εsγ

)}
=
ε Γ(β) Γ(ρ + 1)

N(α, β)
xρ−β+1

0Ψ1

(
γ, ρ − β + 2;

αxγ

ε

)
. (4.3)

Remark 4.2. If we take ρ = β in Eq. (4.3), we have

f (x) =
εx Γ(β) Γ(β + 1)

N(α, β) 0Ψ1

(
γ, 2;

αxγ

ε

)
.
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Example 4.3. Let γ, ρ > −1, 0 < α, ε < 1, β > 0, x ≥ 0. We consider the fractional differential equation[
ΨCDα,β,γ,ε0+ f

]
(x) = xρ,

with the initial condition

f (0) = c,

where c is constant. Taking g(t) = tρ in Eq. (3.15), we get

f (x) =
ε Γ(β)
N(α, β)

∫ x

0
tρ(x − t)−β0Ψ1

(
γ, 1 − β;

α(x − t)γ

ε

)
dt + f (0). (4.4)

Application of the LT to Eq. (4.4) gives

L { f (x)} =
ε Γ(β)
N(α, β)

L {xρ}L
{

x−β0Ψ1

(
γ, 1 − β;

αxγ

ε

)}
+ L {c}

=
ε Γ(β)
N(α, β)

Γ(ρ + 1)
sρ+1 sβ−1 exp

(
α

εsγ

)
+

c
s
. (4.5)

Application of the ILT to Eq. (4.5) gives

f (x) =
ε Γ(β) Γ(ρ + 1)

N(α, β)
L
−1

{
sβ−ρ−2 exp

(
α

εsγ

)}
+ L−1

{c
s

}
=
ε Γ(β) Γ(ρ + 1)

N(α, β)
xρ−β+1

0Ψ1

(
γ, ρ − β + 2;

αxγ

ε

)
+ c. (4.6)

Remark 4.4. If we take ρ = β in Eq. (4.6), we get

f (x) =
εx Γ(β) Γ(β + 1)

N(α, β) 0Ψ1

(
γ, 2;

αxγ

ε

)
+ c.

5. Conclusion

In this paper, we defined fractional derivatives operators ΨRL (3.1), ΨC (3.2), which have a Wright function (2.6)
in their kernels. Since the Wright function has a more general form then most of the special functions, many fractional
derivatives becomes the special cases of the fractional derivatives introduced here.

Some of the popular definitions of fractional derivatives, which recently defined, are given below.

Caputo-Fabrizio [12]: [
D (α)

x f
]

(x) =
M(α)

(1 − α)

∫ x

a
f ′(τ) exp

(
−
α(x − τ)

1 − α

)
dτ. (5.1)

Losada-Nieto [21]: [
CFDα f

]
(x) =

(2 − α)M(α)
2(1 − α)

∫ x

0
f ′(τ) exp

(
−
α(x − τ)

1 − α

)
dτ. (5.2)

Yang-Srivastava-Machado [30]:[
D(α)

a+ f
]

(x) =
R(α)

(1 − α)
d
dx

∫ x

a
f (τ) exp

(
−
α(x − τ)

1 − α

)
dτ. (5.3)

Atangana-Baleanu [10]: [
ABR

aDαx f
]

(x) =
B(α)

(1 − α)
d
dx

∫ x

a
f (τ)Eα

(
−
α(x − τ)α

1 − α

)
dτ, (5.4)

[
ABC

aDαx f
]

(x) =
B(α)

(1 − α)

∫ x

a
f ′(τ)Eα

(
−
α(x − τ)α

1 − α

)
dτ. (5.5)
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Gomez-Atangana [16]:[
GAR

aDα,γx f
]

(x) =
M(α)

(n − α)Γ(n − γ)
dn

dxn

∫ x

a
f (τ)(x − τ)n−γ−1 exp

(
−
α(x − τ)

n − α

)
dτ, (5.6)

[
GAC

aDα,γx f
]

(x) =
M(α)

(n − α)Γ(n − γ)

∫ x

a
f (n)(τ)(x − τ)n−γ−1 exp

(
−
α(x − τ)

n − α

)
dτ. (5.7)

İlhan [17]: [
FRDα,β,γa+ f

]
(x) =

N(α, β)
Γ(β)(1 − α)

d
dx

∫ x

a
f (τ)(x − τ)β−1

1F1

(
γ; β;−

α(x − τ)
1 − α

)
dτ, (5.8)

[
FCDα,β,γa+ f

]
(x) =

N(α, β)
Γ(β)(1 − α)

∫ x

a
f ′(τ)(x − τ)β−1

1F1

(
γ; β;−

α(x − τ)
1 − α

)
dτ. (5.9)

We present the relations between ΨRL and ΨC fractional operators and the fractional operators given above, in
Table 1.

Table 1. Relationships of Fractional Operators

Riemann-Liouville (2.4)
[
ΨRLD0,β,γ,ε

a+ f
]

(x)
(n=1)
=

N(0,β)
ε Γ(β)

[
D1−β

a+ f
]

(x)

Caputo (2.5)
[
ΨCD0,β,γ,ε

a+ f
]

(x)
(n=1)
=

N(0,β)
ε Γ(β)

[
CD1−β

a+ f
]

(x)

Caputo-Fabrizio (5.1)
[
ΨC D0,1,γ,ε

a+ f
]

(x) = N(0,1)
εM(0)

[
D (0)

x f
]

(x)

Losada-Nieto (5.2)
[
ΨCD0,1,γ,ε

0 f
]

(x) = N(0,1)
εM(0)

[
CFD0 f

]
(x)

Yang and et. al. (5.3)
[
ΨRLD0,1,γ,ε

a+ f
]

(x) = N(0,1)
εR(0)

[
D(0)

a+ f
]

(x)

Atangana-Baleanu (5.4)
[
ΨRLD0,1,γ,ε

a+ f
]

(x) = N(0,1)
εB(0)

[
ABR

aD0
x f

]
(x)

Atangana-Baleanu (5.5)
[
ΨCD0,1,γ,ε

a+ f
]

(x) = N(0,1)
εB(0)

[
ABC

aD0
x f

]
(x)

Gomez-Atangana (5.6)
[
ΨRLD0,β,γ,ε

a+ f
]

(x)
(n=1)
=

N(0,β)
εΓ(β)M(0)

[
GAR

aD0,1−β
x f

]
(x)

Gomez-Atangana (5.7)
[
ΨCD0,β,γ,ε

a+ f
]

(x)
(n=1)
=

N(0,β)
εΓ(β)M(0)

[
GAC

aD0,1−β
x f

]
(x)

İlhan (5.8)
[
ΨRLD0,β,γ,ε

a+ f
]

(x) = 1
εΓ(β)

[
FRD0,β,γ

a+ f
]

(x)

İlhan (5.9)
[
ΨCD0,β,γ,ε

a+ f
]

(x) = 1
εΓ(β)

[
FCD0,β,γ

a+ f
]

(x)
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