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Abstract. Let E2 be the 2-dimensional Euclidean space and T be a set such
that it has at least two elements. A mapping α : T → E2 will be called a

T -figure in E2. Let R be the field of real numbers and O(2,R) be the group of

all orthogonal transformations of E2. Put SO(2,R) = {g ∈ O(2,R)|detg = 1},
MO(2,R) = {F : E2 → E2 | Fx = gx+ b, g ∈ O(2,R), b ∈ E2},
MSO(2,R) = {F ∈ MO(2,R)|detg = 1}. The present paper is devoted to

solutions of problems of G-equivalence of T -figures in E2 for groups G =
O(2,R), SO(2,R), MO(2,R), MSO(2,R). Complete systems of G-invariants

of T -figures in E2 for these groups are obtained. Complete systems of relations

between elements of the obtained complete systems of G-invariants are given
for these groups.

1. Introduction

Let R be the field of real numbers, and let E2 be the 2-dimensional Euclidean
space.

The present paper is devoted to solution of problems of G-equivalence of T -
figures in E2 for groups G = O(2,R), SO(2,R),MO(2,R),MSO(2,R) in terms
of G-invariants of a T -figure. We have obtain complete systems of G-invariants
of T -figures for these groups and describe complete systems of relations between
elements of the obtained complete systems of G-invariants.
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Let V be a finite dimensional vector space over a field K and β be a non-
degenerate bilinear form on V . Denote by O(β,K) the group of all β-orthogonal
(that is the form β preserving) transformations of V . Let MO(β,K) be the group
generated by the group O(β,K) and all translations of V . In the paper [6], for
the orthogonal group O(β,K) in the Euclidean, spherical, hyperbolic and de-Sitter
geometries, the orbit of m vectors is characterized by their Gram matrix and an
additional subspace. In the book [2, Proposition 9.7.1], for the group MO(β,K)
in the Euclidean geometry, the orbit of m-vectors is characterized by distances be-
tween m-vectors. A complete system of relations between elements of this complete
system is also given in [2, Theorem 9.7.3.4]. In the paper [13], a complete system
of invariants of m-tuples in the two-dimensional pseudo-Euclidean geometry of in-
dex 1 and a complete system relations between the obtained complete system of
invariants are given. In the paper [15], a complete system of invariants of m-tuples
in the one-dimensional projective space and a complete system relations between
the obtained complete system of invariants are given. Invariants of m-points in
Lorentzian geometry investigated in the paper [23]. Invariants of m-points appear
also in the theory of invariants of Bezier curves ( [5,22]), in Computer vision theory
( [19,27]), in Computational Geometry ( [21]). General theory of m-point invariants
considered in the invariant theory (see [3, 8, 20,30,31]).

Complete systems of global invariants of paths and curves are investigated in
papers [1, 7–9,12,14,24–26]. Complete systems of global invariants of surfaces and
vector fields are investigated in papers [10, 11, 28]. Complete systems of global
invariants of T -figures in the affine geometry are investigated in the paper [17,18].

This paper is organized as follows. In Section 1, some known results (Propo-
sitions 1-4) on the linear representation of the field of complex numbers in two-
dimensional real space are given. Definitions of T -figures in the field C of com-
plex numbers and in the two-dimensional linear space R2 are given. Put S(C∗) =
{z ∈ C||z| = 1}. A definition of S(C∗)-equivalence of T -figures in C with respect
to the group S(C∗) is given. A definition of Λ(S(C∗))-equivalence of T -figures in
R2 with respect to the group Λ(S(C∗)) of linear transformation of R2 is given.
It is proved Theorem 1 on a relation between the S(C∗)-equivalence of T -figures
in C and Λ(S(C∗))-equivalence of T -figures in R2. In Section 2, evident forms of
elements of groups SO(2,R) and O(2,R) are given. In Section 3, a complete sys-
tem of G-invariants of a T -figure in the two-dimensional linear space R2 over the
field R of real numbers for the group G = SO(2,R) is given. A complete system
of relations between elements of the obtained complete system of invariants are
given. In Section 4, a complete system of G-invariants of a T -figure in R2 for the
group G = O(2,R) is given. A complete system of relations between elements of
the obtained complete system of G-invariants is given. In Section 5, a complete
system of G-invariants of a T -figure in R2 for the group G = MSO(2,R) is given. A
complete system of relations between elements of the obtained complete system of
G-invariants is given. In Section 6, a complete system of G-invariants of a T -figure
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in R2 for the group G = MO(2,R) is given. A complete system of relations between
elements of the obtained complete system of G-invariants is given.

2. Some properties of a linear representation of the field of
complex numbers in two-dimensional real space

A part of results of this section is known (see [16]).
Denote the field of complex numbers by C. Let c = c1 + ic2 ∈ C. Denote by Λc the

matrix of the form

(
c1 −c2
c2 c1

)
. Denote by Λ(C) the set {Λc|c ∈ C}. We consider

on the set Λ(C) following matrix operations: the component-wise addition and the
multiplication of matrices. Then Λ(C) is a field with respect to these operations.
In it the unit element is the unit matrix.

Proposition 1. The mapping Λ : C → Λ(C), where Λ : c → Λc,∀c ∈ C, is an
isomorphism of the fields C and Λ(C).

Proof. It is obvious. □

Let a = a1 + ia2 ∈ C, b = b1 + ib2 ∈ C. Put ⟨a, b⟩ = a1b1 + a2b2. Then ⟨a, b⟩ is a
bilinear form on R2 and ⟨a, a⟩ = a21+a22 is a quadratic form on R2. For convenience,
we denote by Q(a) the quadratic form ⟨a, a⟩.

The following propositions 2, 3 and 4 are known.

Proposition 2. The following equalities Q(x) = det(Λx) and Q(xy) = Q(x)Q(y)
hold for all x = x1 + ix2, y = y1 + iy2 ∈ C.

For x = x1 + ix2 ∈ C, we set x = x1 − ix2.

Proposition 3. The mapping x → x is an involution of the field C and the fol-
lowing equalities x + x = 2x1, ⟨x, x⟩ = xx = xx = x2

1 + x2
2, Q(x) = Q(x) hold for

all x = x1 + ix2 ∈ C.

Proposition 4. Let x ∈ C. Then the element x−1 exists if and only if Q(x) ̸= 0.
In the case Q(x) ̸= 0, the equalities x−1 = x

Q(x) and Q(x−1) = 1
Q(x) hold.

Put C∗ = {x ∈ C | Q(x) ̸= 0}. C∗ is a group with respect to the multiplication
operation in the field C. Denote by Λ(C∗) the set of all matrices Λa, where a ∈ C∗.
For a ∈ C∗, we have Q(a) = a21 + a22 ̸= 0 and Q(a) = det(Λa) ̸= 0.

Below everywhere we will consider every element x ∈ R2 and x ∈ E2 as a

column vector x =

(
x1

x2

)
. Denote by Γ the following mapping Γ : C → R2,

where Γ(x1 + ix2) =

(
x1

x2

)
. It is obvious that the mapping Γ is an isomorphism

of linear spaces C and R2. Hence there exists the converse isomorphism Γ−1of Γ
and Γ−1(x) = x1 + ix2,∀x ∈ R2.
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Denote by W the following matrix

(
1 0
0 −1

)
. Denote by La the following

linear operator on C: La(x) = a · x, ∀x ∈ C, a ∈ C∗. Then the following equalities
are obvious:

Γ(a1 + ia2) = WΓ(a) =

(
1 0
0 −1

)
·
(

a1
a2

)
=

(
a1
−a2

)
= Γ(a),∀a = a1 + ia2 ∈

C∗.

