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determinant of g vn , respectively, on a four-dimensional 
(4D) spacetime M . By accepting that an affine connection 
is a Levi–Civita connection, i.e., torsion is absent, and 
considering a Palatini variational method, i.e., the metric  
{g} and connection C" ,  are assumed to be independent 
variables (Palatini 1919, Misner et al. 1973), the connection 
variation  d C" ,  of this curvature-squared action (1) 
provides the field equation without matter (Lichnerowicz 
1958, Loos 1963, Loos and Treat 1967, Yang 1974)

D R 0v =n
n
mv   (2)

which is known as Yang’s gauge gravity equations in 
the literature. The third-order equations (2) are more 
complicated than well-established Einstein’s field equations; 
however, they include Einstein’s vacuum solutions in a 
natural manner. From the relation 

,D R D R D R 0v v v/ - =n
n
mv m v v m   (3)

which is derived from the second Bianchi identity 
D R 0[ ]v =t n mv ,  where D  refers to the typical covariant 
derivative, the obvious vacuum solutions, R 0v =n  and 
R gv vm=n n , for any constant m , satisfy the equivalent 
equation (3). Conversely, the Palatini variation of the action 
(1) with respect to the metric {g} without matter can be 

1. Introduction 

Quadratic curvature Lagrangians have been used by many 
researchers to generalize or expand Einstein’s theory of 
general relativity for over a century (for early works, see, e.g., 
Weyl 1918, Weyl 1919, Pauli 1919, Weyl 1921, Eddington 
1924). The simple alternative forms of the scalar curvature, 
R , could be the square version of the scalar curvature, 
R2 , the Ricci tensor, R Rv

v
n

n , or of the Riemann tensor, 
R Rv

v
n mv

n mv , and a linear combination of those, such as 
the well-known Gauss–Bonnet invariant (Lanczos 1938, 
Lanczos 1949, Lanczos 1957), as one step forward. Among 
them, mathematically, the most similar to the Yang–Mills 
gauge theory (Yang and Mills 1954) is the following matter-
free gravitational action quadratic equation in R vn mv : 

I d x g R R
2
1

v
v

2
4

Ml
= - n mv

n mv#   (1)

where l  and g  represent the coupling constant and the 
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written as follows (Stephenson 1958, Fairchild 1976, 
Fairchild 1977):

.R R g R R4
1 0v v- =ntmv

tmv
n xtmv

xtmv   (4)

The field equations (4) are initially considered to eliminate 
nonphysical solutions (Pavelle 1975, Pavelle 1976, Fairchild 
1976) even though numerous physical ones exist in the 
literature (Pavelle 1974, Thompson 1975, Thompson 1975a, 
Ni 1975, Pavelle 1978, Başkal 1999, Kuyrukcu 2013, 
Kuyrukcu 2021) (for more historical notes, see, e.g., Dean 
1999, Kuyrukcu 2021). Besides, Baekler and Yasskin (Baekler 
and Yasskin 1984) noted that the standard variation of (1) 
produces the equations, which is fourth order for a metric

,R R g R R D D R4
1 2 0v v v- + =ntmv

tmv
n xtmv

xtmv m v
vnm   (5)

which is Eddington’s equation (Eddington 1924). They also 
noted that “if a metric (or tetrad) satisfies the torsion-free 
vacuum equations (2) and (4), it also satisfies the vacuum 
Eddington equation (5), but not vice versa”. For the case in 
which torsion is zero, but the matter Lagrangian term exists 
and 1l = , the field equations (2) and (4) become

,D R Sv v=n
n
mv mv   (6)

,R R g R R T4
1

v v v- =ntmv
tmv

n xtmv
xtmv

n   (7)

where S vmv  represents the canonical spin tensor and T vn

represents the canonical energy-momentum tensor in the 
aspect of the quadratic Poincaré gauge theory of gravity 
(Baekler and Yasskin 1984). Camenzind and Fairchild 
also considered the equation (7) as an energy-momentum 
tensor of this alternative theory rather than the typical field 
equations (Camenzind 1975, Fairchild 1977). Kilmister et al. 
(1961) also introduced the current term S vmv , which satisfies 
a covariant conservation property of the form ,D S 0v

v =mv

but they could not clearly define what it was. Besides, the 
cyclic symmetry property of S vmv , i.e., S 0v =mv6 @ , is proposed 
by Öktem (1985). Furthermore, by considering Einstein’s 
field equations, G Tv v=n n , along with the field equation (3), 
the source term can be written in the following forms

