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ABSTRACT. We define a new generalization of Gaussian Pell-Lucas polynomials. We call it d—Gaussian Pell-Lucas
polynomials. Then we present the generating function and Binet formula for the polynomials. We give a matrix
representation of d—Gaussian Pell-Lucas polynomials. Using the Riordan method, we obtain the factorizations of
Pascal matrix involving the polynomials.
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1. INTRODUCTION

Number sequences and their polynomials have attracted the attention of many scientists for many years, as they
find application in nature and in many sciences. Fibonacci numbers are the best known of the sequences of numbers
[4, 16, 18]. Many generalizations of number sequences were then described and studied [1, 8, 10-14]. Mikkawy et al.
gave a new family of k—Fibonacci numbers [7]. Ozkan et al. defined Gaussian Fibonacci polynomials, Gaussian Lucas
polynomials and gave some properties for these polynomials [9].

Now, let’s give basic definitions for this paper.

The Pell numbers P,, are defined by

P,=2P,_1+P,p,n>3
with Py =1 and P, =2 [6].
Similarly, the Pell-Lucas numbers Q,,

0, =20 1+Qp2,n23
with Q; = 1 and @, = 3 [6].
The Pell polynomials are defined by

Ppia(x) = 2xPyi1(x) + Pp(x)

with Py(x) = 0 and P(x) = 1 [4]. The Pell-Lucas polynomials are defined by

Oni2(x) = 2x0p41(x) + Qu(x)
with Qp(x) = 2 and Q;(x) = 2x [4].
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Definition 1.1. Let p;(x) be a polynomials with real coefficients for i = 1, ...,d + 1. Then,

Fr1(x) = pt(0)F,(x) + p2(0)F,-1(X) + - -+ + paye1 (X F,—q(x)
with F,,(x) = 0 for n < 0 and F(x) = 1 [15].

In [2], the authors defined the Gaussian Pell and Gaussian Pell-Lucas numbers and examined their properties. Then,
Halic1 et al. gave the Gaussian Pell polynomials [3]. Halic1 et al. defined the Gaussian Pell-Lucas polynomials
examined some properties of them [19]. Shapiro et al. described Riordan matrices and the Riordan group as a set of
matrices M = (m;;), i, j > 0 0 whose elements are complex numbers [17]. Sadaoui et al. have recently been studying
d—-Fibonacci and d—Lucas polynomials [15].

We present d—Gaussian Pell-Lucas polynomials. Then, we find the generating function and Binet formula for the
polynomials. We give a matrix representation of d-Gaussian Pell-Lucas polynomials. We also give the factorizations
of Pascal matrix involving the polynomials with the help of the Riordan method. In addition, we introduce the inverse
of matrices for these polynomials.

2. GENERALIZATION OF GAUSSIAN PELL-Lucas PoLyNOMIALS

Now, we present a new generalization of Gaussian Pell-Lucas polynomials. Let p;(x) be a real coefficient for
i=1,...,d+ 1. Then, d-Gaussian Pell-Lucas polynomials are defined by

GPL,(x) = p1(X)GPL,-1(x) + p2(X)GPLy2(x) + ... + par1(X)GPLy_4-1(x)

with GPLy(x) = 2 — 2pi(x)i and GPL, = 0 for n < 0. We give a few terms of d-Gaussian Pell-Lucas polynomials in
Table 1.

GPL,(x)
2-2pi()i
2p1(x) = 2pi(x)i
2p7(x) = 2p1(x)%i + 2pa(x) = 2p1(x)p2(x)i
2p3(x) = 2p ()i + 4p1(X)pa(x) — 4pT () p2(X)i + 2p3(x) — 2p1(xX)p3(x)
2p1(x) = 2p] ()i + 6p7(x)pa(x) — 6p; (X)p2(X)i + 4p1(X)p3(x) = 2p7(X)p2(X)i + 2p3(x) + 2pa(x) — 2p1(X) pa(x)i

S LW~ OIS

TaBLE 1. Some values of d-Gaussian Pell-Lucas polynomials

Theorem 2.1. The generating function of GPL,(x) is given as follows;

- 2= 2pi(x)i
G(x,t) = » GPL,(x)" = )
o0 Zg < (I = P10t = p2(0)F2 — ... = pas1 (0)1+T)
Proof. We have
Gx,1) = Z GPL,(x)"
n=0
= GPLy(x) + GPL{(x)t' + GPLy(x)* + ... + GPL,(x)t". 2.1

