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Abstract. In this study, we have proposed a new modification of classical Finite Difference Method (FDM) for the
solution of boundary value problems which are defined on two disjoint intervals and involved additional transition
conditions at an common end of these intervals. The proposed modification of FDM differs from the classical FDM
in calculating the iterative terms of numerical solutions. To illustrate the efficiency and reliability of the proposed
modification of FDM some examples are solved. The obtained results are compared with those obtained by the
standart FDM and by the analytical method. Corresponding graphical illustration are also presented.
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1. Introduction

A lot of mechanical and physical processes are modeled by linear or nonlinear differential equations, whose exact
solutions are impossible to find by using analytical methods. Many researchers have tried to do this in various semi-
analytical, numerical and approximate methods, such as the Finite Element Methods, the Adomian Decomposition
Methods, the Differential Transform Method, the Explicit Euler Method, the Taylor’s Expansion Method etc. One
of them is the Finite Difference Method, which can be applied to wide class of problems appearing in mathematical
physics and engineering. Many important theoretical and numerical results have been obtained during the last seven
decades regarding the stability, accuracy and convergence of the FDM for different type initial and/or BVPs (see,
[1, 3–6, 9] and references cited therein).

The standard FDM is intended for solving one-interval initial and/or boundary value problems without jump condi-
tions.
Note that, finite difference methods are numerical methods for pproximating the solution to various type differential
equations. The idea is to replace ordinary or partial derivatives appearing in the boundary-value problem by finite
differences that approximate them [2, 8, 9, 12, 13].

Note that the finite difference methods deal without interior singular point and corresponding transmission condi-
tions. It is our main goal here to develop finite difference method to deal with an additional transmission conditions
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at the interior singular point. Based on FDM, we have developed a new technique for solving two-interval Sturm-
Liouville problems (SLPs), that included additional transition conditions across the common endpoint of these inter-
vals. We note that, some important theoretical aspects of Sturm-Liouville problems with transition conditions were
studied in [7, 10, 11].

2. Analysis of theMethod

Let y(x) represent a function of one variable that, unless otherwise stated, will always be assumed to be smooth,
meaning that we can differentiate the function several times and each derivative is a well-defined bounded function
over an interval containing a particular point of interest x.

Let us consider a linear boundary-value problem for two-interval Sturm-Liouville equation

y
′′

+ p(x)y
′

+ q(x)y = f (x), x ∈ [a, c) ∪ (c, b] (2.1)

together with the boundary conditions

y(a) = α, y(b) = β, (2.2)

where p(x), q(x) and f (x) are continious functions on [a, c) ∪ (c, b] having finite limit values p(c ± 0), q(c ± 0) and
f (c ± 0), respectively, α, β are real numbers. To discretize the problem (2.1), (2.2) the definition range [a, b] is divided
into N equal ranges [x0, x1], [x1, x2], ..., [xN−1, xN] that is,

xi = a + ih, h =
b − a

N
, i = 0, 1, 2, ...,N.

By using the Taylor expansion

y(xi + h) ≈ y(xi) + hy
′

(xi) +
h2

2!
y
′′

(xi) + . . . ,

we can express the first derivative in the ordinary differential equation using one of the following apprroximate expres-
sion

D+y(x) ≈
y(x + h) − y(x)

h
,

D−y(x) ≈
y(x) − y(x − h)

h
,

or

D0y(x) ≈
y(x + h) − y(x − h)

2h
,

where D+y(x), D−y(x) and D0y(x) denotes the forward finite difference, backward finite difference and centered finite
difference of the unknown solution y(x), respectively.
The first and second derivative expressions in the boundary value problem can be expressed in the same way, as

y′(x) ≈
D+y(x) + D−y(x)

2
(2.3)

and

y′′(x) ≈
D+y(x) − D−y(x)

h
. (2.4)