Γ(La(x)) = Γ(a · x) =
(

a1x1 − a2x2

a1x2 + a2x1

)
=

(
a1 −a2
a2 a1

)
·
(

x1

x2

)
= Λa · Γ(x),

(1)

∀a ∈ C∗,∀x ∈ C, where Λa · Γ(x) is the multiplication of matrices Λa and Γ(x).
Hence Λa ∈ Λ(C∗) and the mapping Λ : C∗ → Λ(C∗), where Λ(a) = Λa, is a

linear representation of the groups.
Put S(C∗) = {x ∈ C | Q(x) = 1}. It is a subgroup of the group C∗. Λ(S(C∗))

is a subgroup of the group Λ(C∗) and the mapping Λ : S(C∗) → Λ(C∗), where
Λ(a) = Λa, is a linear representation of the group S(C∗) in R2. Λ(C∗) is a group
with respect to the multiplication of matrices. Let T be a set such that it has at
least two elements. Denote by CT the set of all mappings of the set T to the field
C. An element of α ∈ CT will be called a T -figure in the field C. For the figure
α, we also use the notation α(t), considering α as a function on T with values in
C. Denote by ET

2 the set of all mappings of the set T to E2. An element γ ∈ ET
2

will be called a T -figure in the space E2. For the figure γ, we also use the notation
γ(t), considering γ as a function on T with values in E2.

Let G be a subgroup of the group C∗.

Definition 1. Two T -figures α ∈ CT and β ∈ CT is called G-equivalent if there
exists g ∈ G such that β(t) = g ·α(t),∀t ∈ T . In this case, we also write as follows:

α
G∼ β or α(t)

G∼ β(t),∀t ∈ T .

Let G be a subgroup of the group C∗.

Definition 2. Two T -figures γ ∈ ET
2 and η ∈ ET

2 is called Λ(G)-equivalent if there
exists a ∈ G such that η(t) = Λaγ(t),∀t ∈ T . In this case, we also write as follows:

γ
Λ(G)∼ η or γ(t)

Λ(G)∼ η(t),∀t ∈ T .

Theorem 1. Let α(t) = α1(t) + iα2(t) and β(t) = β1(t) + iβ2(t) be two T -
figures in C. Then T -figures α(t) = α1(t) + iα2(t) and β(t) = β1(t) + iβ2(t) are
S(C∗)-equivalent if and only if T-figures Γ(α(t)) and Γ(β(t)) in E2 are Λ(S(C∗))-
equivalent.

Proof. Assume that T -figures α(t) = α1 + iα2(t) and β(t) = α1 + iβ2(t) are S(C∗)-
equivalent. Then there exists a = a1+ ia2 ∈ S(C∗) such that β(t) = a ·α(t),∀t ∈ T .
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Using this equality and the equality (1), we obtain following equality:

Γ(β(t)) = Γ(a · α(t)) =
(

a1α1(t)− a2α2(t)
a1α2(t) + a2α1(t)

)
=

(
a1 −a2
a2 a1

)
·
(

α1(t)
α2(t)

)
= ΛaΓ(α(t)),∀t ∈ T.

This equality means that T -figures Γ(α(t)) and Γ(β(t)) are Λ(S(C∗))-equivalent .
Conversely, assume that T -figures Γ(α(t)) and Γ(β(t)) are Λ(S(C∗))-equivalent.

Since Γ is an isomorphism, Γ−1 exists. Then the above equality implies that β(t) =
Γ−1(Γ(β(t))) = Γ−1(Γ(a · α(t))) = a · α(t),∀t ∈ T . Hence T -figures α(t) = α1(t) +
iα2(t) and β(t) = β1(t) + iβ2(t) are S(C∗)-equivalent. □

3. Fundamental groups of transformations of the 2-dimensional
Euclidean space

Let E2 be the 2-dimensional Euclidean space with the scalar product ⟨a, b⟩ =

a1b1 + a2b2, where a =

(
a1
a2

)
, b =

(
b1
b2

)
∈ E2.

Definition 3. A mapping F : E2 → E2 is called orthogonal if ⟨Fx, Fy⟩ = ⟨x, y⟩
for all x, y ∈ E2.

Denote the set of all orthogonal transformations of E2 by O(2,R).
The following propositions 5-7 are well known.

Proposition 5. ( [4], p.221) Every orthogonal transformation of E2 is linear.

Proposition 6. O(2,R) is a group with respect to the multiplication operation of
matrices.

Let a = a1 + ia2, b = b1 + ib2 ∈ C. Denote the identity matrix of the bilinear
form ⟨a, b⟩ = a1b1 + a2b2 by I = ∥δij∥i,j=1,2, where δ11 = δ22 = 1, δ12 = δ21 = 0.

By Proposition 5, we can consider every element of O(2,R) as a 2× 2-matrix. Let
H ∈ O(2,R), where H = ∥hij∥i,j=1,2. Let HT be the transpose matrix of H. It

is known that the equality ⟨Hx,Hy⟩ = ⟨x, y⟩ for all x, y ∈ E2 is equivalent to the
equality

HTH = I. (2)

This equality implies the following

Proposition 7. Let H ∈ O(2,R). Then det(H) = 1 or det(H) = −1.

We denote by SO(2,R) the set {H ∈ O(2,R) : det(H) = 1}. SO(2,R) is a sub-
group of O(2,R). O(2,R) = SO(2,R) ∪ {HW | H ∈ SO(2,R)}, where HW is the

multiplication of matrices H and W , where W =

(
1 0
0 −1

)
.

Theorem 2. The equality SO(2,R) = Λ(S(C∗)) holds.
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Proof. ⇐. We assume that H ∈ Λ(S(C∗)). Then it has the following form H =
∥hij∥i,j=1,2, where h11 = h22 = c, h21 = d, h12 = −d, c, d ∈ R and det(H) =

c2 + d2 = 1. We prove that H ∈ SO(2,R). Let x =

(
x1

x2

)
, y =

(
y1
y2

)
∈ E2.

We have

H(x) =

(
cx1 − dx2

dx1 + cx2

)
, H(y) =

(
cy1 − dy2
dy1 + cy2

)
.

Using the equality c2 + d2 = 1, we obtain

⟨H(x), H(y)⟩ = (cx1 − dx2)(cy1 − dy2) + (dx1 + cx2)(dy1 + cy2) =

(c2 + d2)(x1y1 + x2y2) = ⟨x, y⟩ .

Hence H ∈ SO(2,R).
⇒. We assume that H ∈ SO(2,R), where H = ∥hij∥i,j=1,2. Then det(H) =

h11h22−h12h21 = 1 and the equality (2) holds. These equalities imply the following
system of equalities

h2
11 + h2

21 = 1 (3)

h11h12 + h21h22 = 0 (4)

h2
12 + h2

22 = 1 (5)

h11h22 − h12h21 = 1 (6)

We consider two cases h12 = 0 and h12 ̸= 0.

Let h12 = 0. Then (5) implies h2
22 = 1. Hence h22 = 1 or h22 = −1. Let h22 = 1.

Then the equalities h22 = 1, h12 = 0 and (4) imply h21 = 0. Using equalities
h21 = 0 and (3), we obtain h2

11 = 1. Hence h11 = 1 or h11 = −1. Thus, in the case
h12 = 0 and h22 = 1, we obtain h21 = 0 and h11 = 1 or h11 = −1. Hence, in this
case, we obtain only the following two matrices:

A1 = {h11 = h22 = 1, h12 = h21 = 0} , A2 = {h11 = −1, h12 = h21 = 0, h22 = 1} .

It is obviously that A1 ∈ Λ(S(C∗)) and A2 /∈ SO(2,R).
Let h22 = −1. Then the equalities h22 = −1, h12 = 0 and (4) imply h21 = 0.

Using equalities h21 = 0 and (3), we obtain h2
11 = 1. Hence h11 = 1 or h11 = −1.

Thus, in the case h12 = 0 and h22 = −1, we obtain h21 = 0 and h11 = 1 or
h11 = −1. Hence, in this case, we obtain only the following two matrices:

A3 = {h11 = 1, h12 = h21 = 0, h22 = −1} , A4 = {h11 = h22 = −1, h12 = h21 = 0} .

It is obviously that A4 ∈ Λ(S(C∗)) and A3 /∈ SO(2,R).
Let h12 ̸= 0. Using (4), we obtain

h11 = −h21h22

h12
.
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Using this equality and equalities (3), (5), we obtain:

(−h21h22

h12
)2 + h2

21 = 1 ⇒ h2
21h

2
22 + h2

12h
2
21 = h2

12 ⇒ h2
21(h

2
22 + h2

12) =

h2
12 ⇒ h2

21 = h2
12 ⇒ h2

12 − h2
21 = 0.

Hence we obtain h12−h21 = 0 or h12+h21 = 0. We consider two cases h12−h21 = 0
and h12 + h21 = 0.