Multiplying equation (2.1) by p;(x)t, p2(X)£%, ..., pa+1(X)t%*!, we obtain the following equations, respectively,
G(x,1) =GPLy(x) + GPL{(x)t + GPLy(x)* + ... + GPL,(x)" + ...,
P1OIG(x, ) =p1 (NGPLy(x) + p1(x)*GPLy(x) + p1(x\)GPLy(x) + ...,
P2(0)PG(x, 1) =p2(x)PGPLY(x) + po(X)GPL(x) + p2()* GPLy(x) + ...,

Part O G(x, 1) =paii () GPLy(x) + pas1 (O 2GPL1(X) + pae1 (O GPLy(x) + ...
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If the necessary calculations are made, we obtain the following equation
G, 0)(1 = p1(0f = pr(0F = .. = pas (1) = GPLy(x)
2-2 ]
= G(x.1) = fl(x)’ —
(I = p1(01 = p2(01* = ... = par1 ()1
O

Binet formula of GPL,(x) is as follows;
d+1

GPL,(x) = ) R()[ei()I".
i=1
Let’s write the following equations for each value of n.

d+1

GPLy(x) = Z Ri(x),
i=1

d+1

GPLi(x) = ) Ri()[ei(x)],
i=1

d+1

GPLy(x) = ) R[],
i=1

d+1

GPL,(x) = )" R()[ai(x)I".
i=1
If we multiplying last equations by 1,t,, ..., 1", then we get the following equations, respectively;

d+1

GPLy(x) = Z Ri(x),
i=1

d+1

IGPLi(x) = ) Rl (),
i=1

d+1
PGPLy(x) = ) R(0[ai(07,
i=1

d+1
('GPLy(x) = ) R(0ai(0]"?"
i=1

So, we have
) d+1 d+1 R-(x)
Z GPL,(X)!" = ZR,-(x)(l + @0+ (0P ) = Z o
=0 im1 P (1 - Cli(x)t>
From Theorem 2.1, we obtain
2 - 2pi(x)i S R
(1 = p1(0)t = p2(0F = .. = para () & (1= a;(x)1)’

More precisely, the coefficients R;(x) allow us to give the explicit form of d-Gaussian Pell-Lucas polynomials.
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Theorem 2.2. For n > 0, the following equality is true;

. np+ny+---+ ny
GPL, (x) = (2-2p; (%)) Z [( 1 . P (X)) p2" (%) ... pas1 " (x) |
ny,no,..., Ng+1
n+2ny+-+(d+1)ng =n

ny,ng, ..., Ngyl

Proof.
- 2-2 j
Z GPL,(x)1" = ZPI(X)I _
pry (I = pr(®)t = po(0)F = ... = pas1 ()
= (2 - 2p1(0)i) Z (P10}t + P22 + -+ + pan (™)
n=0
* S 7 S n n n n, M+ n,
=@-2pD )| ), ( )p (2" (0Pt "0 () | 11  Da
n=0 Lny+ny+-+ngy1=n g, 5 Ndrd
R n+ny+ ..+ ; . .
=C=2m0n 21 )5\, d*‘)pl {@OP" () - pant™ ()| 1.
n=0 nl,nz,"'f;lhliilnz’ T
Lni+2ny+--+(d+Dnge1=n
Thus, the proof is obtained. m]

Theorem 2.3. Let SGPL, (x) be sum of the d—Gaussian Pell-Lucas polynomials. Then, we have
2-2p,(x)i
1=py ()= p2(x) =+ = pas1 (%)

SGPLy (x) = ) GPLy(x) =
n=0
Proof. We get the following equation:.

SGPL, (x) = Z GPL, (x) =GPLy(x) + GPLy (x) + GPLy (x) +...GPL,(x) + - - .
n=0

If we multiply the last equation by p; (x), p2 (x),..., pa+1 (x), respectively, then we obtain
p1(x) SGPL, (x) = p1 (x) GPLy(x) + p1 (x) GPLy (x) + -+ - +p; (x) GPL, (x) + - - -,
P2 (X)) SGPL, (x) = p2 (x) GPLy (x) + p2 (x) GPL{ (x) + -+ + p2 (x) GPL,, (x) + - - -,

Pa+1 (X) SGPL, (x) = pas1 (X) GPLo (x) + pas1 (X) GPLy (X) + -+ - + pas1 (X) GPL, (%) + - - - .
If the necessary operations are done, we get
SGPL, (x) (1=p; (x) = p2 (X) =+ - = pa+1 (x)) = GPLo (%)

