
ISSN: 2148-9173 Vol: 9 Issue:3 September 2022

 

  

 

September 2022)

c oc.  
  

 
 

 Assist. Prof. Dr. Serkan Kükrer (TR), Assoc. Prof. Dr. Maged 
Marghany (MY), Prof. Dr. Micheal Meadows (ZA), Prof. Dr. Masafumi Nakagawa (JP), Prof. Dr. Burcu Özsoy, 

Prof. Dr. Hasan Özdemir (TR), Prof. Dr. Chyssy Potsiou (GR), Prof. Dr. Erol Sarı (TR), Prof. Dr. Maria Paradiso (IT), 
Prof. Dr. Petros Patias (GR), Prof. Dr. Barış Salihoğlu (TR), Assist. Prof. Dr. Başak Savun-Hekimoğlu (TR), Prof. Dr. 
Elif Sertel, (TR), Prof. Dr. Füsun Balık Şanlı (TR), Dr. Duygu Ülker (TR), Prof. Dr. Seyfettin Taş (TR), Assoc. Prof. 

Dr. Ömer Suat Taşkın (TR), Assist. Prof. Dr. Tuba Ünsal (TR), Assist. Prof. Dr. Sibel Zeki (TR)

Evaluation of Rainfall Extreme Characteristics in Dodoma Urban, a Central Part of 
Tanzania

Ombeni J. MDEE



165

Evaluation of Rainfall Extreme Characteristics in Dodoma Urban, a Central Part of 

Tanzania 

Ombeni J. Mdee 

College of Earth Sciences and Engineering, University of Dodoma, P.O Box 259, Dodoma, Tanzania. 

Received 24.09.2021  
E-mail: ombenijohn@gmail.com Accepted 12.03.2022 

Abstract 

The occurrence of low rainfall in semi-arid areas including Dodoma urban leads to a shortage of water. This paper addresses the 

evaluation of rainfall extreme characteristics by analyzing the variability indices, probability distribution and return periods. The 

daily rainfall index shown the magnitude of rainfall varied unpredictably within annual wetted days. The study area experienced a 

period of one to two months per year with extreme seasonality as evaluated using the rainfall seasonality index. The standardized 

anomaly index indicated the equivalent of 60% of 20 years experienced the dried years with unpredicted occurrence. The Weibull 

distribution was selected out of Fifteen probability functions when ranked using Kolmogorov–Smirnov and Anderson-Darling tests. 

The return periods of rainfall had an average rainfall of 576 mm and were predicted using seventeen plotting position methods and 

Weibull distribution. Therefore, the magnitude of rainfall in the semi-arid areas would not easily be estimated but using more than 

one technique would improve the evaluation of rainfall characteristics. 

Keywords: Rainfall variability, probability distribution, return periods, plotting position methods, rainfall indices 

Introduction 

The widespread of droughts in some parts of Africa is 

caused by uneven distribution or absence of rainfall. The 

drought occurrence is due to the uneven distribution of 

rainfall and temperature over a given time and space 

(Abdalla et al., 2021; USGS, 2021; Twisa and 

Buchroithne, 2019; Markovic, et al, 2012). The drought 

is the situation when crops experienced moisture 

deficiency, a prolonged period of rainfall shortage, 

deficiency of water supply or decreased the stream flow 

(USGS, 2021). The understanding of the rainfall 

variability is very important during designs of hydraulic 

structures, agricultural planning, river controls, and 

water supply facilities. However, the increase of extreme 

events of high rainfall intensity caused excessive 

flooding (Sharma and Singh, 2019; Menteş et al., 2019; 

Moazzam et al., 2018). The flooding destructs the 

buildings, roads, and planted crops resulted to land 

erosion. 