Let h12 − h21 = 0. Then h12 = h21. Since h12 ̸= 0, we obtain h21 ̸= 0.
Using the equality h12 = h21 and (4), we obtain h11h21 − h21h22 = 0. Hence
h21(h11 + h22) = 0. Since h21 ̸= 0, this equality implies h11 = −h22. Thus we have
obtained the following equalities: h12 = h21 and h11 = −h22. Using (6), we obtain
−h2

11 − h2
12 = 1. Since h12 ̸= 0 and −(h2

11 + h2
12) = 1, we have a contradiction.

Hence this case is not possible.
Consider the case h12 + h21 = 0. This equality implies the equality h12 =

−h21. Using this equality and the equality (4) : h11h12 + h21h22 = 0, we obtain
h11h12−h12h22 = 0. Hence h12(h11−h22) = 0. Since h12 ̸= 0, this equality implies
h11 = h22. Hence the equalities h12 = −h21, h11 = h22 hold. These equalities

and (3) imply that the matrix H has the form

(
h11 −h21

h21 h11

)
, where det(H) = 1.

Hence H ∈ Λ(S(C∗)). □

Corollary 1. Let α(t) = α1(t)+ iα2(t) and β(t) = β1(t)+ iβ2(t) be T -figures in C.
Then T -figures α(t) = α1(t)+ iα2(t) and β(t) = β1(t)+ iβ2(t) are S(C∗)-equivalent
if and only if T-figures Γ(α(t)) and Γ(β(t)) in E2 are SO(2,R)-equivalent.

Proof. It follows from Theorems 1 and 2. □

Denote by MO(2,R) the group of all transformations of E2 generated by the
group O(2,R) and all translations of E2. Elements of the group MO(2,R) has the
following form F : E2 → E2, where F (x) = g(x)+a, g ∈ O(2,R), a ∈ R2. Denote by
MSO(2,R) the group of all transformations of E2 generated by the group SO(2,R)
and all translations of E2. Elements of the group MSO(2,R) has the following form
F : E2 → E2, where F (x) = g(x) + a, g ∈ SO(2,R), a ∈ R2.

4. Complete systems of G-invariants of a T -figure in E2 for the
group G = SO(2,R)

Let G be a subgroup of the group MO(2,R).

Definition 4. Two T -figures α and β in E2 are called G-equivalent if there exists

g ∈ G such that α = gβ. In this case, we also write as follows: α
G∼ β or α(t)

G∼
β(t),∀t ∈ T .

Definition 5. A function f(α(t), β(t), . . . , γ(t)) of a finite number of T -figures
α(t), β(t), . . . , γ(t) is called G-invariant function if
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f(Fα(t), Fβ(t), . . . , Fγ(t)) = f(α(t), β(t), . . . , γ(t)) for all F ∈ G, all T -figures
α(t), β(t), . . . , γ(t) and all t ∈ T .

Example 1. By the definitions of the groups O(2,R) and SO(2,R), we obtain that
the quadratic form Q : E2 → R ,Q(x) = ⟨x, x⟩ is O(2,R)-invariant function on
E2 and the bilinear form f : E2 × E2 → R, f(x, y) = ⟨x, y⟩ are O(2,R)-invariant
functions on the set E2 × E2.

Example 2. Denote by [x y] the determinant

∣∣∣∣ x1 y1
x2 y2

∣∣∣∣ of x =

(
x1

x2

)
, y =(

y1
y2

)
∈ E2. Consider the function h : E2 × E2 → R, h(x, y) = [x y]. Using the

equality det(g) = 1,∀g ∈ SO(2,R), we obtain [(gx) (gy)] = det(g)[x y] = [x y],∀g ∈
SO(2,R),∀x, y ∈ E2. This means that [x y] is an SO(2,R)-invariant function on
the set E2 × E2. Clearly, h(x, y) is not an O(2,R)-invariant function on the set
E2 × E2.

Example 3. By definitions of the groups G = MO(2,R),MSO(2,R) we obtain
that function f : E2 × E2 → R, f(x, y) = ⟨x− y, x− y⟩ is an G-invariant function
on the set E2 × E2.

Definition 6. A system {f1, f2, . . . , fm} of G-invariant functions f1, f2, . . . , fm of
a T -figure α in ET

2 will be called a complete system of G-invariant functions of

T -figure if equalities fj(α) = fj(β),∀j ∈ 1, 2, . . . ,m imply α
G∼ β.

Denote by θ the vector θ =

(
0
0

)
∈ E2. Let α be a T -figure in E2. De-

note by Z(α) the set {t ∈ T |α(t) = θ}. Denote by θT (t) the T -figure such that
θT (t) = θ,∀t ∈ T .

Denote by 2T the set of all subsets of the set T .

Proposition 8. (1) Let G be a subgroup of C∗. Assume that α, β ∈ CT such

that α
G∼ β. Then Z(α) = Z(β). This means that the function Z : CT → 2T

is a G-invariant function on CT .

(2) Let G be a subgroup of O(2,R). Assume that α, β ∈ ET
2 such that α

G∼ β.
Then Z(α) = Z(β) that is the function Z : ET

2 → 2T is a G-invariant
function on ET

2 .

Proof. It is obvious. □

Proposition 9. Let C be the field of complex numbers and x = x1 + ix2, y =
y1 + iy2 ∈ C such that x ̸= 0. Then,
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(1) the element yx−1 exists, the equality yx−1 = ⟨x,y⟩
Q(x) + i [x y]

Q(x) and the following

equality hold

Λyx−1 =

( ⟨x,y⟩
Q(x) − [x y]

Q(x)
[x y]
Q(x)

⟨x,y⟩
Q(x)

)
(7)

where ⟨x, y⟩ = x1y1 + x2y2 and [x y] = x1y2 − x2y1.
(2) det(Λyx−1) ̸= 0 if and only if Q(y) ̸= 0.

Proof. It is given in [16, Proposition 4. 9]. □

Now we consider the G-equivalence problem of T -figures in the field C for the
group S(C∗).

Let α and β be T -figures in C such that α(t) = β(t) = 0,∀t ∈ T , that is

Z(α) = Z(β) = T . In this case, it is obvious that α
S(C∗)∼ β.

Theorem 3. Let α be a T -figure in the field C such that Z(α) ̸= T , and t0 ∈
T \ Z(α).

(i) Suppose that a T -figure β in C such that α
S(C∗)∼ β. Then the following

equalities hold: Z(α) = Z(β)
⟨α(t0), α(t)⟩ = ⟨β(t0), β(t)⟩,∀t ∈ T \ Z(α)
[α(t0)α(t)] = [β(t0)β(t)] ,∀t ∈ T \ Z(α).

(8)

(ii) Conversely, assume that a T -figure β in C such that the equalities (8) hold.
Then there exists a single element g ∈ S(C∗) such that β = g · α. In this
case, it has the following form g = β(t0)(α(t0))

−1.

Proof. Assume that α
S(C∗)∼ β. Then there exists a ∈ S(C∗) such that β(t) =

a · α(t),∀t ∈ T . By Proposition 8-(1), we obtain the equality Z(α) = Z(β). Hence
the equality Z(α) = Z(β) in (8) is proved.

The equality Z(α) = Z(β) and the inequality Z(α) ̸= T imply inequality
Z(β) ̸= T . Since t0 ∈ T \ Z(α) = T \ Z(β), we obtain that α(t0) ̸= 0 and
β(t0) ̸= 0. The inequality α(t0) ̸= 0 implies an existence of (α(t0))

−1. Con-
sider following functions α(t) · (α(t0))−1 and β(t) · (β(t0))−1 on T . The above
equality β(t) = a · α(t),∀t ∈ T , implies following equality: β(t) · (β(t0))−1 =
a · α(t) · (a · α(t0))−1 = (a · a−1) · α(t) · (α(t0))−1 = α(t) · (α(t0))−1,∀t ∈ T . Hence
following equality holds:β(t)·(β(t0))−1 = α(t)·(α(t0))−1,∀t ∈ T . Using Proposition
9, we obtain following equalities:

α(t) · (α(t0))−1 = ⟨α(t0),α(t)⟩
Q(α(t0))

+ i [α(t0)α(t)]Q(α(t0))
, β(t) · (β(t0))−1 = ⟨β(t0),β(t)⟩

Q(β(t0))
+ i [β(t0) β(t)]Q(β(t0))

.