Thus, we obtain

i 2-2p, ()i
SGPL, = GPL, = :
()C) nZ:O ()C) l_pl(x)_pz(x)_..._de (x)

The d—Gaussian Pell-Lucas polynomials matrix PL; is given by

2p1(x) = 2p1(x0)i  2pa(x) = 2p1(x)pa(x) e 2pa+1(x) = 2p1(X)pa+1(x)
2 -2p1(x)i 0 0
PL; =2 -2p1(0)i)Qq = 0 ,
0 0 2 -2pi(x)i 0

(2.2)
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where
p1(x) p2(x) - pas1(x)
1 0 0
Os=| 0
0 0 1 0

Now, we can give matrix representation for GPL, (x) in the next theorem.

Theorem 2.4. The matrix representation for GPL, (x) has the form

GPL,(x)  pr()GPLy-1 (%) + - -+ + past(X)GPLy4(x) -+ pai(X)GPL,_1(x)
GPL,1(x)  pa(X)GPLy2(x) + -+ + par1(X)GPLy—g-1(x) -+ par1(xX)GPL,»(x)
pry =] _ . . , 2.3)
GPL,_4(x)  pr(x)GPLy_4-1(x) + -+ + par1(X)GPLy24(x) -+ par1(X)GPLy_4-1(x)
where PLZJrl = PL}Qq.
Proof. To prove the theorem, let’s use mathematical induction on 7.
If we take n = 1 in equation (2.3), we get the following matrix:
2p1(x) = 2pi(0)i - 2pa(x) = 2p1(x)pa(x) e 2pg+1(x) = 2p1(X)pa+1(x)
2 = 2pi(x)i 0 0
PL; = 0 . 2.4
0 0 2 = 2p1(x)i 0

From the recurrence relation of GPL,(x), it will be seen that the matrices in (2.2) and (2.4) are equal.
Assume that the equation (2.3) satisfies for n. That is, we have

GPL,(x) P2(X)GPL,(x) + -+ + pas1(X)GPL,g(x) -+ pas1(X)GPL,_1(x)
P = GPL, ((x) p2(x)GPL, 2(x)+ -+ + pas1(X)GPL,_q-1(x) -+ pas1(x)GPL,_»(x)
d : : : :
GPL, 4(x) pa(0)GPLy g 1(X) + -+ + pas1(X)GPLy 24(x) -+ par1(X)GPL,_q-1(x)

Let us show that, it is true for n + 1. So, we have

PLI =PLQ,

GPL,(x) P2(X)GPL,1(X) + -+ + pgs1(X)GPLy_4(x) -+ par1(X)GPL,_1(x)
~ GPL,1((x)  pa(0)GPL,2(x) + -+ par1(X)GPLyg-1(x) -+ pas1(X)GPL,_5(x)
GPL,4(x) p2(x)GPLy 4 1(x) + -+ + pas1(X)GPL, 24(x) -+ pas1(x)GPL,_4-1(x)
p1(x) pa(x) o pasi(x)
1 0 0
x| 0
0 0 1 0
GPLy1(x)  p2(X)GPLy(X) + -+ + pas1(X)GPLyy1-a(x) -+ pas1(x)GPL,(x)
B GPL,(x) P2(X)GPL,1(X) + -+ + pgs1(X)GPLy_y(x) -+ par1(x)GPL,_1(x)
GPLyi-a(X) Pr(WGPLya() ++ + pant(IGPLy1 2a(X) +  pasi(DGPLya(x)
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Corollary 2.5. For n,m > 0, the following equality is provided:
(2 2p1(0)GPLy1n(x)

= GPLy 1 (X)GPLy11(x) + p2(X)(GPLy- 1 (X)GPLy-1(x) + p3(x)(GPLy_2(x)GPLy-1(x)
+ GPL,_1(x)GPL,_»(x)) + pa(x)(GPL,_3(x)GPL,,_1(x) + GPL,_»(x)GPL,,_»(x)
+GPL,(()GPLy3(x) + - -+ + pas1 ()G PLy—a11(X)GPLy1 (x)

+---+ GPL,_1(x)GPL,,_4(x)).

Proof. From the product of matrices PL), and PL}, we get
PL,PL} = PL}*".
The result is the first row and column of matrix PL}*™". O
Lemma 2.6. Forn > 1, the following equality is true:
GPLy-1(x) = (2= 2p1 (0)i)Fu(x)
where the F,(x) polynomials are d—Fibonacci polynomials.