( ) ( ),S D T g T D T g T2
1

2
1

v v v v v= - - -mv m v v v m m   (8)

where Tvv  represents the covariantly conservative, 
D T 0v =n

n , energy-momentum tensor, whose trace is 
T Tv

v= . This current density term S vmv  in (8) was first 
used for Yang–Mills field equations with the SO(3,1) gauge 
group by Camenzind (Camenzind 1975, Camenzind 1975a, 
Camenzind 1977, Camenzind 1978, Camenzind 1978a). 
The metric is a nondynamic variable, i.e., a priori in this 

sense. Later, Cook used Camenzind’s matter current term 
(8) by considering a formal analogy between Einstein’s 
theory of relativity and classical electrodynamics, which 
means the connection C" ,  and Riemann tensor R" ,  
correspond to the vector potential A" ,  and electromagnetic 
field tensor F" , , respectively, to solve vacuum energy, 
cosmological constant, and dark energy problems (Cook 
2008, see also, e.g., Chen et al. 2013). However, even if the 
term (8) is suggested to solve the source-term problem of 
this simple gravity model, it cannot be obtained from an 
action principle, meaning that it is inconsistent.

The main motivation in this work is to extend and generalize 
our previous results (Başkal and Kuyrukcu 2013) to the 
Einstein frame in which the Ricci scalar has its canonical 
form by considering that the five-dimensional (5D) theory 
is the Weyl–Yang–Kaluza–Klein (WYKK) theory of gravity 
(for non-Abelian WYKK theory, see also Kuyrukcu 2014). 
Weyl was the first to consider using the R Rv

v
n mv

n mv  invariant 
in the action to unify gravitation with electromagnetism by 
employing the principle of gauge invariance, the vacuum 
gravitational field equation (2) was proposed by Yang in 
an integral formalism for gauge fields without additional 
equations (4) and (5), and Kaluza and Klein (KK) assumed 
that gravitation and electromagnetism can be unified in 
the 5D spacetime (Kaluza 1921, Klein 1926, Mandel 
1926, Klein 1926a). Then, we can prefer to call this higher-
dimensional model the WYKK theory of modified gravity 
rather than just KK reduction of a quadratic gravity even 
though they are all different situations. Conversely, we can 
note that the field equations (2), (4), (6), (7), and (8) are 
also known as Stephenson–Kilmister–Yang–Camenzind 
equations in the literature. In this sense, we take advantage of 
the horizontal lift basis that is given by Misner et al. (1973) 
for faster calculations rather than the differential forms 
available in the literature (Pope, Perry 2009). Moreover, 
the dimensionally reduced vielbein components of the 
curvature tensor, which are important for the considered 
model, are explicitly presented in the opened-notation form 
rather than the compact-notation form. The possible special 
cases are also investigated and discussed, along with the new 
Lorentz force density term, in detail. Before we attempt to 
obtain the reduced conformal equations, we wish to revisit 
our previous work (Başkal and Kuyrukcu 2013) to explain 
how we can use an alternative equation (3) to derive the 
field equations for the reader’s convenience.

The layout of this paper is as follows: In Section 2, we present 
a brief review of the 5D WYKK theory of gravity and 



Kuyrukcu / The Five Dimensional Transformed Weyl–Yang–Kaluza–Klein Theory of Gravity

Karaelmas Fen Müh. Derg., 2022; 12(2):134-145136

derive new accurate field equations, in particular. In Section 
3, the transformed equations of motion are found for the 
generalized KK metric ansatz. Section 4 is concerned with 
obtaining the reduced form of the Kretschmann invariant, 
R Rv

v
n mv

n mv , (Kretschmann 1915) both by applying a circle 
reduction mechanism and performing the conformal scale 
transformations in the so-called Einstein frame. Section 
5 is devoted to investigating special cases of the reduced 
equations. In Section 6, we finally present our findings and 
future work.