Let us define the finite difference solution for y(x) at all grid points x0, x1, · · · , xN by yi = y(xi). Substituting (2.3) and
(2.4) in the boundary value problem (2.1)-(2.2), we have the following linear system of algebraic equations(

1 − 1
2 hpi

)
yi−1 +

(
−2 + h2qi

)
yi +

(
1 + 1

2 hpi

)
yi+1 = h2 f (xi)

1 ≤ i ≤ N − 1, i = 1, 2, 3, ...,N − 1,

where

y0 = α, yN = β.
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Note that each equation of this system involves solution values at three nodal points xi−1 , xi and xi+1. The linear system
of algebraic equations can be written in the matrix and vector form

My = B, (2.5)
where M is a tridioganal matrix of size (N − 1) × (N − 1), given by

M =



−2 + h2q1 1 + 1
2 hp1 0 · · · 0 0 0

1 − 1
2 hp2 −2 + h2q2 1 + 1

2 hp2 · · · 0 0 0

...
...

...
. . . · · · · · · · · ·

0 0 1 · · · −2 + h2qN−2 1 + 1
2 hpN−2 0

0 0 0 · 0 1 − 1
2 hpN−1 −2 + h2qN−1


(N−1)×(N−1)

y =



y1

y2

...
yN−2

yN−1


(N−1)×1

and B =



h2 f (x1) −
(
1 − 1

2 hp1

)
α

h2 f (x2)

...
h2 f (xN−2)

h2 f (xN−1) −
(
1 − 1

2 hp1

)
β


(N−1)×1

.

This is the tridiagonal linear system of algebraic equations (2.5) and therefore can be solved efficiently by the Crout or
Cholesky algoritm [3].

3. Convergence and Error Estimates of Finite DifferenceMethod

When the FDM is applied to solve a boundary value problem, it is very important to know how accurate the numer-
ical solution is compared to the exact solution.

3.1. Global Error. Let Ỹ = (y1, y2, . . . , yn) denote the finite difference solution and ỹ = (y(x1), y(x2), . . . , y(xn)) is the
exact solution at the grid points x1, x2, . . . , xn. Then, the vector

Ẽ = (y1 − y(x1), y2 − y(x2), . . . , yn − y(xn)) = Ỹ − ỹ

is said to be the global error vector. You usually want to find an admissible upper bound for this error with respect to
the infinite norm (so-called maximum norm ), defined by

∥ Ẽ ∥= max
1⩽i⩽n

| yi − y(xi) |

or p-norm (p ≥ 1)

∥ Ẽ ∥p=

 n∑
i=1

| yxi − y(i) |p (xi+1 − xi)

1/2

.

Denote

hi := max
1⩽i⩽n

(xi+1 − xi).

If ∥ Ẽ ∥p converges to zero as h → 0, then a finite difference method is called convergent. Moreover, if there is c ≥ 0
such that

∥ Ẽ ∥p≤ Chq, q > 0,
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the FDM is called q-th order accurate.

Definition 3.1. A FDM is called convergent, if

lim
h→0
∥ Ẽ ∥= 0.

4. Local Truncation Errors

We shall show that the FDM solution converges to the exact solution of the BVP (2.1)- (2.2) when h converges to
zero. Using formulas (2.3) and (2.4), one can show that the exact solution ỹ = (y(x1), y(x2), . . . , y(xn)) satisfies the
following linear system of equation

u(xi+1) − 2u(xi) + u(xi−1)
h2 −

h2

12
u(4)(ξi) + pi

u(xi+1) − u(xi−1)
2h

−
h2

6
u(3)(ηi) + qiu(xi) = f (xi), 1 ⩽ i ⩽ n,

for same ξi ∈ [a, b].
On the other hand the FDM solution Ỹ = (y1, y2, . . . , yn) satisfies the linear system of equation

ui+1 − 2ui + ui−1

h2 + pi
ui+1 − ui−1

2h
+ qiui = fi, 1 ⩽ i ⩽ n.