Proof. The proof can be easily seen by induction on 7 . O

3. THE INFINITE d—GAussiaN PELL-Lucas PoryNomiaL MATRIX
The d—Gaussian Pell-Lucas polynomials matrix is denoted by
GPL(x) = GPLp, p,...Ps1.i.j(0)]

and defined as follows;

2 - 2pi(x)i 0 0
2= pi(x) - 2p3(x)i 2-2pi 0
GPL(x) = |2p(x) = 2p3(x0)i + 2p25(x) + 2p1(X)p2(x)i 2p1(x) — 2p3(x)i

Li(x) b (x)

(gGPL(x) (1), fopre (0 ),
where [; (x) = 2p,? (x) = 2p1* (x)i + 4p; (x) p2 (x) = 4p12 (X) p2 (x) i + 2p3 (x) =2p; (x) p3 (x) and > (x) = 2p;2 (x) —

2p1(0% +2p2 (%) = 2p; () p2 () .
The Gaussian Pell-Lucas polynomial matrix can also be written as

GPLy(x) 0 0
GPL(x) GPLy(x) 0
GPL(X) =|GPLy(x) GPLi(x) GPLy(x)

Note that GPL (x) is a Riordan matrix.

Theorem 3.1. The first column of matrix GP.L (x) is

(2-2p, ()i, 2p, () = 2p1> ()i 2p1> () = 2p1 (0% + 2p2 (1) = 2p; () p2 (i [y (... )

According to the Riordan array, the generator function of the first column is as follows;

N 2-2p (0)i
o@® =) GP (0 = .
8GPLw (1) ;:0 L\ Py inj(X) 0=p = D= = pam (O 1)
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Proof. Let’s write generating function of the first column of the matrix GPL (x) as follows
2-2p (@i + (20 () =297 (1)1 4+ (291 () = 2p1 (0% +2p2 () = 2p) () p2 (W) i) £ 4+

= GPLy (x) + GPLy (x)t + GPLy (X)* + - --
From the generator function of GPL, (x), we have
G (x,1) = GPLy(x) + GPL; (x)t + GPLy (x)* + -+ + GPL, (x)1" + ...
_ 2-2p,(x)i
A =p W= pr ()2 = = paer () 1)

Thus, the desired expression is obtained. m]

So, we get
Joprn () =t.
Then, we write GPL (x) as follows;

2-2 j
GPLX) = (86pLew @, foprw () =( S )

,1
1-p (X)I_Pz(x)tz — T Pd+l (x) 14+
If the Gaussian Pell-Lucas polynomials matrix GP.L (x) is finite, then the matrix GP L(x) is

GPLy(x) 0 0
GPLi(x) GPLy(x) 0
GP.Ef()C) — GPL2(.X) GPL] (x) GPLQ(X)

GPI;n (x) GPL,;_l (x) . . GPI:O (x)

where detGP Ly (x) = |GP Ly (x)| = (GPLy (x))" = (2 - 2p; (x)i)".
Now, we give two factorizations of Pascal matrix including the d—Gaussian Pell-Lucas Polynomial matrix. We need
to find two matrices for these factorizations. Firstly, we define an infinite matrix C (x) = mci, j(x), where

i — 1 —2 -3 j—d -2
i j(x) = (; } 1) - pl(x)(; . 1) - Pz(x)(; . 1) - pd+1<x)(’ e )

So, we obtain

1
2-2p1(0)i 0 0 0
1-pi(x) 1 0 0
2-2p;(x)i 2-2p;(x)i
1-p1(X)—pa(x) 2-pi(®) 1 0
2-2pi(x)i 2-2p(x)i 2-2pi(x)i
1-p1(0)—pr(x)—p3(x) 3—2p1(IX)—pz(X) 3-p1®) 1 .
2-2pi(x)i 2-2pi(x)i 2-2pi(x)i 2-2pi(x)i
Cx) = : 6-3pW-pax  4-p1() .k G.D
’ ’ 2-2p ()i 2-2p ()i :
ky(x) ka(x)
k3(x) ka(x)

1-p, () =pa(0)=--— d—(d-1 —(d-2 e py 1 ( 1-p () =p2(0)=-—pas
where k; (x) = ( pl(X)zf?Zz[(;]czx)i Pd(X))’ k (x) = (d=(d-1)pi(x) 2(72[)])(;;2)?) Da 1()())’ ks (x) = (1=p; (%) 21122(;?(;()1' Pa+1(x)) and ky (x) =
(d+D)—dp,(x)—(d—1) pa(x)——pu(x))
2-2p,(x)i *
By using the infinite d—Gaussian Pell-Lucas matrix and the infinite matrix C(x) as in (3.1), we can introduce the first

factorization of the infinite Pascal matrix with the following theorem.

