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Abstract 

 

To find some soliton solutions of the equation, the perturbed Radhakrishnan-Kundu-

Lakshmanan (RKL) equation has been considered.  For this purpose, GKM (generalized 

Kudryashov method), which is one of the solution methods of nonlinear evolution 

equations (NLEEs), has been applied to the perturbed RKL equation.  First, considered 

the nonlinear partial differential equation, is reduced to an ordinary differential equation 

with the help of the traveling wave transformation.  Afterward, obtained the algebraic 

equation system through the balance principle was solved with the help of Wolfram 

Mathematica 12. Thus, some new soliton solutions of the discussed equation have been 

obtained. Both 2D and 3D graphics have been drawn with the help of Wolfram 

Mathematica 12 by giving some values to obtained these new solutions. 

 

Keywords: GKM, perturbed RKL equation, soliton solutions.  

 

 

Perturbe edilmiş Radhakrishnan-Kundu-Lakshmanan denklemi 

için soliton çözümler 
 

 

Öz 

 

Denklemin bazı soliton çözümlerini bulmak için perturbe edilmiş Radhakrishnan-Kundu-

Lakshmanan (RKL) denklemi ele alınmıştır.  Bu amaç için lineer olmayan evrim 

denklemleri (NLEEs)’nin çözüm yöntemlerinden biri olan GKM (genelleştirilmiş 

Kudryashov metodu), perturbe edilmiş RKL denklemine uygulanmıştır. İlk olarak ele 

alınan lineer olmayan kısmi diferansiyel denklem, hareketli dalga dönüşümü yardımıyla 

bir adi diferansiyel denkleme indirgenmiştir. Daha sonra denge prensibi ile elde edilen 
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cebirsel denklem sistemi Wolfram Mathematica 12 yardımıyla çözülmüştür. Böylece ele 

alınmış olan denklemin bazı yeni soliton çözümleri elde edilmiştir.  Elde edilen bu yeni 

çözümlere birtakım değerler verilerek Wolfram Mathematica 12 yardımıyla hem 2 

boyutlu hem de 3 boyutlu grafiklerin çizimleri yapılmıştır.   

 

Anahtar Kelimeler: GKM, perturbe edilmiş RKL denklemi, soliton çözümler. 

 

 

1. Introduction 
 

NLEEs are handled in very important scientific areas such as plasma physics, 

mathematical physics, mathematical chemistry, optical fibers, medicine, hydrodynamics, 

fluid dynamics, geochemistry, control theory, meteorology, optics, mechanics, chemical 

kinematics, biology biophysics, biogenetics and so on.  With the developing world, 

NLEEs emerges as having more difficult and complex solutions.  Solving these equations 

and creating new methods forms a very important field of study.  For this purpose, various 

solution methods have been brought to the literature by some scientists. For example: 

modified extended tanh-function method [1], modified simple equation method [2], 

( )1/ 'm G+ -Expansion method [3], extended modified Kudryashov method [4], extended 

Jacobi's elliptic function expansion scheme[5], tanh-method [6], modified extended direct 

algebraic method [7], Darboux transformation [8], sine–Gordon expansion method [9], 

F-expansion method [10], ( )1/ 'G -expansion method, finite difference method and 

Laplace perturbation method [11],  modified sub-equation method [12], modified 

Kudryashov methods [13]. 

 

Perturbed RKL equation is given as [14-16]:

                         
  

 

 ( ) ( )2 2 2
,t xx x xxx

x x

iq aq b q q i q i q q i q q i q   + + = + + −                                          (1) 

                                                                                   

where ( , )q x t  is a complex-valued dependent function and x  is spatial variables and t    

is independent variables representing temporal variables.  The first term on the left side 

of Eq. (1) specifies the temporal variation of the nonlinear wave, parameter a  represents 

the group velocity distribution, and b  symbolizes the nonlinearity coefficient.  The 

coefficients on the right side of equality in the equation,   represent the intermodal 

distribution,   represent the rise coefficient for short pulses,   represent the higher-

order distribution coefficient, and   represent the third-order distribution term [14-16].   

 

The perturbed RKL equation has been studied by some authors recently.  Biswas used 

traveling wave hypothesis for the perturbed RKL equation [14].  Biswas et al. used 

modified simple equation and trial equation methods for the perturbed RKL equation 

[15].  Ghanbari and Gomez-Aguilar used generalized exponential rational function 

method for the RKL equation [16].            