The seasonal variation of rainfall affects the socio-

economic activities in urban areas, industrialization, and 

agricultural activities (Vieira, et al, 2018). The rainfall 

intensity is highly varied in space and time, especially in 

semi-arid areas. Critchley et al (Critchley, et al, 1991) 

indicated the rainfall in semi-arid areas was 

characterized with short duration, limited areal extent, 

and relatively high intensity. De Paola et al (2014) 

indicated irregular rainfall intensity with the increased 

frequency that occurred in the semi-arid areas. Different 

studies used several daily rainfall indices like principal 

component analysis (Joshi, et al, 2014), standardized 

precipitation index (WMO, 2012); 95th percentile 

(Dunkerley, 2019); 99th and 99.9th percentile 

(Alexander, et al., 2019) to evaluate the rainfall 

variability. The trend increased or decreased of rainfall 

was analyzed using the Mann-Kendall test with the sen’s 

slope estimate i.e., the sen’s slope of greater than 1 

indicates an upward trend in a time series; otherwise, the 

data presents a downward trend (Twisa and Buchroithne, 

2019). 

The rainfall varied from time to time when rained and 

analyzed daily, monthly, annually, and seasonally based 

on the different probability functions (Mafuru and 

Guirong, 2018). There are many probability functions 

used to analyze the rainfall distribution (Sharma and 

Singh, 2010). Zhan et al (2018) used the modified 

Weibull distribution called Impulse Weibull distribution 

function to determine the extreme events and annual 

precipitation. Kumar and Bhardwaj (2015) used three 

probability distribution functions such as Log-normal, 

Gumbel, and Log-Pearson type-III. Using the Chi-square 

technique helped to select the best fit probability 

distribution function. Alonge and Afullo (2012) used 

rain drop-size distribution with the method of moments 

in Weibull distribution to analyze the rainfall frequency 

distribution. 

The Generalized Extreme Value, Burr, and Weibull 

distribution functions provide the best fit to both annual 

and seasonal maximum precipitation than exponential 

and generalized Pareto 2 distributions (Li, et al, 2015). 

The mixed exponential, Gamma, Weibull, Log-normal 

distribution functions were compared using Akaike 
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Information Criterion (AIC) (Suhaila, et al, 2011). 

Sasireka et al (2019) used AIC and Bayesian Information 

Criteria to select the best-fit distribution functions 

between Gumbel and Gamma distribution functions. But, 

Vieira et al (2018) indicated Gamma and Weibull 

distribution functions were most suitable for 

probabilistic fitting compared with log-normal 

distribution function using the AIC test.  

The Gamma and Weibull distribution functions were 

more suitable to analyze monsoon rainfall inter-monsoon 

rainfall, respectively (Syafrina, et al, 2018). Husak et al 

(2006) indicated the Gamma distribution function is 

suitable to analyze the rainfall distribution compared 

with the Weibull distribution function using 

Kolmogorov–Smirnov (KS) test. Sunusi (2017) used the 

maximum likelihood method to estimate the Weibull 

parameters of the Weibull distribution function and the 

power-law function indicated the same general 

characteristics. The mixed exponential distribution 

function was the best fit compared with the Gamma, 

Weibull, Log-normal, and exponential distribution 

functions using the Chi-square test and Anderson-

Darling (AD) test (Kist and Filho, 2015). Marques et al 

(2014) used the method of moments, maximum 

likelihood, and L-moments to estimate the Weibull 

parameters for the Weibull distribution function and 

compared with GEV, Gumbel, and Gamma distribution 

functions to study the rainfall characteristics. Al-Suhili 

and Khanbilvardi (2014) used three tests such as t-test, 

F-test, and KS-test to measure the performance of 

Gamma, Weibull, and exponential distribution functions 

on the rainfall data, indicated the three distribution 

functions produce the same rainfall frequency. 

Furthermore, a return period is an average time for 

extreme events of rainfall to come again, i.e., quantifies 

the frequency of rainfall events to occur with the same 

magnitude. In other means, the return period defines the 

likelihood of rainfall events to occur in the future. The 

return period (T) of any rainfall event (r) is the reciprocal 

of the probability of exceedance (Critchley, et al, 1991; 

Nwaogazie and Sam, 2019; Arvind, et al, 2017). The 

probability of exceedance was estimated using plotting 

position methods presented in Table 1. Unfortunately, 

the existing plotting position formulas are originated 

from Equation (1) and do not provide outstanding 

performance in any condition (Erto and Lepore, 2014; 

Yahaya, et al, 2012; Portela and Delgado, 2009). 