These equalities and the equality β(t) · (β(t0))−1 = α(t) · (α(t0))−1,∀t ∈ T , imply

following equality: ⟨α(t0),α(t)⟩
Q(α(t0))

+ i [α(t0)α(t)]Q(α(t0))
= ⟨β(t0),β(t)⟩

Q(β(t0))
+ i [β(t0) β(t)]Q(β(t0))

,∀t ∈ T . This
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equality imply following equalities:{ ⟨α(t0),α(t)⟩
Q(α(t0))

= ⟨β(t0),β(t)⟩
Q(β(t0))

,∀t ∈ T
[α(t0)α(t)]
Q(α(t0))

= [β(t0) β(t)]
Q(β(t0))

,∀t ∈ T.
(9)

The equality β(t) = a · α(t),∀t ∈ T , implies following equality Q(β(t0)) = Q(a ·
α(t0)). Using Proposition 2, we obtain following equalityQ(β(t0)) = Q(a)·Q(α(t0)).
Since a ∈ S(C∗), we have Q(a) = 1. This equality and previous equality Q(β(t0)) =
Q(a) · Q(α(t0)) imply following equality Q(β(t0)) = Q(α(t0)). This equality and
(9) imply following equalities:{ ⟨α(t0),α(t)⟩

Q(α(t0))
= ⟨β(t0),β(t)⟩

Q(α(t0))
,∀t ∈ T

[α(t0)α(t)]
Q(α(t0))

= [β(t0) β(t)]
Q(α(t0))

,∀t ∈ T.

These equalities imply following equalities in (8):{
⟨α(t0), α(t)⟩ = ⟨β(t0), β(t)⟩,∀t ∈ T
[α(t0)α(t)] = [β(t0)β(t)] ,∀t ∈ T.

Hence equalities (8) is proved.
Conversely, assume that T -figures α and β in C such that the equalities (8) hold.

By the supposition in the present theorem t0 ∈ T \Z(α(t)). This implies α(t0) ̸= 0.
This inequality and the equality Z(α(t)) = Z(β(t)) in (8) imply the inequality
β(t0) ̸= 0. In the equality ⟨α(t0), α(t)⟩ = ⟨β(t0), β(t)⟩,∀t ∈ T , in (8) we put t = t0.
Then we obtain following equality ⟨α(t0), α(t0)⟩ = ⟨β(t0), β(t0)⟩. This equality and
the following equalities Q(α(t0)) = ⟨α(t0), α(t0)⟩, Q(β(t0)) = ⟨β(t0), β(t0)⟩ imply
following equality Q(α(t0)) = Q(β(t0)). The inequality α(t0) ̸= 0 implies following
inequality Q(α(t0)) ̸= 0. This inequality, the equality Q(α(t0)) = Q(β(t0)) and the
equalities in (8) imply following equality:{ ⟨α(t0),α(t)⟩

Q(α(t0))
= ⟨β(t0),β(t)⟩

Q(β(t0))
,∀t ∈ T

[α(t0)α(t)]
Q(α(t0))

= [β(t0) β(t)]
Q(β(t0))

,∀t ∈ T.

These equalities imply following equalities:

⟨α(t0), α(t)⟩
Q(α(t0))

+ i
[α(t0)α(t)]

Q(α(t0))
=

⟨β(t0), β(t)⟩
Q(β(t0))

+ i
[β(t0)β(t)]

Q(β(t0))
,∀t ∈ T. (10)

By Proposition 9, we obtain following equalities:

α(t) · (α(t0))−1 =
⟨α(t0), α(t)⟩
Q(α(t0))

+ i
[α(t0)α(t)]

Q(α(t0))
, (11)

β(t) · (β(t0))−1 =
⟨β(t0), β(t)⟩
Q(β(t0))

+ i
[β(t0)β(t)]

Q(β(t0))
,∀t ∈ T. (12)
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Equalities (10), (11) and (12) imply following equality:

β(t) · (β(t0))−1 = α(t) · (α(t0))−1,∀t ∈ T. (13)

This equality implies following equality:

β(t) = β(t0) · (α(t0))−1 · α(t),∀t ∈ T. (14)

Since Q(α(t0)) = Q(β(t0)), using this equality and Propositions 2, 4, we obtain
following equality: Q(β(t0) · (α(t0))−1) = Q(β(t0)) · (Q(α(t0)))

−1 = Q(β(t0)) ·
(Q(β(t0)))

−1 = 1. This means that β(t0)(α(t0))
−1 ∈ S(C∗). Hence (14) implies

that α(t)
S(C∗)∼ β(t),∀t ∈ T .

Prove the uniqueness of h ∈ S(C∗) satisfying the conditions β(t) = hα(t),∀t ∈ T .
Assume that h ∈ S(C∗) such that β(t) = hα(t),∀t ∈ T . In particularly, for t = t0,
the equality β(t) = hα(t) implies following equality: β(t0) = hα(t0). This equality
and the inequality α(t0) ̸= 0 imply following equality β(t0)(α(t0))

−1 = h. Hence
the uniqueness of h is proved. □

Theorem 4. Let α be a T -figure in E2 such that Z(α) ̸= T , and t0 ∈ T \ Z(α).

(i) Suppose that a T -figure β in E2 such that α
SO(2,R)∼ β. Then the following

equalities hold: Z(α) = Z(β)
⟨α(t0), α(t)⟩ = ⟨β(t0), β(t)⟩,∀t ∈ T \ Z(α)
[α(t0)α(t)] = [β(t0)β(t)] ,∀t ∈ T \ Z(α).

(15)

(ii) Conversely, assume that a T -figure β in E2 such that the equalities (15)
hold. Then there exists a single matrix H ∈ SO(2,R) such that β = Hα.
In this case, H has the following form

H =

( ⟨α(t0),β(t0)⟩
⟨α(t0),α(t0),⟩ − [α(t0) β(t0)]

⟨α(t0),α(t0)⟩
[α(t0) β(t0)]
⟨α(t0),α(t0)⟩

⟨α(t0),β(t0)⟩
⟨α(t0),α(t0)⟩

)
, (16)

where det(H) = ( ⟨α(t0),β(t0)⟩⟨α(t0),α(t0)⟩ )
2 + ( [α(t0) β(t0)]

⟨α(t0),α(t0)⟩ )
2 = 1.

Proof. We consider T -figures α and β in E2 as column vector functions: α(t) =(
α1(t)
α2(t)

)
, β(t) =

(
β1(t)
β2(t)

)
. Assume that α

SO(2,R)∼ β. Then, by Proposition

8-(2), Z(α) = Z(β). This equality and the inequality Z(α) ̸= T imply inequality
Z(β) ̸= T . Since functions ⟨α(t0), α(t)⟩ and [α(t0)α(t)] are SO(2,R)-invariant, the
SO(2,R)-equivalence α

SO(2,R)∼ β, and the equality Z(α) = Z(β) imply equalities
(15).

Conversely, assume that a T -figures α and β in E2 such that the equalities (15)
hold. Consider following T -figures in the field C: Γ−1(α(t)) = α1(t)+iα2(t),∀t ∈ T ,
Γ−1(β(t)) = β1(t)+ iβ2(t),∀t ∈ T . For these T -figures in C the equalities (15) also
hold. Then, by Theorem 3, these T -figures are S(C∗)-equivalent and there exists a
single element g ∈ S(C∗) such that β1(t) + iβ2(t) = g · (α1(t) + iα2(t)),∀t ∈ T . In
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this case, by Theorem 3, g has the following form:

g = β1(t0)+iβ2(t0)
α1(t0)+iα2(t0)

= (β1(t0)+iβ2(t0))·(α1(t0)−iα2(t0))
(α1(t0)+iα2(t0))·(α1(t0)−iα2(t0))

= (α1(t0)β1(t0)+α2(t0)β2(t0))+i(α1(t0)β2(t0)−α2(t0)β1(t0))
(α1(t0))2+(α2(t0))2

= ⟨α(t0),β(t)⟩+i[α(t0) β(t0)]
Q(α(t0))

.