2. Revisit of the Reduced Equations of the WYKK 
Theory
As usual, the 5D standard KK action, It , is given by 

,I d xdy g R
2
1
2

4

Ml
= -t
t t t

t
#   (9)

on the 5D manifold Mt  with compactification of the type 
M M S1#=t , where M  is the usual 4D spacetime as 
used previously, and S1  has the geometry of a small circle. 
Conversely, Rt , lt , and gt  refer to the ordinary 5D Ricci 
curvature; the coupling constant, which is related to the 4D 
coupling constant, l  and the radius of the fifth dimension, 
r , as dy r22 2 2l l r l= =t # ; and the determinant of ,gMNt

i.e., ( )detg gMN=t t , respectively. Here the classical metric 
ansatz of the theory, which is independent of the fifth 
dimension, becomes 

( )
( , )

( ) ( ) ( ) ( )
( ) ( )

( ) ( )
,g

x
x y

g x x A x A x
x A x

x A x
MN

v v

v
2

2

2

2{

{

{

{
=

+n n n
t e o (10)

and hence ( )detg g gv{ {- = - = -nt . Moreover, ( )x{  
is the dilaton field, ( )A xn  is the gauge potential, and ( )g xvn  
is the 4D metric tensor in the usual manner. Kaluza also 
assumed that the derivatives of all the fields with respect 
to the new fifth coordinate, y , vanish  (Kaluza 1921). In 
what follows, the hatted/unhatted fields are 5D/4D. We 
can also introduce 5D coordinates as ( , )x x xA 5= nt  or, in 
short, ( , )x x y=t , where the capital curved Latin indices 
are , , ... , , , ,A B 0 1 2 3 5= , and the Greek curved indices are 
, , ... , , ,v 0 1 2 3n = .

For shortcut calculations, we can consider the Maurer–
Cartan exterior forms rather than the coordinate basis as 
a type of strategy. In this fashion, the 5D line element, 
( , )G x y g dx dxMN

M N=t t , takes the form 

( , ) ,G x y E EAB
A B,h=t t t tt t
t t   (11)

where the coframes one-form become 

( , ) ( ) [ ( ) ],

( , ) ( ),E

E x y x A x dy

x y E x
5 {

=

= +

n nt

t

t t

t  (12)

and the 5D Minkowski or orthonormal met-
ric is ( , )diag 1vABh h= +nt t t t t . Hence, we can write the 
4D line element as ( ) ( ) ( )G x E x E xv

v,h= n
n

t t
t t  with 

( , , , )diag 1 1 1 1vh = - + + +nt t , and the gauge fields as 
( ) ( ) ( )A x A x E x= n

n
t

t , where all hatted indices refer to the 
orthonormal basis, i.e., the flat indices. We can now obtain 
the dimensionally reduced components of the spin connec-
tion one-form, ABCt t t , and the curvature two-form R A

B
t t t  by 

considering MaurerCartan structure equations (see, e.g., 
Dereli and Üçoluk 1990, Kuyrukcu 2013). However, we 
prefer to transform the desired components in opened-no-
tation form rather than the compact-notation form to better 
understand the structure of these equations as follows: 

,

,

,

,

,

F

F

2
1

2
1

v v

v v

v v v

5

5 5

55
1

5
5

1

{

{

{ {

{ {

C C

C

C C

C

C

=

=

= = -

= -

=

n
m

n
m

n n

n n n

n n

n n

-

-

t

t

t t

t

t

t
t t

t
t t

t
t t t t

t
t t

t
t t

t
t

t
t t

t

t
t t t

  (13)

and 

( ),

.

( ),R

R F F F

R D F F

R F F F F F F

D F1 2

4
1

4
1 2

2 2
1

v v v v v

5

5

5
1 2

2{

{ { { {

{ { {

= - + -

= - - + -

= - -

n
mv

n
mv

n
mv

n
m v

n
v m

n
mv

n
mv

n
mv m

n
v v

n
m

n
m m

n nt
tm

-

t

t

t

t
t t t

t
t t t

t
t t t

t
t t t

t
t t t

t
t t t

t
t t

t
t t t

t
t t

t
t

t
t t t t

t t t
t t

     (14)

Note that R R 55 = -m
v n

n
mv

t tt

t t t
t
t t t , and D Dv v{ {=n nt t t t  as well as 

D, F vnt t , and {nt  refer to the 4D covariant derivative, the 
electromagnetic field tensor i.e., F AAv v2 2= -n n n nt t t t t t , and 

D 2{ { {= =n n nt t t . The same results, (13) and (14), have 
already been discussed in the language of horizontal lift basis 
(see, e.g., Başkal and Kuyrukcu 2013, as well as Lee 1983 for 
metric signature (+,-,-,-,-) and x 1{ =^ h  ). Conversely, for 
later convenience, we set 

