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Keywords Abstract
Bratu equation, This study presents an efficient method for solving Bratu equations with an initial value
Aboodh Transform, problem. The procedure is based on the use of Aboodh transform and Adomian
Adomian decomposition method. Adomian polynomials for the index n replace the nonlinear term.
Decomposition The dependent variable components are also replaced in the recurrence relation by their
Method. corresponding Aboodh transform components of the same index. Therefore, the

nonlinear problem is solved directly without any linearization or discretization.
Examples are presented to show the effectiveness and validity of this method. The
derived results are compared with the existing exact solution.

1. Introduction

Bratu equation with initial value problem is of the form:
u"+xe*=0 0<x<1 (1)
u(0) = u'(1) =0 2

The Bratu equation is one of the most examined mathematical problem [1,2]. It emerges in numerous physical
and chemical problems such as chemical reactor theory, radiative heat transfer, nanotechnology, simplification
of solid fuel ignition in thermal combustion theory, modeling the expansion of the universe, and the thermal
reaction process [2-5]. The importance of the Bratu equation stems, in part, from its use in the combustion theory
and, in part, from the fact that its exact solution is well-known. [1,2]. Therefore, it has been used to evaluate the
effectiveness and precision of numerous approximate techniques of various levels of complexity like the
perturbation techniques, Legendre wavelet method, Adomian decomposition method, the viral theorem, etc. [1,2].
Additionally, this solution has a bifurcation pattern that is unique to nonlinear differential equations. The reason
to investigate the explicit and precise general solution to the Bratu equation is motivated by this significance.
[1,2]. The common method for resolving a boundary or initial value problem is to compute the general solution
to the differential equation and, secondly, by using the boundary or initial conditions to find the arbitrary
parameters [1,2]. Diverse numerical techniques have been used to solve Bratu-type equations. These methods are
Variational Iteration Technique (VIT) [6,7], Successive Differentiation Method (SDM) [1], Homotopy
Permutation Method (HPM) [5,8], Chebyshev Wavelet Method (CWM), and also through the coupling of several
methods like Laplace Adomian Decomposition Method [4], Aboodh Homotopy Permutation Method [9], Aboodh
Differential Transform Method [10], Laplace Homotopy Permutation Method [5], etc.
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Khalid Aboodh introduced the Aboodh Transform in 2013 to make it easier to solve Ordinary and Partial
differential equations in the time domain [11]. Aboodh Transform is unable to solve nonlinear differential
equations like Bratu equations due to the challenges posed by the nonlinear variables [11], so we use a coupling
of the Aboodh transform and Adomian decomposition method to solve the Bratu equations with initial value
problems in this study. The Adomian Decomposition Method (ADM) decomposes the nonlinear terms so that
the solution can be obtained as a rapidly converging infinite series.

2. Aboodh Transform Method
2.1. Aboodh Transform

Aboodh transform is an application of integral transforms obtained from classical Fourier integral. The function
of exponential order refers to the new transform known as the Aboodh Transform. We take into account the
functions in the set A denoted by

A={f(t):3IMky,k; >0,|f )] <Me™¥}>0, (3)
The constant M for a certain function in the set must be a finite value while k, and k, may be finite or infinite.
The Aboodh transform is defined for a function f (t) forallt > 0 as

ALfOI=K@ =3[ fOe™d  ksv sk 4)
where A is called the Aboodh transform operator.

Table 1. Aboodh Transform of some functions.

f® A[f ()]
=Kw)
1
1 2
1
t 3
n!
1
at
€ v2 —av
a
sinat | 073 a7)
1
cos at 2+ a2)
_ a
sinh at v(v? — a?)
b 1
cosh at 2 —a?)
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2.2. Aboodh Transform of the Derivatives of the Function f(t)

If K(v) is the Aboodh transform of A(f(t)), then

a Alf®]=vk@) - L2 (5)
b Alf"(®] = v2k() - L2 - £(0) (6)
¢ A[frO]=vKE) - 22 L0 w )

3. Adomian Polynomial Decomposition Method

The decomposition method decomposes the solution u(x)and the non-linearity N(u) into series

oo

u(x) = Zun, N(u) = iAn
n=0

n=0
where A,, are Adomian polynomials and can be computed as

1 d" .
A = = [N A )] nz0 ®)
To compute A, take N, = f(u) to be a nonlinear function in u, where u = u(x) and consider the Taylor series
expansion of f(u) around u,