Therefore, this paper aims to assess the shortage of 

rainfall variability, propose suitable probability 

distribution functions, and conducting an assessment of 

return periods. 

Study area and data sources 

The study is conducted in the Dodoma region located in 

the central part of Tanzania characterized by a semi-arid 

climate, warm to hot temperature with an average 

elevation of 1130 m above sea level. Figure 1 shows the 

location of the study area, rainfall station, and rapid 

construction areas with the location of latitude of 6.170
o
 

S and longitude of 35.753
o
 E. The rainfall intensity and 

frequency vary widely in this region like other semi-arid 

areas. The area receives a single rainfall season between 

October and May ranging between 289 to 1117 mm/year 

with the highest in December and January. 

Table 1. Plotting position methods for estimating probabilities of exceedance adopted from different literature sources 
S/N Probability of exceedance 

*100% 
Name of investigator Sources 

1 P(x𝑟) =
r

N
California State Department 

(Dirk, 2013) 

2 P(x𝑟) = (r − 0.5) N⁄  Hazen 

3 P(x𝑟) = r (N + 1)⁄ Weibull 

4 P(x𝑟) = (r − 0.375) (N + 0.25)⁄  Sevruk and Geiger 

5 P(x𝑟) = (r − 0.44) (N + 0.12)⁄  Gringorten 

6 P(x𝑟) = (r − 0.4) (N + 0.2)⁄  Cunnane (Saul, 1996) 

7 

P(x𝑟) = {

r − 0.3175

N + 0.365
, r ≤ N − 1

0.5^(1
N⁄ ), r = N

Filliben (Olivera and 
Heard, 2018) 

8 P(x𝑟) = (r − 0.3) (N + 0.4)⁄  Chegodayev (Kumar and 

Gaddada, 
2015) 

9 P(x𝑟) = (r − 0.25) (N + 0.5)⁄  Adamowski 

(Arvind, et al, 
2017) 

10 P(x𝑟) = (3r − 1) (3N + 1)⁄  Tukey 

11 P(x𝑟) = (r − 0.31) (N + 0.38)⁄  Beard  

12 P(x𝑟) = (r + 0.5) (N + 1)⁄ Hirsch (Yahaya, et al, 

2012) 13 P(x𝑟) = (r − 0.5) (N + 0.25)⁄  IEC56 

14 P(x𝑟) = (r − 0.35) N⁄  Landwehr 

15 P(x𝑟) = (r + 1) (N + 2)⁄  Laplace 

16 P(x𝑟) = (r − 0.4) N⁄  McClung 

17 P(x𝑟) = (r − 0.35) (N + 0.25)⁄  Blom 

P(x𝑟) =
r − A

N + 1 − 2A
 (1) 

Where A is a constant between 0 and 1 and N is a sample 

size of rainfall data. 

The average temperature of Dodoma urban is 24.7° C 

with the hot season started from October to December 

and the cool season started from June to August. The 

population growth has rapidly increased due to the 

development of buildings, roads, railways, and 

agriculture activities. The growth of development was 

the effect of shifting national capital from Dar es Salaam 
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to Dodoma region since the year 2016. The daily rainfall 

data of two decades was collected at the Tanzania 

Meteorological Agency (TMA), central office-Dodoma 

region, Tanzania from the year 2000 to 2020 to evaluate 

the daily variability and probability distribution. Also, 

monthly scale rainfall data were collected from Hamisi 

(2013) between the years 1961 and 2000. Then, return 

periods of rainfall were evaluated for six decades 

between the years 1961 and 2020.  