The S(C∗)-equivalence of the T -figures Γ−1(α), and Γ−1(β(t)) = β1(t)+iβ2(t),∀t ∈
T in C, by Theorem 3, implies SO(2,R)-equivalence of T -figures α and β in E2. In
this case there exists a single element H ∈ SO(2,R) such that H = Λg and β(t) =

H · α(t),∀t ∈ T . By Proposition 9, the above form of g = ⟨α(t0),β(t)⟩+i[α(t0) β(t0)]
Q(α(t0))

implies that H has the form (16), where det(H) = 1. □

Remark 1. Assume that T be a set such that it has at least two elements. By
Theorem 4, the system

{Z(α), ⟨α(t0), α(t)⟩ , [α(t0)α(t)]} (17)

is a complete system of SO(2,R)-invariant functions on the set of all T -figures α
in E2 such that Z(α) ̸= T , and t0 ∈ T \ Z(α).

Now let us find a complete system of relations between elements of this complete
system.

Theorem 5. Let (17) be the complete system of SO(2,R)-invariants of a T -figure
α in E2. Assume that:
(1.1) U is a subset of T such that U ̸= T
(1.2) t0 ∈ T \ U
(1.3) r be a real number such that r > 0
(1.4) a(t) = (a1(t), a2(t)) be a mapping a : T → E2 such that following two proper-
ties hold:
(1.4.1) a1(t) = 0,∀t ∈ U , and a1(t0) = r
(1.4.2) a2(t) = 0,∀t ∈ U , and a2(t0) = 0.

Then there exists a T -figure α in E2 such that following equalities hold:
(2.1) Z(α) = U
(2.2) ⟨α(t0), α(t)⟩ = a1(t),∀t ∈ T
(2.3) [α(t0)α(t)] = a2(t),∀t ∈ T .

Proof. Assume that α is a T -figure in E2 such that Z(α) ̸= T and t0 ∈ T \ Z(α).
(2.1) − (2.3) We choose a T -figure α as follows. Put α(t0) = (

√
r, 0). Then

we obtain ⟨α(t0), α(t0)⟩ = r. This equality implies Q(α(t0)) = ⟨α(t0), α(t0)⟩ = r.
Hence ⟨α(t0), α(t0)⟩ = a1(t0) = r. We choose α on the set U as follows. We put

α(t) =

(
0
0

)
∀t ∈ U . This equality implies ⟨α(t), α(t)⟩ = a(t) = 0,∀t ∈ U .

For fixed t ∈ T , we consider a(t) and α(t) as elements of the field C of complex

numbers: a(t) = a1(t) + ia2(t), α(t) = α1(t) + iα2(t). We put α(t) = a(t)α(t0)
r ,∀t ∈

T \ (U ∪ {t0}). Since α(t0) =
√
r ̸= 0, (α(t0))

−1 exists. Then the equalities

α(t) = a(t)α(t0)
r ,∀t ∈ T \ (U ∪ {t0}), imply equalities (α(t0))

−1α(t) = a(t)
r ,∀t ∈
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T \ (U ∪ {t0}). By Proposition 9, (α(t0))
−1α(t) = ⟨α(t0),α(t)⟩

Q(α(t0))
+ i [α(t0)α(t)]Q(α(t0))

,∀t ∈ T .

The equality Q(α(t0)) = ⟨α(t0), α(t0)⟩ = r, the last two equalities (α(t0))
−1α(t) =

a(t)
r ,∀t ∈ T \ (U ∪ {t0}), (α(t0))

−1α(t) = ⟨α(t0),α(t)⟩
Q(α(t0))

+ i [α(t0)α(t)]Q(α(t0))
,∀t ∈ T , and

equalities ⟨α(t), α(t)⟩ = a(t) = 0,∀t ∈ U , imply equalities ⟨α(t0),α(t)⟩
r + i [α(t0)α(t)]r =

a(t)
r ,∀t ∈ T . These equalities imply Z(α) = U , ⟨α(t0), α(t)⟩ = a1(t),∀t ∈ T , and

[α(t0)α(t)] = a2(t), ∀t ∈ T . The statements (2.1)-(2.3) are proved. □

5. Complete systems of G-invariants of a T -figure in E2 for the
group G = O(2,R)

By Proposition 7, the following equality holds:
O(2,R) = SO(2,R) ∪ {HW | H ∈ SO(2,R)}, where HW is the multiplication

of matrices H and W , where W =

(
1 0
0 −1

)
. For shortness, denote the set

{HW | H ∈ SO(2,R)} by SO(2,R) ·W . We note that SO(2,R)∩SO(2,R) ·W = ∅.
Let α and β be T -figures in E2. Assume that α

O(2,R)∼ β. Then there exists
F ∈ O(2,R) such that β(t) = Fα(t),∀t ∈ T . Denote by Equ(α, β) the set of all
F ∈ O(2,R) such that β(t) = Fα(t),∀t ∈ T .

Proposition 10. Let α and β be T -figures in E2 such that α
O(2,R)∼ β. Then there

exist only following three possibilities for the set Equ(α, β):
(I) Equ(α, β) = {F}, where F ∈ SO(2,R).
(II) Equ(α, β) = {F}, where F ∈ SO(2,R) ·W .
(III) Equ(α, β) = {F1, F2}, where F1 ∈ SO(2,R), F2 ∈ SO(2,R) ·W .

Proof. Assume that α
O(2,R)∼ β. Then there exists F ∈ O(2,R) such that F ∈

Equ(α, β). Since F ∈ O(2,R) and F ∈ O(2,R) = SO(2,R)∪{HW | H ∈ SO(2,R)},
then F ∈ SO(2,R) or F ∈ {HW | H ∈ SO(2,R)}.

(I) Let F ∈ Equ(α, β), where F ∈ SO(2,R). By Theorem 4, in this case
there exists only one F ∈ SO(2,R) such that following equalities β(t) =
Fα(t),∀t ∈ T , hold. Hence, in this case, the set Equ(α, β) has a only one
element of SO(2,R). Assume that the set Equ(α, β) has not elements of
SO(2,R)·W . Then, in this case, the set Equ(α, β) has only a single element
F ∈ O(2,R) and it is such that F ∈ SO(2,R).

(II) Let F ∈ Equ(α, β), where F ∈ {HW | H ∈ SO(2,R)}. Then following
equality β(t) = Fα(t),∀t ∈ T , holds. Since F ∈ {HW | H ∈ SO(2,R)},
there exists H ∈ SO(2,R) such that F = HW . Then we have following
equality β(t) = HWα(t),∀t ∈ T . By Theorem 4, in this case there exists
only one H ∈ SO(2,R) such that following equalities β(t) = HWα(t),∀t ∈
T , hold. Hence, in this case, the set Equ(α, β) has only one element
of {HW | H ∈ SO(2,R)}. Assume that the set Equ(α, β) has not ele-
ments of SO(2,R). Then, in this case, the set Equ(α, β) has only one
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element of {HW | H ∈ SO(2,R)} such that Equ(α, β) = {F}, where F ∈
{HW | H ∈ SO(2,R)}.

(III) Let Equ(α, β) be such that F1 ∈ Equ(α, β) and F2 ∈ Equ(α, β), where
F1 ∈ SO(2,R) and F2 ∈ {HW | H ∈ SO(2,R)}. Then following equali-
ties hold: β(t) = F1α(t),∀t ∈ T , and β(t) = F2α(t) = HWα(t),∀t ∈ T ,
where H ∈ SO(2,R). By Theorem 4, in the case β(t) = F1α(t),∀t ∈
T , there exists only one F1 ∈ SO(2,R) such that following equalities
β(t) = F1α(t),∀t ∈ T , hold. Hence, in this case, the set Equ(α, β) has only
one element of SO(2,R). By Theorem 4, in the case β(t) = F2α(t) =
HWα(t),∀t ∈ T , where H ∈ SO(2,R), there exists only one element
F2 ∈ {HW | H ∈ SO(2,R)} such that following equalities β(t) = F2α(t) =
HWα(t),∀t ∈ T hold, where H ∈ SO(2,R). Then, in this case, the set
Equ(α, β) have only two elements: only one element of SO(2,R) and only
one element of SO(2,R) ·W .

□

Theorem 6. Let α be a T -figure in E2 such that Z(α) ̸= T and t0 ∈ T \ Z(α).