Substracting these equation one from the other, we get
ei+1 − 2ei + ei−1

h2 + pi
ei+1 − ei−1

2h
+ qiei = h2 fi, 1 ⩽ i ⩽ n, (4.1)

where ei is the global error ei := u(xi) − ui and h2 fi is the local truncation error at the grid point x = xi and

fi =
1
12

u(4)(ξi) −
1
6

u(3)(ηi).

After multiplying both sides of (4.1) by h2 and then collecting the corresponding terms, we have(
1 −

h
2

pi

)
ei−1 +

(
−2 + h2qi

)
ei +

(
1 +

h
2

pi

)
ei+1 = h4 fi. (4.2)

To estimate the magnitude of the error vector ẽ, it is necessary to use an infinite norm ∥ ẽ ∥p, p ≥ 1 for some spesific
value p.
We will apply the infinite norm ∥ ẽ ∥∞, because it is used to measure grid functions and is easily estimated.
The equation (4.2) can be written as

(2 + h2qi)ei = (1 −
h
2

pi)ei+1 − (1 +
h
2

pi)ei + h4 fi.

Consequently,

| 2 + h2qi || ei | ≤| 1 −
h
2

pi || ei+1 | + | 1 +
h
2

pi || ei | +h4 | fi |

≤| 1 −
h
2

pi |∥ ẽ ∥∞ + | 1 +
h
2

pi |∥ ẽ ∥∞ +h4 ∥ f̃ ∥∞,

where ∥ f̃ ∥∞= max
1⩽i⩽n

| fi | .

From this inequality, it follows immediately that

| 2 + h2qi |∥ ẽ ∥∞≤
(
| 1 −

h
2

pi | + | 1 +
h
2

pi |

)
∥ ẽ ∥∞ +h4 ∥ f̃ ∥∞ . (4.3)

Since q(x) < 0, one can choose h > 0 small enough to satisfy

| 1 −
h
2

pi | + | 1 +
h
2

pi |= 2 and | 2 + h2qi |= 2 + h2 | qi |,

for all i = 1, 2, . . . , n.
Consequently, for sufficiently small h > 0 we have from (4.3) that

| qi |∥ ẽ ∥∞≤ h2 ∥ f̃ ∥∞ .
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Denoting C = ∥ f̃ ∥∞
min
1⩽i⩽n
|qi |

, we obtain

∥ ẽ ∥∞≤ Ch2.

Hence, the FDM is convergent and 2-order accurate.

5. Numerical Example

Consider the following two-interval SLP, consisting of the differential equation

xy
′′

+ 2y
′

− xy = ex, x ∈ [1, 2) ∪ (2, 3], (5.1)

subject to the boundary conditions at the endpoints x = 1 and x = 3, given by

y (1) = 2, y (3) = −1 (5.2)

together with transition conditions across the common endpoint x = 2, given by

y(2−) = 3y(2+), 2y′(2−) = y′(2+). (5.3)

At first, we consider the problem (5.1)-(5.3) without jump conditions (5.3). It is easy to verify that the function

y =
ex+4(x − 3) − 4ex−1 − 6ex+1 − ex(x − 1) + 2e4(e3 + 2e2 + 3)

2(e4 − 1)x
(5.4)

satisfies the equation (5.1) on whole [1, 2) ∪ (2, 3] and both boundary conditions (5.2). For simplicity, we will use the
uniform cartesian grid

xi = 1 + ih, i = 0, 1, . . . , 50,
for h = 0, 06. In particular, we have x0 = 2, x50 = −1.
The central finite difference (CFD) approximation of the derivatives y

′

and y
′′

are defined by

y′(x) ≈
1
2

(D+y(x) + D−y(x))

and

y′′(x) ≈
1
h

(D+y(x) − D−y(x)) ,

where D+y(x) and D−y(x) denotes the forward finite difference and backward finite difference of y(x).
By applying the CFD to the differential equation (5.1) at a typical grid point x = xi and denoting yi = y(xi), we have
the following finite difference equations