Fig. 1. Map of study area showing the Dodoma urban area, rainfall station, and current construction areas (photo taken 

from Google Earth exemplified with Tanzania map) 

Material and methods 

Methods used to evaluate rainfall variability 

The rainfall variability was assessed using six statistical 

methods including mean, standard deviation, 

standardized anomaly index, daily rainfall, seasonality, 

and cumulative rainfall departure indices. The mean 

value shows the central tendency and location of the 

peak, calculated as expressed in Equation (2). Standard 

deviation (σ) measures the variability of rainfall data 

from the average value as expressed in Equation (3).  

μ =
1

 N
∑ Ri

N

i=1

 (2) 

σ =√
1

N-1
∑(R-μ)2

N

i=1

 (3) 

Where N denotes the count of rainfall data recorded 

from i = 1, 2,3….N. The ratio of standard deviation and 

mean value is called the coefficient of variation. The 

normal distribution function is characterized by average 

and standard deviation. The normal distribution is very 

perfect when plotted symmetrically on both sides of the 

mean value in the normal line. The Z-score or 

standardized anomaly index (SAI) tested the normality 

of annual rainfall distribution as expressed in Equation 

(4). When SAI = 0, means the annual rainfall is equal to 

the mean value for all years, SAI > 0  means above 

normal distribution and wetted years, and SAI < 0 means 

below normal rainfall distribution and dried years 

(Kisaka, et al, 2015-2018; Nouaceur and Mursrescu, 

2016). 

SAI = 
R- μ

σ
  (4) 

The magnitude and frequency of extreme rainfall events 

for daily rainfall were calculated using the daily rainfall 

index (DRI) as expressed in Equation (5) (Zengeni, et al, 

2016). 

DRI =
R̅

Tw

 (5) 

Where 𝑇𝑤 is the total number of wet days in each year,

and �̅� is the annual rainfall in the same year. Rainfall 

seasonality refers to patterns of increased rainfall at a 

given location. The rainfall seasonality index (RSI) was 

estimated using Equation (6) for certain months of each 

year (Elzopy, et al, 2020). When RSI = 0, indicates 

rainfall spread throughout the year, RSI between 0.6 and 

0.79, indicates seasonal and RSI > 1.2 rainfall occurs in 

1-2 months, extreme seasonality (Sharma and Singh, 

2019). 

RSI = 
1

R̅
∑ |Ri-

R̅

12
|

12

i=0

 (6) 

Methods used to rank probability distribution 

functions 

Several scholars have been utilized many probability 

distribution functions as described in Sharma and Singh 

(2010). About fifteen (15) probability distribution 

functions were selected to analyze daily rainfall data 

from November to April for 20 years. This study used 

the interpolated input data of continuous shape 

parameter, continuous scale parameter, continuous 

location parameter, continuous inverse scale parameter, 

and degree of freedom from the EasyFit 5.0 software to 
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evaluate the distribution functions. Also, the distribution 

functions were ranked using the Kolmogorov-Smirnov 

(Moccia et al., 20212021) and Anderson-Darling (AD) 

tests (Marques, et al, 2014). The EasyFit 5.0 software 

consists of more than 55 coded probability distribution 

functions and helping to reduce the time for manual 

analysis by about 70 to 95% (MathWave Technologies, 

2021). 

Method used to estimate return period of rainfall 

The return period was estimated as the reciprocal of the 

plotting position methods. The plotting position methods 

were ranked using R-squared, AD test, and Root Mean 

Square Error (RMSE). Then, the selected plotting 

position methods were taken to estimate the return 

periods. The Weibull distribution function is normally 

used to analyze the rainfall to the areas of rain scarcity, 

high extreme events, and temporal heterogeneity 

(Olivera and Heard, 2018). Considering the cumulative 

Weibull function as expressed in Equation (7), and equal 

to the probability of exceedance (Table 1); then 

introduced natural logarithm to deduce the Weibull scale 

and shape parameters, α and β respectively as expressed 

in Equation (8). The α and β were used to determine the 

average Weibull rainfall based on the plotting position 

methods as expressed in Equation 9. 