(i) Suppose that a T -figure β in E2 such that the following equalities β(t) =
HWα(t),∀t ∈ T , hold for some H ∈ SO(2,R). Then following equalities
hold:  Z(α) = Z(β)

⟨α(t0), α(t)⟩ = ⟨β(t0), β(t)⟩,∀t ∈ T \ Z(α)
− [α(t0)α(t)] = [β(t0)β(t)] ,∀T \ Z(α).

(18)

(ii) Conversely, assume that a T -figure β in E2 such that the equalities (18)
hold. Then there exists only one matrix U ∈ SO(2,R) such that β(t) =
UWα(t),∀t ∈ T . In this case, U has the following form

U =

( ⟨Wα(t0),β(t0)⟩
⟨α(t0),α(t0)⟩ − [Wα(t0) β(t0)]

⟨α(t0),α(t0)⟩
[Wα(t0) β(t0)]
⟨α(t0),α(t0)⟩

⟨Wα(t0),β(t0)⟩
⟨α(t0),α(t0)⟩

)
, (19)

where det(U) = ( ⟨Wα(t0),β(t0)⟩
⟨α(t0),α(t0)⟩ )2 + ( [Wα(t0) β(t0)]

⟨α(t0),α(t0)⟩ )
2 = 1.

Proof. Suppose that a T -figure β in E2 such that the following equalities β(t) =
HWα(t),∀t ∈ T , hold for some H ∈ SO(2,R). This means T -figures Wα and β
are SO(2,R)-equivalent. Then, by Theorem 4, we obtain following equalities: Z(Wα) = Z(β)

⟨Wα(t0),Wα(t)⟩ = ⟨β(t0), β(t)⟩,∀t ∈ T \ Z(α)
[Wα(t0)Wα(t)] = [β(t0)β(t)] ,∀t ∈ T \ Z(α).

(20)

These equalities and equalities Z(Wα) = Z(α), ⟨Wα(t0),Wα(t)⟩ = ⟨α(t0), α(t)⟩,
[Wα(t0)Wα(t)] = − [α(t0)α(t)] imply equalities (18).

Conversely, assume that a T -figure β in E2 such that the equalities (18) hold.
Then equalities (18) and equalities Z(Wα) = Z(α), ⟨Wα(t0),Wα(t)⟩ = ⟨α(t0), α(t)⟩,
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[Wα(t0)Wα(t)] = − [α(t0)α(t)] imply equalities (20). By Theorem 4, equalities (20)
and Proposition 10 imply an existence of only one U ∈ SO(2,R) such that following
equalities β(t) = UWα(t),∀t ∈ T , hold. By Theorem 4, the matrix U has the form
(19). □

Remark 2. Assume that T be a set such that it has at least two elements. By
Theorem 6, the system {Z(α), ⟨α(t0), α(t)⟩ , [Wα(t0)Wα(t)]} is a complete system
of SO(2,R)-invariant functions on the set of all T -figures Wα such that Z(α) ̸= T ,
and t0 ∈ T \ Z(α). Complete system of relations between elements of this system
follows easy from Theorem 5.

Theorem 7. Let α and β be T -figures in E2. Assume that Z(α) ̸= T and t0 ∈
T \ Z(α).

(i) Suppose that matrices H1, H2 ∈ SO(2,R) exist such that β(t) = H1α(t),∀t ∈
T , and β(t) = H2Wα(t),∀t ∈ T . Then following equalities hold: Z(α) = Z(β)

⟨α(t0), α(t)⟩ = ⟨β(t0), β(t)⟩
rank(α) = rank(β) = 1

(21)

for all t ∈ T \ Z(α(t)).
(ii) Conversely, assume that the equalities (21) hold. Then only two matrices

H1 ∈ SO(2,R) and H2 ∈ SO(2,R) exist such that following equalities
β(t) = H1α(t),∀t ∈ T , β(t) = H2Wα(t),∀t ∈ T , hold. Here the matrix H1

has the following form:

H1 =

( ⟨α(t0),β(t0)⟩
⟨α(t0),α(t0)⟩ − [α(t0) β(t0)]

⟨α(t0),α(t0)⟩
[α(t0) β(t0)]
⟨α(t0),α(t0)⟩

⟨α(t0),β(t0)⟩
⟨α(t0),α(t0)⟩

)
, (22)

where det(H1) = ( ⟨α(t0),β(t0)⟩⟨α(t0),α(t0)⟩ )
2 + ( [α(t0) β(t0)]

⟨α(t0),α(t0)⟩ )
2 = 1.

Here the matrix H2 ∈ SO(2,R) has the following form

H2 =

( ⟨Wα(t0),β(t0)⟩
⟨α(t0),α(t0)⟩ − [Wα(t0) β(t0)]

⟨α(t0),α(t0)⟩
[Wα(t0) β(t0)]
⟨α(t0),α(t0)⟩

⟨Wα(t0),β(t0)⟩
⟨α(t0),α(t0)⟩

)
, (23)

where det(H2) = (W ⟨α(t0),β(t0)⟩
⟨α(t0),α(t0)⟩ )2 + ( [Wα(t0) β(t0)]

⟨α(t0),α(t0)⟩ )
2 = 1.

Proof. (i) Suppose that there exist H1 ∈ SO(2,R) such that β(t) = H1α(t),∀t ∈ T .
Then, by Theorem 4 the following equalities hold: Z(α) = Z(β)

⟨α(t0), α(t)⟩ = ⟨β(t0), β(t)⟩,∀t ∈ T \ Z(α)
[α(t0)α(t)] = [β(t0)β(t)] ,∀T \ Z(α).

(24)
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Suppose that there exist H2 ∈ SO(2,R) such that β(t) = H2Wα(t),∀t ∈ T .
Then, by Theorem 6, the following equalities hold: Z(α) = Z(β)

⟨α(t0), α(t)⟩ = ⟨β(t0), β(t)⟩,∀t ∈ T \ Z(α)
[α(t0)α(t)] = − [β(t0)β(t)] ,∀T \ Z(α).

(25)

Equalities (24) and (25)imply the following equalities:{
Z(α) = Z(β)

⟨α(t0), α(t)⟩ = ⟨β(t0), β(t)⟩,∀t ∈ T \ Z(α).
(26)

Equalities (24) implies the following equalities:

[α(t0)α(t)] = [β(t0)β(t)] ,∀T \ Z(α). (27)

Equalities (25) implies the following equalities:

[α(t0)α(t)] = − [β(t0)β(t)] ,∀T \ Z(α). (28)

Equalities (27)and (28) imply following equalities:

[β(t0)β(t)] = − [β(t0)β(t)] ,∀T \ Z(α). (29)

These equalities imply following equalities:

[β(t0)β(t)] = 0,∀T \ Z(α). (30)

These equalities and the equalities (27) imply following equalities

[α(t0)α(t)] = 0,∀T \ Z(α). (31)

The equalities (31) imply that there exists a real function a(t) on T such that
a(t) = 0,∀t ∈ Z(α), a(t) ̸= 0,∀T \ Z(α) and equalities α(t) = a(t)α(t0),∀t ∈ T
hold.

Similarly, equalities (30) imply that there exists a real function b(t) on T such
that b(t) = 0,∀t ∈ Z(α), b(t) ̸= 0,∀T \ Z(α) and equalities β(t) = b(t)β(t0),∀t ∈ T
hold.

The above equalities α(t) = a(t)α(t0),∀t ∈ T and β(t) = b(t)β(t0),∀t ∈ T imply
the equality rank(α) = rank(β) = 1 in the equalities (21). This equality and the
equalities (24)imply the equalities (21).

Conversely, assume that the equalities (21) hold. Then the equality rank(α) = 1
in (21) implies an existence of a real function a(t) on T such that a(t) = 0,∀t ∈
Z(α), a(t) ̸= 0,∀T \ Z(α) and α(t) = a(t)α(t0),∀t ∈ T .