1 1
f) =f(up) + f'(up)(w—1up) + af”(uo)(u —up)* + af’”(uo)(u —up)d 4.
butu = uy+ ug + uy + . 9)
Then,

f@) =f(up) + f'(up)(uy + up + ugz) + %f”(uo)(% +up, + uz)* 4 %f’”(uo)(lh +oup+ uz)d 4l
(10)

by expanding all terms, we get

f@) = fluo) + f'uo)(wy) + /(o) (uz) + f/ (o) (z) + -+ oot o f"' o) (s1)? + = " (uo) (wyiz) +
Qo) (utts) + e o 7 o) (wr)® + 2 7 () (uyPu) + 5 7 (1) (wy2t3) .o (11)

now, let I; be the order of u! and (i) + m(j) be the order of uf'u{n. Then A,, consists of all terms of order n, so
we have

Ay = f(up),
Ay = uyf'(u),

Ay =uyf'(up) + %(uﬂz " (up),
Az =uzf'(up) + %uluzf”(uo) + %(u1)3f”'(u0),

1 1 1
Ay = usf'(up) + [Zu22+u1u3]f”(u0) + zu12u2fm(u0) + zu14f””(uo):
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Hence,

1 dn .
An = nl dan [N(Zn=0 i un)]?&:o n=>0

To find A,’s by Adomian general formula, these polynomials will be computed as follows :

Ay = N(uo),

d
Ay = N'(upluy = EN(uo + Auy) im0’

1
Ay = N'(upluz + 5 N" (uo) (wy)? = 2'd7&2

Az = N'(up)us + N "(ug)uqu, + N”’(uo)(u1)3

4. Aboodh Adomian Decomposition Method

The following is an example of Bratu equation:
u'" + Ze% =0

Applying Aboodh transform to both sides,
AW + A(xe*) =0

using the properties of Aboodh transform,
v2K(w) — L@ D _ £(0) +34(e*) = 0
Letu'(0) = B and u(0) =0

Applying the conditions, eqn (15) becomes
sz(v) =2- M(e“)

K@) = 2 — A"
The Aboodh transform defines the solution y(x) as
y(x) = Xn=o Yn(x)

Using the Adomian decomposition method,

eY® = ¥ oAy

To obtain the values of 4,,, we expand expand e* about u(x),

u=A0+A1+A2+

eo(u-ug) | e¥0(u—up)?

up 0 uQ 30 2
etoy ) ju etoy ) u
= uo n=1“n n=14n ves

€ 1! 2!

Thus, Adomian polynomials are provided by
AO = euo
AL = ueto

2

_ WU

A, = o
u13
2!

et + uy,eto

2UuquU
A3 - ‘U.O + =1z ‘U.O + U,3eu0

Asa result of the prior discussion, A,, yields

An = n' dan [N(Zn 0x un)]?{ 0 nz=0
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Substituting eqn (17) and (18) into egn (16),

AT un ()] = & — 5 AT Ay) (22)
Using the Aboodh transform’s linearity property, egn (22) becomes

oo 7\ (0.0)
(S0 A ()] = 55— = (B0 A(4n)) (23)
Equating the terms,
A(uo(x)) = :;3

Al () = =5 A4p)
A(uz(0) = = A(Ay)

A(us () = = A(4z)

-1
A(u,(x)) = = A(An-1) (24)
Taking the inverse of Aboodh transform to the system above, we get
uy(x) = Bx (25)
Bx
u(x) = 7&(% + g— ‘;—2) (26)
5 x eBx xeBx eZBx
() = K (Gt o~ T ) @n

From (25-27), B and A are the unknown in the sequence {u, }n=o, SO the solution of the Bratu equation is given
by
u(x) = ug(x) + uy(x) + ug(x) +---.

Bx 2Bx

1 x eBx 5 x eBx xe e
w@ =Bx + A+ 5= 5) R (it om— 5t Tt ) (28)

5. Numerical Results

EXAMPLE 1

Examine the equation

y'"(x) — 2eYX) =0 (29)
subjectto y(0) =0,y'(0) =0 (30)
Exact solution = —2In cos(x)

SOLUTION

y"(x) —2e¥® =0 (31)

Take the Aboodh transform
A" ()] - 24[e*@] = A[0]
K@) — LD — £(0) - 24[e¥@] = 0 (32)

y(0)=0,y'(0) =0 v2K(v) = 24[e¥™®)]
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Take the inverse of the Aboodh transform to obtain:
y(x) = A1 [UZ—ZA(ey(x))]

The Aboodh transform defines the solution y(x) as
y(x) = Z?lozo Yn(x)

Using the Adomian decomposition method,

e¥Y(X) = % 0An

To obtain the values of 4,,, we expand expand e¥® about y(x)

eu= A0+ A1+ A2+"'..

eYo(y— eYo(y— 2
— Yo 4 6 yo)+ (=¥0) 1.
1! 2!
Y0 300 Y0 310 2
=eYo 4 eY0yni1¥n eY0 ¥ nE1Yn + .

1! 2!