           

Our aim in this study is to find some new soliton solutions of the perturbed RKL equation 

using GKM [17-20].  First, the definition of GKM was made.  Afterwards, GKM was 

applied to the discussed equation and some new soliton solutions were obtained by using 

the Wolfram Mathematica 12 package program. 
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2.  Structure of GKM 

 

We consider a general nonlinear partial differential equation for a function q of two 

different variables in the following form: 

 

( ), , , ,... 0.t x xxR q q q q =  (2) 

 

Step 1: We regard travelling wave transform as in the following equation; 

 

( ) ( ), , .q x t q x vt = = −                                                                                             (3) 

 

Using Eq. (3), Eq. (2) is transformed into an ordinary differential equation:   

 

( ), , , ', '',... 0,L t x q q q =                                                                                                   (4) 

 

where superscripts demonstrate ordinary derivatives according  .  

 

Step 2. Suppose that we imagine the solutions of Eq. (4) as Eq. (5): 

 

( )
( )

( )

( )

( )
0

0

,

N
i

i
i

M
j

j
j

a Q P Q
q

S Qb Q

 




=

=

 
  

 
  


= =



                                                                                     (5) 

 

where Q is  
1

1 e
. We must specify that Q , 

 
2 ,Q Q Q = −                                                                                                                   (6) 

 

is a solution to the Eq. (6). Using Eq. (5), the following derivatives are obtained,  

 

( ) ( )2

2 2 2

' ' ' ' ' ' ' '
' ' ,

P Q S PS Q P S PS P S PS
q Q Q Q

S S S


− − −   
= = = −   

   
                           (7) 

 

( ) ( )( ) ( )
2

2

2
2'' 2 1 ' ' '' '' 2 ' ' 2 ( ') .

Q Q Q Q
q Q P S PS S P S PS S P S P S

SS


 
  
    

− −
= − − + − − +               (8) 

 

Step 3. The solution of the nonlinear ordinary differential equation given by Eq. (4) is 

sought according to the GKM as follows: 

 

( )
2

0 1 2

2

0 1 2

.
N

N

M

M

a a Q a Q a Q
q

b bQ b Q b Q


+ + + +
=

+ + + +
                                                            (9) 
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We use the homogeneous balance principle to find the values of M  and N  in Eq. (5).  

For this purpose, we balance between the highest order derivative and highest order 

nonlinear term in Eq. (4). 

 

Step 4. We put in Eq. (5) into Eq. (4).  Thus we get a polynomial ( )R Q  of Q .  Then 

equalizing the overall coefficients of  ( )R Q  to zero, we find an algebraic equation system.  

By solving the resulting system, we determine c  and the variable coefficients of 

0 1 2 0 1 2, , , , , , , , ,N Ma a a a b b b b   Finally we can have the exact solutions of Eq. (4). 

 

 

3.  Practice of GKM to the perturbed RKL equation 

 

To get some soliton solutions of Eq. (1) we take into account the following equality: 

 
( , )( , ) ( ) , , ( , ) .iP x tq x t u e x vt P x t kx wt = = − = − +                                                          (10) 

 

Replacing Eq. (2) into Eq. (1), we find the following real and imaginary equations 

respectively, 

 

( ) ( )2 3 3( 3 ) '' 0,a k u w ak k k u b k u   + − + + + + − =                                                   (11) 

 

and 

 

( ) ( )2 33 '' 3 2 3 3 2 0.u v ak k u u    − + + + − + =                                                         (12) 

 

Following equality is obtained by applying the balance principle of ''u  and 
3u  in Eqs. 

(11) and (12).   

             

1.N M= +                                                                                                                     (13) 

 

If we choose 1M =  and 2N =  we ascertain the following solution constant, 

 

( )
2

0 1 2

0 1

,
a a Q a Q

u
b bQ


+ +

=
+

                                                                                            (14) 

 

( ) ( )
( )( ) ( )

( )

2

1 2 0 1 1 0 1 22

2

0 1

2
,

a a Q b bQ b a a Q a Q
u Q Q

b bQ


 + + − + +
  = −

+  

                          (15) 
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( ) ( )( ) ( )
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    (16) 
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Eqs. (11) and (12) were solved together and solutions of Eq. (1) were found in the 

following different cases. 

 

Case 1: 

 

( ) ( )

( )

( )

0 02
0 1

2

1

3( ) 2 3( )
, ,

22 2 3 4 3 2

3 2
,

2 6 (1 )
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   

 
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+ + + +
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− + − − + −
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                       (17) 

 

We get the trigonometric solutions of Eq. (1) by placing the obtained Eqs. (17) in Eq. 