Similarly, the equality rank(β) = 1 in (21) implies an existence of a real func-
tion b(t) on T such that b(t) = 0,∀t ∈ Z(α), b(t) ̸= 0,∀T \ Z(α), and β(t) =
b(t)β(t0),∀t ∈ T . The equalities Z(α) = Z(β), and ⟨α(t0), α(t)⟩ = ⟨β(t0), β(t)⟩,∀t ∈
T \ Z(α), imply following equality a(t) = b(t),∀t ∈ T . Hence we obtain following
equalities α(t) = a(t)α(t0),∀t ∈ T , and β(t) = a(t)β(t0),∀t ∈ T .

Since t0 ∈ T \ Z(α), we have a(t0) ̸= 0. By the equality Z(α) = Z(β), we
obtain β(t0) ̸= 0. By [16, Theorem 5.1], only two matrices H1 ∈ SO(2,R) and
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H2 ∈ SO(2,R) exist such that β(t0) = H1α(t0) and β(t0) = H2Wα(t0). By [16,
Theorem 5.1.], H1 has the form (23) and H2 has the form (24).

The above equalities β(t) = a(t)β(t0),∀t ∈ T , β(t0) = H1α(t0), β(t0) = H2Wα(t0)
imply following equalities: β(t) = H1α(t),∀t ∈ T , and β(t) = H2Wα(t),∀t ∈ T . □

Remark 3. Assume that T be a set such that it has at least two elements. By Theo-
rem 7, the system {Z(α), ⟨α(t0), α(t)⟩ , rank(α)} is a complete system of SO(2,R)-
invariant functions on the set of all T -figures α such that Z(α) ̸= T , rank(α) = 1
and t0 ∈ T \ Z(α). Complete system of relations between elements of this system
follows easy from Theorem 5.

Corollary 2. Let α and β be a T -figures in E2 such that Z(α) ̸= T and Z(β) ̸= T .
Assume that there exists a single matrix F ∈ O(2,R) such that β(t) = Fα(t),∀t ∈
T . Then rank(α) = rank(β) = 2.

Conversely, assume that α
O(2,R)∼ β, and rank(α) = rank(β) = 2. Then there

exists a single matrix F ∈ O(2,R)such that β(t) = Fα(t),∀t ∈ T .

Proof. It follows from Theorems 4,6 and 7. □

6. Complete systems of invariants of a T -figure in E2 for the group
MSO(2,R)

Let G = O(2,R) or G = SO(2,R). Denote by G ⋉ Tr(2,R) the group of all
transformations of E2 generated by elements of G and all translations of E2. In
particularly, MO(2,R) = O(2,R)⋉Tr(2,R) andMSO(2,R) = SO(2,R)⋉Tr(2,R).

Assume that the set T has only one element. Let α and β be T -figures. Then
they are Tr(2,R)-equivalent. Hence they are G ⋉ Tr(2,R)-equivalent. Below we
assume that T has at last two elements.

Proposition 11. Let G = O(2,R) or G = SO(2,R) and T be a set such that it
has at last two elements.

(1) Assume that α
G⋉Tr(2,R)∼ β, and t0 is a fixed element of T . Then (α(t) −

α(t0))
G∼ (β(t)− β(t0)),∀t ∈ T .

(2) Assume that (α(t) − α(t0))
G∼ (β(t) − β(t0)),∀t ∈ T , for some element t0 ∈ T .

Then α
G⋉Tr(2,R)∼ β.

Proof. ⇒ Assume that α
G⋉Tr(2,R)∼ β. Then there exists F ∈ G and a ∈ E2

such that β(t) = Fα(t) + a,∀t ∈ T . In particularly, for t = t0, we have β(t0) =
Fα(t0) + a. This equality implies a = β(t0)− Fα(t0). This equality and equalities
β(t) = Fα(t) + a,∀t ∈ T , imply equalities β(t) = Fα(t) + β(t0) − Fα(t0),∀t ∈ T .
These equalities imply equalities β(t) − β(t0) = F (α(t) − α(t0)),∀t ∈ T , that is

(α(t)− α(t0))
G∼ (β(t)− β(t0)),∀t ∈ T .

⇐ Assume that (α(t) − α(t0))
G∼ (β(t) − β(t0)),∀t ∈ T . Then there exists

F ∈ G such that β(t) − β(t0) = F (α(t) − α(t0)),∀t ∈ T . Put a = β(t0) − Fα(t0).
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This equality implies β(t0) = Fα(t0) + a. The equality a = β(t0) − Fα(t0) and
equalities β(t)−β(t0) = F (α(t)−α(t0)),∀t ∈ T , β(t0) = Fα(t0)+a imply equalities

β(t) = Fα(t) + a,∀t ∈ T . Hence α
G⋉Tr(2,R)∼ β. □

Proposition 12. Let G = SO(2,R) or G = O(2,R). Assume that α and β are T -

figures such that α
G⋉Tr(2,R)∼ β and t0 ∈ T . Then Z(α(t)−α(t0)) = Z(β(t)−β(t0)).

Proof. This statement follows from Propositions 8 and 11. □

This proposition means that the function Z(α(t) − α(t0)) is a G ⋉ Tr(2,R)-
invariant function of a T -figure α(t) for any t

0
∈ T .

Proposition 13. Let G = SO(2,R) or G = O(2,R). Assume that t0 ∈ T and

Z(α(t)− α(t0)) = Z(β(t)− β(t0) = T . Then α
G⋉Tr(2,R)∼ β.

Proof. In this case, we have α(t) = α(t0),∀t ∈ T , and β(t) = β(t0),∀t ∈ T . These
equalities imply β(t) = α(t) + (β(t0)− α(t0)),∀t ∈ T . Hence T -figures α and β are
G⋉ Tr(2,R)-equivalent. □

Theorem 8. Let t0 ∈ T , α be a T -figure in E2 such that Z(α(t)−α(t0)) ̸= T , and
t1 ∈ T \ Z(α(t)− α(t0)) be fixed.

(i) Suppose that a T -figure β in E2 such that α
MSO(2,R)∼ β. Then following

equalities hold: Z(α(t)− α(t0)) = Z(β(t)− β(t0)
⟨α(t1)− α(t0), α(t)− α(t0)⟩ = ⟨β(t1)− β(t0), β(t)− β(t0)⟩

[(α(t1)− α(t0)) (α(t)− α(t0))] = [(β(t1)− β(t0)) (β(t)− β(t0)]
(32)

for all t ∈ T \ Z(α(t)− α(t0)).
(ii) Conversely, assume that a T -figure β in E2 such that the equalities (32)

hold. Then there exists only one element F ∈ MSO(2,R) such that β =
Fα. The evident form of F as follows:Fα(t) = Hα(t) + a,∀t ∈ T , where
H ∈ SO(2,R), a ∈ E2. Here evident form of H as follows

H =

( ⟨α(t1)−α(t0), β(t1)−β(t0)⟩
⟨α(t1)−α(t0),α(t1)−α(t0)⟩ − [(α(t1)−α(t0)) (β(t1)−β(t0))]

⟨α(t1)−α(t0),α(t1)−α(t0))⟩
[(α(t1)−α(t0)) (β(t1)−β(t0))]
⟨α(t1)−α(t0),α(t1)−α(t0)⟩

⟨α(t1)−α(t0), β(t1)−β(t0)⟩
⟨α(t1)−α(t0),α(t1)−α(t0)⟩

)
, (33)

where det(H) = ( ⟨α(t1)−α(t0), β(t1)−β(t0)⟩
⟨α(t1)−α(t0),α(t1)−α(t0)⟩ )

2 + ( [(α(t1)−α(t0)) (β(t1)−β(t0))]
⟨α(t1)−α(t0), α(t1)−α(t0)⟩ )2 =

1. The element a has the following form: a = β(t0)−Hα(t0).

Proof. It follows from Proposition 11 and Theorem 4 □

Corollary 3. Let α and β be T -figures in E2. Assume that α and t0 ∈ T are such
that Z(α(t) − α(t0)) ̸= T . Assume that F1 ∈ SO(2,R), a1 ∈ E2, F2 ∈ SO(2,R),
a2 ∈ E2 such that:
1) β(t) = F1α(t) + a1,∀t ∈ T ,
2) β(t) = F2α(t) + a2,∀t ∈ T .
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Then F1 = F2, a1 = a2.