CDF(𝑥) = P(𝑥r)  = 1 − e
−(

𝑥
β

)
α

 (7) 

ln[−ln(1 − CDF(𝑥))] = αln(𝑥) − αln(β)  (8) 

The Weibull two-parameter is determined when 

plotting 𝑙𝑛⌈−𝑙𝑛(1 − 𝐶𝐷𝐹(𝑥))⌉ against 𝑙𝑛(𝑥) and 

estimated slope of the trendline as equal to the α 

parameter and y-intercept is equal to the term,−𝛼𝑙𝑛(𝛽), 

i.e., From straight-line form, y = ax + b; 𝑎 =  𝛼 and

𝛽 = 𝑒(−(𝑏/𝛼)) (Azad, et al, 2014). The rainfall data were

ranked in descending order showing the lowest value last 

and the highest value first.  

𝜇𝑤 = 𝛼Γ (1 + 1
𝛽⁄ )  (9) 

Where 𝜇𝑤 is the average Weibull rainfall and 𝛤 is the

gamma function. 

Evaluation of rainfall distribution and plotting 

position methods 

Fifteen probability distribution functions and seventeen 

plotting position methods were evaluated using 

correlation technique, best-fit model or R-squared, and 

RMSE. The correlation is the comparison of two 

variables and estimating the relationship strength based 

on the coefficients that ranged between -1 and +1 (Liu, 

et al, 2017). The coefficient of correlation that is closer 

to +1 indicates a strong relationship and trended in the 

same direction or closer to -1 indicates the strong 

relationship and trended in the opposite direction 

(Shaban, et al, 2020). The correlation coefficient (r) was 

calculated using Equation (10). 

r =
n ∑ mi. mj − ∑ mi

n
i=1 . ∑ mj

n
j=1

n
i,j=1

√[n ∑ mi
2n

i=1 − (∑ mi
n
i=1 )2] [n ∑ m𝑗

2n
j=1 − (∑ 𝑚j

n
j=1 )

2
]

 (10) 

Where i
 
and j denote the measured rainfall data, (m) 

from two different probability distribution functions or 

plotting position methods. The R-squared
 

is used to 

measure the error of two variables derived from 

measured (m) and predicted (p) from the probability 

distribution functions or plotting position methods. The 

R-squared
 
is expressed as shown in Equation (11). The 

R-squared coefficient is ranging between 0 and 1, closer 

to 1 indicates less error of fitness between two variables 

(Kang, et al, 2018). 

R2 =  
∑ (mi − μ)2 − ∑ (mi − pi)

2n
i=1

n
i=1

∑ (mi − μ)2n
i=1

 (11) 

The RMSE estimates the associated error that is 

independent of the expressed specific units. Generally, 

the lower the RMSE, the more accurate prediction 

between two different plotting position methods or 

probability distribution functions, and vice-versa 

(Kidmo, et al, 2019). The RMSE was expressed in 

Equation (12).  

RMSE  =  √
1

𝑛
∗ ∑(𝑚𝑖 −  𝑚𝑗)

2
𝑛

𝑖𝑗=1

 (12) 
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 Fig. 2. Average daily rainfall from the year 2000 to 2020 
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Fig. 3. Average monthly rainfall from 1961 to 2020. 

Fig. 4. Annual and mean rainfall from the year 1961 to 2020. 

Results and discussions 

The daily rainfall data was presented in Figure 2 with the 

highest wetted day shown on the first day-of-month 

followed by the fourth day for 20 years. Figure 3 shows 

the average monthly rainfall with a mean of 47.95 mm 

and a coefficient of variation of 117.9%. Figure 4 shows 

the annual rainfall with an average of 578 mm and 

coefficient of variation of 24.6%. The annual minimum 

and maximum rainfalls were 289 mm in the year 1969 

and 1117 mm in the year 2020, respectively.  