(14)  

 

( )

( )

1

3( ) tan
2

( , ) ,
2 3 2

i kx wt ix ivt
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q x t
b k

 

 
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+ +  
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− + −

                                                         (18) 

 

( )

( )

2

3( ) cot
2

( , ) ,
2 3 2

i kx wt ix ivt
e a k

q x t
b k

 

 

− + − 
+ +  

 = −
− + −

                                                         (19) 

 

where ( )
1

2 (6 ) 6 3 (3 2 (9 )) 2(3 )
2

w a ak ak v k k k k     = − − + − − − + + − + . Both 2D 

and 3D graphics of solution (18) are shown in Figure 1. 

 

 

Figure 1. 3D plot of solution (18) for 5, 0.05, 4, 0.1, 3, 4, 0.01,a v k b  = = = = = = =

0.5, 15 15w x= −    values with 5 5t−    range and 2D plot of solution for 1.5t =  

with these values. 
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Case 2: 

 

( ) ( )

( )( )

( )( ) ( )( )

( )
( )

0
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,
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a a b b
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We get the hyperbolic function solutions of Eq. (1) by placing the obtained Eqs. (20) in 

Eq. (14)  

 

( )

( )

( )

3

3 (1 ) 1 3cosh[ ] csch[ ] coth
2

( , ) ,
2 2 3 2
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

 

− +  −  
− + + − + − − −  
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(21) 

 

 

where 

( )
( )3 3 (1 )5 15

(6 ) 3 15 4 (9 ) 3 .
4 4 4 16

i a ka k
w ak ak v k k k

 
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+ +
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−
 

Both 2D and 3D graphics of solution (21) are shown in Figure 2. 

 

  
 

Figure 2. 3D plot of solution (21) for 3, 2, 2, 1, 3, 2,a v k b = − = = = = = −

1, 3, 30 30w x = = −    values with 3 3t−    range and 2D plot of solution for 2t =  

with these values. 
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Case 3: 

( )
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We get the dark soliton solutions of Eq. (1) by placing the obtained Eqs. (22) in Eq. (14) 
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where ( )
1

2 (6 ) 6 3 (3 2 (9 )) 2(3 ) ,
2

w a ak ak v k k k k     = − − + − − − + + − +

( ) ( )( )3( ) , 3 2 .A a k B b k   = + + = − + −  Both 2D and 3D graphics of solution (23) 

are shown in Figure 3. 
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Figure 3. 3D plot of solution (23) for 11, 2, 2, 1, 1, 3, 1, 1,a a k v b  = = = = = = = =

1 2, 2, 25 25b w x= − = −    values with 5 5t−    range and 2D plot of solution for 

1t =  with these values. 

 

Case 4: 

 

( )( ) ( )( )

( )

1 1

0 2 1 0 1

3 2 3 2
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2 2 3 (1 ) 2 3 (1 )
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             (25)                                                           

 

We get the bright soliton solutions of Eq. (1) by placing the obtained Eqs. (25) in Eq. 

(14)  
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( )

6

2 3 (1 ) csch[ ]
( , ) ,

3 2

i kx wti e a k x vt
q x t

b k


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                                                      (26) 

 

( )

( )

7

2 3 (1 ) sech[ ]
( , ) ,

3 2

i kx wti e a k x vt
q x t

b k



 
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                                                      (27) 

 

where ( )(6 ) 3 3 3 (9 ) 3 .w a ak ak v k k k k     = − + − + − − + + − −  Both 2D and 3D 

graphics of solution (26) are shown in Figure 4. 
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Figure 4. 3D plot of solution (26) for 0.5, 2, 1, 3, 4,v k b = = = = =

1, 3, 20 20w x = = −    values with 2 2t−    range and 2D plot of solution for 1t =  

with these values. 

 

 

4.  Results and discussion 

 

We obtained some soliton solutions of perturbed RKL equation by applying GKM. In 

addition, the accuracies of the obtained results are shown with some graphics drawn in 

2D and 3D. When the results of previous studies on the perturbed RKL equation are 

compared with our results, our (25) solution is similar to the (64) solution given by 

Ghanbari and Gomez-Aguilar [16], our (27) solution is similar to the (13), (23) and (34) 

solutions given by Biswas et al. [15] and our (28) solution is similar to the (12), (22) and 

(33) solutions given by Biswas et al. [15] with the (11), (18), (30) and (34) solutions given 

by Biswas [14]. According to our research, other solutions are new. 

 

 

5.. Conclusions 

 

In this study, which was prepared on obtaining the solutions of NLEEs, GKM was 

discussed.  GKM is implemented to the perturbed RKL equation and thus some 

trigonometric, hyperbolic function, dark soliton and bright soliton solutions of the 

equation are obtained.  In addition, 3D and 2D graphics were made by giving certain 

values to the obtained solutions. Thus, the found solutions were verified through the 

graphs drawn. As a result of this study, it has been seen that GKM is reliable and giving 

precise results a method in finding the solutions of NLEEs. 
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