Substitute (35) into (33)
[0 Yn (0] = A7 |5 AlZ50 An]

(00 2 ©o
A[Zn:o Yn(x)] =2 A[Zn:OAn]
where n=0, y,(X) =0, 4,=1

n=1, y, (x) = x?, 4; = x?
4 2 4
n=2, y, (x) :%, Ay = %

2x6 17x%

n=3 x) =25 p,=2E
y Y3( ) 45"’ 3 45

17x8 _ 62x8

n=4, y,(x)= e 4T3

62x10
=5, ys(x) = 14175

y(x) = yo(x) + y1(x) + yo(x) + ..
2 x*  2x®  17x® | 62x® | 62x10
6 45 45 315 14175

Table 4.1. Numerical results

X Exact Error Approximate Absolute Error
Error (AADM)
(AADM)
0 0 0 0
0.1 0.01001671125 | 0.01001671111 14E—-10
0.2 0.0402695461 | 0.04026951111 3499E -8
0.3 0.09138331185 0.0913824 9.1185E — 7
0.4 0.1644580382 0.1644487111 9.3271E -6
0.5 0.2611684809 0.2611111111 5.73698 E — 5
0.6 0.3839303388 0.3836736 2.567388 E — 4
0.7 0.5361715151 0.535245511 9.260041 E — 4
0.8 0.7227814936 0.7199175111 | 2.8639825 E — 3
0.9 0.9508848872 0.9429696 7.9152872 E — 3
1.0 1.231252941 1211111111 0.02014183
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EXAMPLE 2
Solve y'(x) — €™ =0 (37)
y(0)=0,y'(0)=0 (38)

Exact solution is y(x) = In(sec(x))

SOLUTION

y'(x) — e® =0 (39)
Take the Aboodh transform,

Aly ()] — A[e?™] = A[0]

2K @) - L2 — £ (0) — a[e?®] = 0 (40)
Inserting the initial conditions,

v2K(v) = A[e?™)]

Take the inverse of the Aboodh transform to obtain:

y() = A7 5 A(e? @) @l
The Aboodh transform defines the solution y(x) as

y(x) = Xn=o¥n (%) (42)
Using the Adomian decomposition method,

e = ¥ Ay (43)

To obtain the values of 4,,, we expand expand e2’®) about y(x),
e = Ao+ A; + Ay + .

— 2o 4 ezy°(213'f—2yo)+ e2y0(22y'—2yo)2+___
= eV 4 e?Yo Z§=1 2Yn e?Yo 220':1 23’n2 + .-
Substitute eqn. (43) into (42)
S0 (0] = 471 |5 ALZEo Anl|
where n=0, y,(x) =0, 4,=1
2
n=1, y; (x) =x7’ Ay = x?
4 2 4
n=2,y, (x) =’1C_21 Ay = =
6
n=3,y; (x) = Z_s
y(x) = yo(x) + y1(x) + ya () + - ...
x?  x* xS
_2 A (44)
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Table 4.2. Numerical results
X Exact Error Approximate Error Absolute Error
0 0 0 0
0.1 5.008355623 £ 1073 5.008355556 E 1073 6.7444445 F — 11
0.2 0.02013477305 0.02013475556 1.749240765 E — 8
0.3 0.04569165593 0.0456912 4.559260565 E — 7
0.4 0.08222901908 0.08222435556 4.663515054 F — 6
0.5 0.1305842404 0.1305555556 2.868484372F — 5
0.6 0.1919651694 0.1918368 1.283694194 E — 4
0.7 0.2680857576 0.2676227556 4.630019679 F — 4
0.8 0.3613907468 0.3599587556 1431991211 E -3
0.9 0.4754424436 0.4714848 3.957643586 E — 3
1.0 0.6156264704 0.6055555556 0.0100709148
EXAMPLE 3

y"'(x) — m2e¥® =0
y(0)=0 y'(0)=rmn
Exact solution is y(x)

SOLUTION
y'(x) — m2e¥™) =0

= —In(1 — sin(mx))

Take the Aboodh transform
Aly" ()] — A[n2e¥™)] = A[0]

v2K(v) — @—f(O) — A[n?e?®] = 0

Applying the initial conditions,
2 _rT_ 2,y(0)] —
v K@) - - A[n?e¥™@] =0

V2 K@) = %+ Al[n2e¥™]

Take the inverse of the Aboodh transform to obtain:

y(x) = A7t [v—ng + :—zA(ey(x))]

The Aboodh transform defines the solution y(x) as

y(x) = Z?Lozo Yn(x)

Using the Adomian decomposition method,

e¥YX) = % 0An

To obtain the values of 4,,, we expand expand e¥™) about y,,

ey(x) - AO + Al + AZ + LR

eY0(y—yo)

eY0(y-y,)?

= e¥o +
1!

+ + ...

2!