Shortages of rainfall over two decades 

The shortage of rainfall was evaluated as shown in 

Figure 5. Considering wetted days as the summation of 

days rains in a given month within twenty years. Twd is 

the total wetted days divided by the actual number of 

days in each year over twenty years. Tv is the average 

wetted monthly per twenty years that had similar trends 

with different magnitude when compared with the Twd 

values. The number of rainfall shortages during the wet 

season concerning actual days within twenty years 

indicated about 57.9% for January i.e., equal to 100% 

minus maximum value of Twd (42.1%) followed by 

December, February and March with the ratio of 65%. 

While the long dry period starts early May to late 

October every year. 

Assessment of rainfall variability 

Three techniques were used to assess the rainfall 

variability including daily rainfall index (DRI), 

standardized anomaly index (SAI), and rainfall 

seasonality index (RSI) between 2000 and 2020 years, 

i.e., for two current decades (Figure 6). Ideally, when the

DRI is equal to 1, means the total annual rainfall is equal 

to the number of wetted days. The maximum wetted 

days of 82 seen in the year 2020 with the annual rainfall 

of 1117 mm (DRI = 13.6) and minimum wetted days of 

33 seen in the year 2005 with the annual rainfall of 336.1 

mm (DRI = 10.2). However, the highest DRI of 15.6 was 

seen in the year 2009 with the wetted days of 50 and 

annual rainfall of 780 mm; Similarly, a minimum DRI of 

8.1 was seen in the year 2006 and annual rainfall of 536 

mm with the wetted days of 66. These values of DRI 

indicated the possibility of less annual rainfall with a less 

occurrence of rainfall in the same year.  
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When SAI is closer to zero, annual rainfall is closer to 

the mean value. The maximum and minimum values of 

SAI were 2.9 in the year 2020 and -1.5 in the year 2005, 

respectively. In these two decades, twelve years i.e 

equivalent to 60% of 20 years had SAI less than zero 

which showed the dried years trended from the year 

2001 to 2003; 2005 and 2006; 2008, 2010, and 2013 to 

2017. Again, when RSI is closer to zero, rainfall spread 

throughout the year. The average value of RSI was 1.2 

with the coefficient of variation of 11.1%; maximum and 

minimum values were 1.4 and 0.9, respectively.

Fig. 5. Variation of wetted days for twelve months over 20 years 

Fig. 6. Standardized anomaly index for annual rainfall from 1961 to 2020. 

The values of RSI indicated the extreme seasonality to 

the study area and only received rainfall within one to 

two months. However, three indices were not correlated 

as shown in Table 2 except for the DRI and SAI of r = 

0.5975, but each index provided useful information 

about the rainfall variability. 

Table 2. Correlation of rainfall indices 

DRI RSI SAI 

DRI 1 

RSI -0.0787 1 

SAI 0.5975 -0.2036 1 

Selection of probability distribution functions 

This study analyses the best fit of the probability 

distribution functions of rainfall events during November 

to April for the years 2000 to 2020. Using input 

parameters in section 2.2, fifteen probability distribution 

functions were ranked based on the low values of KS 

and AD tests. Figure 7 shows the variation of ranked 

probability distribution functions from November to 

April. All probability distribution functions had the 

critical value of greater than 0.05 with the ranging 

between 0.05374 and 0.05467 that demonstrated the 

normality fit to the given daily rainfall data at a 

significance level of 5%. All the probability distribution 
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functions had statistic values greater than the critical 

value of 2.5018, which helped to reject the null 

hypothesis of rainfall data originated from a specified 

probability distribution function at a significance level of 

5%. The probability distribution function ranked first for 

November was Normal and Gamma functions with total 

days of 637, December was Normal and Weibull 

functions with total days of 6624; January was Normal 

and Weibull functions with total days of 620; February 

was Beta and Gamma functions with total days of 625; 

March was Normal and Gamma functions with total days 

of 629; April was Normal and Gamma functions with 

total days of 617 for KS and AD tests, respectively. 
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Fig 7. Probability distribution functions ranked with two statistic tests using monthly rainfall for twenty years from Nov-Apr 

Table 3. Correlation analysis of the selected distribution functions with the highest-ranked using KS and AD tests 