Proof. It follows easy from Proposition 11and Theorem 8. □

Remark 4. Let t0 ∈ T . By Theorem 8, the system
{Z(α(t)− α(t0)), ⟨α(t1)− α(t0), α(t)− α(t0)⟩, [(α(t1)− α(t0)) (α(t)− α(t0))]}
is a complete system of MSO(2,R)-invariant functions on the set of all T -figures
α in E2 such that Z(α(t)− α(t0)) ̸= T , where t1 ∈ T \ Z(α(t)− α(t0)) be fixed. A
complete system of relations between elements of this complete system is obtained
as in Theorem 5.

7. Complete systems of invariants of a T -figure in E2 for the group
MO(2,R)

Let α and β be T -figures in E2. Assume that α and t0 ∈ T such that Z(α(t)−
α(t0)) ̸= T . Then, by Proposition 11 α

MO(2,R)∼ β if and only if (α(t)−α(t0))
O(2,R)∼

(β(t)−β(t0),∀t ∈ T . In this case, by Proposition 10, there exist only three following
possibilities for the set Equ(α(t)− α(t0), β(t)− β(t0)):
(I) Equ(α(t)− α(t0), β(t)− β(t0)) has only one element F , where F ∈ SO(2,R).
(II) Equ(α(t)−α(t0), β(t)−β(t0)) has only one element F , where F ∈ SO(2,R)·W .
(III) Equ(α(t) − α(t0), β(t) − β(t0)) has only two elements F1 and F2, where
F1 ∈ SO(2,R) and F2 ∈ SO(2,R) ·W .

A description of the set Equ(α(t) − α(t0), β(t) − β(t0)) and a complete system
of invariants of a T -figure in E2 in the case (I) are given in Section 5.

Consider the case (II).

Theorem 9. Let α be a T -figure in E2 such that Z(α(t) − α(t0)) ̸= T for some
t0 ∈ T and t1 ∈ T \ Z(α(t)− α(t0)) be fixed.

(i) Suppose that a T -figure β such that the following equalities β(t) = HWα(t)+
d,∀t ∈ T , hold for some H ∈ SO(2,R) and some d ∈ E2. Then following
equalities hold: Z(α(t)− α(t0)) = Z(β(t)− β(t0))

⟨α(t1)− α(t0), α(t)− α(t0)⟩ = ⟨β(t1)− β(t0), β(t)− β(t0)⟩
− [α(t1)− α(t0)α(t)− α(t0)] = [β(t1)− β(t0)β(t)− β(t0)] .

(34)

for all t ∈ T \ Z(α(t)− α(t0)).
(ii) Conversely, assume that a T -figure β in E2 such that the equalities (34)hold.

Then a single matrix U ∈ SO(2,R) and a single d ∈ E2 exist such that
β(t) = UWα(t) + d,∀t ∈ T . In this case, U has following form

U =

( ⟨W (α(t1)−α(t0)),(β(t1)−β(t0))⟩
⟨(α(t1)−α(t0)),(α(t1)−α(t0))⟩ − [W (α(t1)−α(t0)) (β(t1)−β(t0))]

⟨(α(t1)−α(t0)),(α(t1)−α(t0))⟩
[W (α(t1)−α(t0)) (β(t1)−β(t0))]
⟨(α(t1)−α(t0)),(α(t1)−α(t0))⟩

⟨W (α(t1)−α(t0)),(β(t1)−β(t0))⟩
⟨(α(t1)−α(t0)),(α(t1)−α(t0))⟩

)
, (35)

where
det(U) = ( ⟨W (α(t1)−α(t0)),(β(t1)−β(t0))⟩

⟨(α(t1)−α(t0)),(α(t1)−α(t0))⟩ )2 + ( [W (α(t1)−α(t0)) (β(t1)−β(t0))]
⟨(α(t1)−α(t0)),(α(t1)−α(t0))⟩ )

2 =

1. The element d has following form: d = β(t0)− UWα(t0).
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Proof. It follows easy from Proposition 11 and Theorem 6 □

Consider the case (III).

Theorem 10. Let α be a T -figure in E2 such that Z(α(t) − α(t0)) ̸= T for some
t0 ∈ T and t1 ∈ T \ Z(α(t)− α(t0)) be fixed.

(i) Suppose that matrices F1 ∈ SO(2,R), F2 ∈ SO(2,R) and vectors d1 ∈
E2, d2 ∈ E2 exist such that β(t) = F1α(t) + d1,∀t ∈ T , and β(t) =
F2Wα(t) + d2,∀t ∈ T . Then following equalities hold: Z(α(t)− α(t0)) = Z(β(t)− β(t0))

⟨α(t1)− α(t0), α(t)− α(t0)⟩ = ⟨β(t1)− β(t0), β(t)− β(t0)⟩
rank(α(t)− α(t0)) = rank(β(t)− β(t0)) = 1,

(36)

for all t ∈ T \ Z(α(t)− α(t0)).
(ii) Conversely, assume that the equalities (36) hold. Then only two matrices

H1 ∈ SO(2,R), H2 ∈ SO(2,R) and only two vectors d1 ∈ E2, d2 ∈ E2

exist such that following equalities β(t) = H1α(t) + d1,∀t ∈ T , β(t) =
H2Wα(t) + d2,∀t ∈ T , hold. Here the matrix H1 has following form:

H1 =

( ⟨α(t1)−α(t0), β(t1)−β(t0)⟩
⟨α(t1)−α(t0), α(t1)−α(t0)⟩ − [α(t1)−α(t0) β(t1)−β(t0)]

⟨α(t1)−α(t0), α(t1)−α(t0)⟩
[α(t1)−α(t0) β(t1)−β(t0)]
⟨α(t1)−α(t0), α(t1)−α(t0)⟩

⟨α(t1)−α(t0), β(t1)−β(t0)⟩
⟨α(t1)−α(t0), α(t1)−α(t0)⟩

)
, (37)

where det(H1) = ( ⟨α(t1)−α(t0), β(t1)−β(t0)⟩
⟨α(t1)−α(t0), α(t1)−α(t0)⟩ )

2 + ( [α(t1)−α(t0) β(t1)−β(t0)]
⟨α(t1)−α(t0), α(t1)−α(t0)⟩ )

2 =

1. Vector d1 has following form d1 = β(t0)−H1α(t0).
Here the matrix H2 ∈ SO(2,R) has following form

H2 =

( ⟨Wα(t1)−Wα(t0), β(t1)−β(t0)⟩
⟨α(t1)−α(t0),α(t1)−α(t0)⟩ − [Wα(t1)−Wα(t0) β(t1)−β(t0)]

⟨α(t1)−α(t0),α(t1)−α(t0)⟩
[Wα(t1)−Wα(t0) β(t1)−β(t0)]
⟨α(t1)−α(t0),α(t1)−α(t0)⟩

⟨Wα(t1)−Wα(t0), β(t1)−β(t0)⟩
⟨α(t1)−α(t0),α(t1)−α(t0)⟩

)
, (38)

where
det(H2) = (Wα(t1)−W ⟨α(t0), β(t1)−β(t0)⟩

⟨α(t1)−α(t0), α(t1)−α(t0)⟩ )2 + ( [Wα(t1)−Wα(t0) β(t1)−β(t0)]
⟨α(t1)−α(t0), α(t1)−α(t0)⟩ )2 =

1. Vector d2 has following form d2 = β(t0)−H2Wα(t0).

Proof. It follows easy from Proposition 11and Theorem 7 □

8. Conclusion

Results and methods of the present paper are useful in the theory of G-invariants
of systems of points, curves, vector fields, topological figures and polynomial fig-
ures in the two-dimensional Euclidean space E2 for groups G = SO(2,R), O(2,R),
MSO(2,R) and MO(2,R). Results and methods of the present paper are also
useful in the theory of G-invariants of mechanical figures in the two-dimensional
Euclidean space E2 for Galilei groups.
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[14] Khadjiev, D., Ören, İ., Pekşen, Ö., Global invariants of paths and curves for

the group of all linear similarities in the two-dimensional Euclidean space, Inter-
national Journal of Geometric Methods in Modern Physics, 15(6) (2018), 1850092,

https://doi.org/10.1142/S0219887818500925

[15] Khadjiev, D., Projective invariants of m-tuples in the one-dimensional projective space, Uzbek
Mathematical Journal, 1 (2019) 61-73.



158 D. KHADJIEV, G. BESHIMOV, İ. OREN
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