(2 − xi)yi−1 − (4 + 2h2)xiyi + 2(h + xi)yi+1 = 2h2exi , i = 1, 2, . . . , 49. (5.5)

That is, we have the linear algebraic system of equations with respect to the variables y1, y2, . . . , y49. The system of
linear algebraic equations (5.5) can be written in a tridiagonal matrix-vector form

Ay = b,

where

A =



−(4 + 2h2)x1 2 + 2x1 0 · · · 0 0 0

2x2 − 2h −(4 + 2h2)x2 2 + 2x2 · · · 0 0 0

0 2x3 − 2h −(4 + 2h2)x3 2 + 2x3 · · · 0 0

...
...

...
. . .

. . .
...

...
0 0 0 · · · 2x48 − 2h −(4 + 2h2)x48 2 + 2x48

0 0 0 · · · 0 2x49 − 2h −(4 + 2h2)x49



,
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y =



y1

y2

y3
...

y48

y49


, b =



2h2ex1 − 4(x1 − h)

2h2ex2

2h2ex3

...
0

2h2ex49 + 2(x49 + h)


.

The solution of this system can be found by using MATLAB-Octave. The obtained numerical FDM solutions are
graphically compared with the exact solution (5.4) (see, Figures 1, 2, 3 and 4).

Figure 1. The FDM-solution and
exact solution for the problem
(5.1)-(5.2) where N=8

Figure 2. The FDM-solution and
exact solution for the problem
(5.1)-(5.2) where N=16

Figure 3. The FDM-solution and
exact solution for the problem
(5.1)-(5.2) where N=32

Figure 4. The FDM-solution and
exact solution for the problem
(5.1)-(5.2) where N=64
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Table 1. Maximum absolute error (MAE) for the problem (5.1)-(5.2)

N h ∥ e ∥∞ N h ∥ e ∥∞

4 3
4 0.046856 128 3

128 0.000047501

8 3
8 0.012013 256 3

256 0.000011876

16 3
16 0.0030277 512 3

512 0.0000029690

32 3
32 0.00075960 1024 3

1024 0.00000074225

64 3
64 0.00018998 2048 3

2048 0.00000018556

5.1. Remark. In figures 1,2,3 and 4 the exact solution (5.4) is compared with the numerical FDM solutions for
N = 8, 16, 32, 64, respectively. It can be seen from these graphical illustrations that, the error between the FDM
solutions and the exact solution decreases as the number of grid points N increases.

6. Solution of Transition Problem

Now, we will investigate the problem (5.1)-(5.3). If we select N = 32 and apply the transition conditions (5.3), then
we have two additional algebraic equations

y16 − 3ỹ0 = 0 (6.1)
and

2y14 − 2y16 − ỹ0 + ỹ2 = 0. (6.2)
Note that, each equation of this system involves solution values at three nodal points xi−1 , xi and xi+1.
By adding equations (5.5) to the system of equations (6.1) and (6.2), a linear equation system is obtained, in the form

My = B,

where the matrix M is not tridiagonal. The solution of this linear system of algebraic equations can be found by using
MATLAB/Octave.

In the Figures 5, 6, 7 and 8 the finite difference solution of the problem (5.1)-(5.3) is graphically compared with the
exact solution.

Table 2. Maximum absolute error (MAE) for transition problem

N h ∥ e ∥∞

8 2
8 0.69141

16 2
16 0.33075

32 2
32 0.16166

64 2
64 0.078916
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Figure 5. The FDM-solution and
exact solution for the problem
(5.1)-(5.3) where N=8

Figure 6. The FDM-solution and
exact solution for the problem
(5.1)-(5.3) where N=16

Figure 7. The FDM-solution and
exact solution for the problem
(5.1)-(5.3) where N=32

Figure 8. The FDM-solution and
exact solution for the problem
(5.1)-(5.3) where N=64
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