Months 
Months November December January 

Distribution 

functions 

Normal Gamma Normal Weibull Normal Weibull 

November Normal 1 

Gamma 0.5504 1 

December Normal 0.8380 0.3867 1 

Weibull 0.9190 0.7782 0.8151 1 

January Normal 0.7703 0.3548 0.9886 0.7777 1 

Weibull 0.8942 0.8262 0.7671 0.9961 0.7277 1 

February Beta 0.5586 0.9999 0.3997 0.7862 0.3687 0.8331 

Gamma 0.8947 0.8044 0.8112 0.9974 0.7804 0.9958 

March Normal 0.9037 0.4264 0.9880 0.8525 0.9552 0.8084 

Gamma 0.5993 0.9976 0.4313 0.8172 0.3972 0.8616 

April Normal 0.9201 0.4451 0.9821 0.8677 0.9457 0.8253 

Gamma 0.5691 0.9997 0.4054 0.7938 0.3730 0.8403 
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Months 

Months February March April 

Distribution 
functions 

Beta Gamma Normal Gamma Normal 

February Beta 1 

Gamma 0.8125 1 

March Normal 0.4383 0.8420 1 

Gamma 0.9982 0.8401 0.4730 1 

April Normal 0.4567 0.8560 0.9992 0.4923 1 

Gamma 0.9998 0.8189 0.4454 0.9991 0.4643 

Table 4. Plotting position methods with Weibull two parameters, R-squared for line fits and AD test 

S/N Plotting positions 

Parameters 

R-squared for line 

fits AD Test 

Weibull 

mean, mm α β 

1 Hirsch 4.9146 614.2 0.9947 0.0807 563.34 

2 CSD 4.8606 623.3 0.9828 0.0778 571.35 

3 Laplace 4.3786 628.0 0.9746 0.1287 572.15 

4 Landwehr 4.9431 627.5 0.9697 0.0224 575.75 

5 Weibull 4.7009 631.0 0.9689 0.0431 577.28 

6 McClung 4.9623 628.0 0.9677 0.0198 576.38 

7 Adamowski 4.8381 630.1 0.9672 0.0249 577.46 

8 Chegodayev 4.8687 630.0 0.9666 0.0225 577.52 

9 Beard 4.8750 629.9 0.9665 0.0220 577.49 

10 Filliben 4.8791 629.8 0.9663 0.0218 577.47 

11 Tukey 4.8899 629.8 0.9662 0.0211 577.47 

12 Sevruk and Geiger 4.9173 629.5 0.9656 0.0197 577.47 

13 Cunnane 4.9343 629.5 0.9653 0.0190 577.52 

14 Blom 4.9281 629.9 0.9647 0.0198 577.83 

15 Gringorten 4.9173 629.3 0.9646 0.0182 577.28 

16 Hazen 5.0071 629.2 0.9634 0.0177 577.72 

17 IEC56 4.9759 630.7 0.9607 0.0224 578.95 

Average 4.8701 628.2 0.9691 0.0354 575.91 

Table 3 shows the correlation analysis for selected 

distribution functions with the highest-ranked using KS 

and AD tests. The Weibull distribution function had the 

highest coefficient of correlation (> 0.72) for four 

probability distribution functions ranked from December 

to April 

Evaluation of plotting position methods and return 

periods 

The return period was evaluated using the plotting 

position methods and Weibull distribution function. 

Before estimating the return periods, the plotting 

position methods were assessed using R-squared 

coefficients and AD testing, arranged to determine the 

first and last over 60 years (Table 4). Using R-squared 

techniques, the Hirsch and IEC56 were selected as the 

highest and lowest R-squared coefficients of 0.9947 and 

0.9691, respectively, i.e., the percentage change of 3%. 

Hazen and Laplace were selected as having the lowest 

 and highest values for the AD test of 0.01774 and 

0.1287, respectively i.e., the percentage change of 11%. 