Theorem 3.2. The factorization of the infinite Pascal matrix P (x) is as follows;

P(x)=GPL(x)«C(x).
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Proof. From the definitions of infinite Pascal matrix and the infinite d—Gaussian Pell-Lucas polynomials matrix, we
have the following Riordan representing

1 t 2-2p,(x)i
=|—.—). 6rLw = 2 1
1-¢t"1-1¢ 1—p (X)t=pr(0) 2 =+ = payr (x) 1941

Now, we can obtain the Riordan representation the infinite matrix C (x) as follows;
C(x) = (gce @), few )
1
2-2p; (x)i 0 0 0
1-pi(x) 1 0 0
2-2p;(x)i 2-2p;(x)i
1-p1(X)—pa(x) 2-pi(x) 1 0
2-2p1(0)i 2-2p1 ()i 2=2p1 (01
=P ps () 32pime)  3opi) |
_ 2-2p(x)i 2-2pi(x)i 2-2pi(x)i 2-2p;(x)i
- : 6-3p1()-ppx  _4-pi(x) ’
: ' 22910 2-2pi(ai
k1 (x) ko (x)
k3 (x) ka(x)

1- - ——— d—(d—1 —(d-2 — D 1- - ——Dis
where kl (x) _( Pl(x)z 1722;3:2)6)[ Pd(x))’ k2 (x) — (d=( )p1(x) 2(_2171)(’;2)?) Dd l(x)), k3 (x) — d-p;(x) 2[122(;?(){)1' Pd+1(x)) and k4 ()C) —
(d+D)—dp,(0)—=(d— l)pz(X)—"'—Pd(X))

2-2p,(x)i
From the first column of the matrix C(x), we obtain

1 1=p () t=pr(xX) 2 == payy (x) 197!
2-2p, ()i 1-1¢

From the rule of the matrix C(x), we have

gcw (D) = (

t
Jew () = -7

C () = (gcw O, few (1),
which completes the proof. O

Now, we define a matrix D(x) = d; j(x)) as follows;

1
2-2m (x)i(

1 2 [ — 13 [ — 1
4@—( J mu{])—muﬁ+J—m—mHmC+J

We give the infinite matrix D (x) as

1
2— 2p1(x)1 0 0 0
1 —p1(x) 1 0 0
(m(X)t 2-2py(x)i
1- 2Pl )— Pz(x) 2-pi(x) 1 0
é) 1 (x)i 2-2py(x)i
1—3p1(X)— P2(X)—p3(X) 3= 2p1([;) —p2(%) 3-pi(x) 1 .
2-2p1(0)i 2-2p ()i 2-2p1 ()i 2-2py ()i
D(x) = : 6-3p-prx  4=p1(0) ’ (3.2)
: ) 2-2p1(x)i 2-2p1(x)i
Li(x) h(x)
l3(x) l4(x)

2(1-d ,4’(‘1 D ——— (d— —(d— e
where d, (x) = (1-dp,(x) l[) L () == pa(x)) L dy (x) = 2(d=(d=Dpi1(»)—(d iz)l’z(x) Pd—](x)),

ds (x) = 2(1—<d+1>p1<x>—"‘”*”pzw P nd dy (x) = 2ED=dn - (d Dpr@)==pal)

Now, we present the other factorlzatlon of the Pascal matrlx including the d—Gaussian Pell-Lucas Polynomials
matrix.
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Corollary 3.3. The factorization of the infinite Pascal matrix is as follows;
P(x)=GPL(x)*D(x),
where D(x) is the matrix as in (3.2).
Proof. The proof is similar to that of theorem 3.2. m|

Now, we can find the inverses of the d—Gaussian Pell-Lucas polynomials matrix by using the Riordan representation
given matrices as in [17].

Corollary 3.4. The inverse of Gaussian Pell-Lucas polynomials matrix is given by

1=p ) t=p2 ()= = pary (x) 17!
2-2p, ()i ’

GPL ' (x) =

4. CONCLUSIONS

A new generalization of Gaussian Pell-Lucas polynomials has been introduction and studied. We gave the matrix
representations of d—Gaussian Pell-Lucas polynomials. Using the Riordan method, we found the factorizations of the
Pascal matrix involving these polynomials. Also, we gave the inverse of matrices of these polynomials.
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