71

(45)
(46)

(47)

(48)

(49)

(34)

(50)



Ajani et al.

CUJSE 20(02): 064-075 (2023)

= pYo
e’o + m

2
eyOZ?leyn_i_ e Y1 ¥n + e

2!

A0 Y ()] = 5+ 5 AN 4]

using the linearity property of the Aboodh transform,

2
2

A= ()] = 5+ [0 A(AR)]

where n=0, y,(x) = mx, A°=e™

n=1,y,(x) = =1 — mx+e™, Al = —e™ — gxe™ + 2™

5

N=2, y,(x) = — > — =+ ™ — qmxe™ + 2

4

X
2

y(x) = y1(0) + y2(x) + y3(x) + -

21X

4

2mx

yx) = (mx) + (-1 —nmx+ e™) + (—Z — %x + e™ — mxe™ + eT)
y(x) = —z— %+ 2e™ — mxe™ + S
Table 4.3. Numerical results
X Exact Error Approximate Error | Absolute Error
-0.5 | -0.6931471806 -0.7115027294 0.01835554879
-0.4 | -0.6683710291 -0.6745608344 6.189805276
E -3
-0.3 | -0.5927836007 -0.5942329067 1.449306045
E-3
-0.2 | -0.4623401221 -0.4625117131 1.715909749
E—-4
-0.1 | -0.2692764696 -0.2692801896 3.720014378
E—-6
0 0 0 0
0.1 | 0.3696400494 0.369632039 8.010350236 E —
6
0.2 | 0.8862108331 0.885393821 8.170120638
E—-4
0.3 1.655570831 1.639230083 0.01634074779
0.4 3.01708904 2.819871789 0.1972172514
EXAMPLE 4

Solve y"'(x) + m2e Y™ =0

y0)=0 y'(0)=mn

Exact solution is y(x) = In(1 + sin(mx))
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SOLUTION
vy’ (x) + m2e Y™ =0 (54)
Take the Aboodh transform
Aly" ()] + A[r2e™®™)] = A[0]
v2K(@) — L~ £(0) + A[n2e @] = 0 (55)
Applying the initial conditions,
v2K(v) — %+ Alr2e™¥®] =0
VK@) = == Aln?e™)
Take the inverse of the Aboodh transform to obtain:
2

y(x) = A™! [v% - :—ZA(e‘Y("))] (56)
y(x) = Y=o ¥n (X) and e?® = ¥ (A, (57)

To obtain the values of 4,,, we expand e =™ about y,

e_y(x) = AO + A1 + AZ + el
Substitute eqn. (57) into Eqn. (56)

2
Al yn (0] = 25— 2 A[E5o Ay (58)
using the linearity property of the Aboodh transform,
2
Ao (0] = 5 =5 (S0, A(Ay)] (59)

where n=0, y,(x) = mx, A%=e™™

n=1,y;(x) = 1— nx —e ™, A = —e ™ + xe ™ 4+ ¢~

_ 9  @x - - e~ 27mx
n=2, y,(x) = yimiieaie 27 — mxe ™ — ”

y(x) = y1(x0) + y2(x) + y3(x) + -

yx)=@mx)+(-1—-nmx+ e ™)+ (—%—%+ e”™ — mxe™™ +

e—ZTL’x

4

9 T —2TTX

yx) = -7 - 7x+ 2e7™ — mxe ™ +

e

(60)

4
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Table 4.4. Numerical results

X Exact Approximate Absolute Error
-0.4 -3.01708904 -2.819871789 0.1972172514
-0.3 -1.655570831 -1.639230083 0.01634074779
-0.2 -0.8862108331 -0.885393821 8.170120638 E — 4
-0.1 | -0.3696400494 -0.369632039 8.010350236 £ — 6

0 0 0 0
0.1 0.2692764696 0.2692801896 3.720014378 E — 6
0.2 0.4623401221 0.4625117131 1.715909749 FE — 4
0.3 0.5927836007 0.5942329067 1.449306045 E — 3
0.4 0.6683710291 0.6745608344 6.189805276 E — 3
0.5 0.6931471806 0.7115027294 0.01835554879

6. Conclusion

This study uses Aboodh Adomian Decomposition Method (AADM) to examine Bratu equations. The method is
used directly without any linearization or discretization. Numerical results show that the procedure is accurate
and effective in obtaining analytical and numerical solutions for a broad class of linear and nonlinear differential
equations. Results gotten by the presented method compare favorably to those obtained by other known methods.
However, the most vital point of this method is that it involves less rigorous computation, unlike other methods
for the same class of equations. Therefore, the presented technique is an alternative to overcome the demerit of
complex calculation.

In the future, we will apply Aboodh Adomian Decomposition Method to a wider range of differential
equations to access its versatility further.
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