The cumulative probability functions of the four plotting 

position methods were presented in Figure 8. All plotting 

position methods had AD values less than the AD 

critical value, i.e., no significant difference of using one 

or more plotting methods. Again, RMSE was used to 

determine the statistical error between the lowest and 

highest of R-squared coefficients and AD test for the 

plotting position methods as shown in Table 5. The 

RMSE varied from 0.24% to 1.88% for six combinations 

from four selected plotting position methods. 

Furthermore, the Weibull parameters were estimated as 

described in section 2.3. The average annual rainfall 

based on the Weibull distribution function was 575.9 

mm using seventeen plotting position methods with an 

average shape factor of 4.8701 and scale factor of 628.2. 

Figure 9 shows the distribution of annual total rainfall 

against return periods for four selected plotting position 
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methods. The average rainfall data predicted using the 

Weibull distribution function is likely to return after 2 

years. 

The probability distribution functions based on the 

estimated input parameters from the plotting position 

methods and measured rainfall data were evaluated. 

Table 6 shows the correlation analysis of Weibull 

density function based on the plotting position methods 

compared with normal, lognormal, and gamma density 

functions. The correlation of eight probability density 

functions indicated a strong relationship with a 

correlation coefficient greater than 0.8. 

Fig.8. Selected four plotting position methods with the highest and smallest values of R-squared and AD test 

Fig. 9. Annual total rainfall against return periods for four selected plotting position methods 
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Table 5. Statistical errors of selected four plotting position methods using R-squared and AD test 

Plotting position 

methods 

RMSE, % 

Hazen Laplace Hirsch 

Hazen 1 

Laplace 1.2318 1 

Hirsch 1.6667 1.2676 1 

IEC56 0.2396 1.2986 1.8780 

Table 6. Correlation analysis of Weibull density function based on the plotting position methods compared with normal, 

lognormal, and gamma density functions 

Weibull- 

Hazen 

Log 

Normal 

Weibull- 

Laplace Weibull 

Weibull- 

Hirsch Normal 

Weibull- 

IEC56 Gamma 

Weibull-Hazen 1 

Log Normal 0.8438 1 

Weibull-Laplace 0.9935 0.8878 1 

Weibull 0.9996 0.8570 0.9962 1 

Weibull-Hirsch 0.9843 0.9152 0.9910 0.9878 1 

Normal 0.9845 0.9234 0.9946 0.9886 0.9959 1 

Weibull-IEC56 0.9999 0.8377 0.9928 0.9993 0.9816 0.9826 1 

Gamma 0.9054 0.9915 0.9381 0.9157 0.9586 0.9651 0.9005 1 

Weibull-IEC56 0.9843 0.9152 0.9910 0.9878 1.0000 0.9959 0.9816 0.9586 

Conclusions 

Understanding rainfall variability is very important 

during the designs of hydraulic structures and 

agricultural planning to avoid rainfall shortages. The 

rainfall variability and distribution of the central part of 

Tanzania has changed during the last 20 years. The study 

area experienced an unpredicted magnitude of rainfall 

and drier conditions during the wet season. Four 

probability distribution functions out of seventeen were 

ranked first using KS and AD test, respectively for the 

month ranged between November and April.  

The Normal distribution appeared five times followed by 

Gamma distribution three times, Weibull distribution 

two times and Beta distribution appeared once. But, the 

correlation analysis indicated the Weibull distribution 

had the highest coefficient of correlation (> 0.72) for 

four distribution functions ranked from November to 

April.  

The return period of rainfall was estimated using 

seventeen plotting position methods. Two plotting 

position methods were taken based on the lowest and 

highest values of the AD test calculated and indicated 

the percentage changes of 11%. Again, two plotting 

position methods were taken based on the lowest and 

highest values of R-squared and indicated the percentage 

changes of 3%. Taking any of the plotting position 

methods would provide the return period of rainfall with 

the RMSE between 0.24% and 1.88%. As a follow to the 

present study, the rainfall periods and magnitude during 

wet seasons are expected to be identified for estimating 

the extreme events.  
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