, ,R R RP Q Uv v v v5 55/ / /n n
t t t
t t t t t t t t t ,  (15)

and in terms of vielbeins, which are the orthonormal basis 
vectors, the 5D metric takes the form g h hMN

A
M

B
N ABh=t t t tt t

t t , 
where the vielbeins and the inverse vielbeins are 

,

,h
h
h

h
h

h
h
h

h
h

h
A

h
A
0

0A
M

v

v

M
A

v v v

v

v

5

5

5

5

5
5

5 5 1

{ {

{

= =

= =
-

n n n

n

n

n

n
-

t
t

t

t

t

t
t

t

t

t

t
t

t

t

t

t

t
t

t

t

t

t

t

d

e d

d

o

n n

n
   (16)
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,

,

,

,

D R A A

A A A A A

D R A A

D R D R A

D R D R

P S Q

Q U U

S U U

Q U

U

A
A

v v v v

v v v

A
A

A
A

v A
A

v v v

A
A

A
A

2 2

5
2 2

5 5
2

5 5 55
2

{ {

{ { {

{ { {

{ {

{

= + +

- + -

= + -

= - = +

= - =

mv mv mv v m

m v v m m v

mv mv v m m v

m m m m

m m m

t t

t t

t t t t

t t t t

 (23)

where 

,D D F F F2
1 2P P P Q Q Qv v v v v v{= - + - +mv m v v m v m m v mv^ h   

(24)

( ) ,D D F F F2
1

S Q Q P P U{ {= - - - +mv m v v m m
t

tv v
t

tm mv   
(25)

( ) ,D F F2
1

2
1

Q Q Q Q P Uv v v v v v
1{ { { { {= + + + -m m m m

t
tm m

-

(26)

.D F2
1

U U U Q P1 1{ { { { {= + - -m m m m
t

t
t

tm
- -   (27)

There is no doubt that equations (24) – (27) naturally 
contain patterns of (18), as expected. As a result, we have  

,

, ,

D R

D R

0

0 0U

A
A

BCD

A
A
5 5

&

&

=

= =m m

t t

t t

,D R 0A
A

V 5 =mt t and , ,0 0U Qv&= =m m  (28)

,D R 0A
A
5 =mvt t and , ,0 0U S&= =m mv

,D R 0A
A

V =mvt t and ,0U =m  and ,0Qv =m  and 
, .0 0S Pv&= =mv mv

In this case, the set of solution of the WYKK theory 
obviously becomes 

,, , .S 00 0 0P S UQWYKK v v= = = = =mv mv m m" ,   (29)

As can be easily seen, equation (25) can be obtained from 
(26) using S Q Q= -mv vm mv ,  meaning that equation (25) 
is not necessary. Hence, the final forms of dimensionally 
reduced field equations are given by 

,D D F F F2
1 2 0P P Q Q Qv v v v v{- + - + =m v v m v m m v mv^ h   (30)

,D F F 02
1

2
1

Q QQ P Uv v v v v
1{ { { { {+ + + - =m m m

t
tm m

- ^ h   

(31)

,D F2
1 0U U Q P1 1{ { { { {+ - - =m m m

t
t

t
tm

- -   (32)

and any solutions of the KK theory, (20), solve the reduced 
equations of the WYKK theory (30) – (32). It is essential 
here to note that the , ,P Q Uv vn" ,  set (18) can turn into 
the , ,UP Qv vn" ,  set via 

, , .2
1

P P Q Q U Uv v v v
1{ {= = - = -n n
-    (33)

which satisfy  ( )h h h hA
M

M
B

A
B v vd d= =n

t
t nt t tt

t
t
t

t
t

t
t  and  

( )h h h hM
B

B
N

M
N v vd d= =n

t
t nt t t

t
t

t
t  in the five (four) dimensions. 

Hence, the final results of the components of the 5D Ricci 
tensor are calculated by considering the vielbeins (16) in the 
coordinate basis as follows (for the metric signature (+,-,-,-
,-), see, e.g., Liu and Wesson 1997): 

,

,

,

R A A A A

R A

R

P Q Q U

Q U

U

v v v v v

v v v

2

5
2

55
2

{ { {

{ {

{

= + + +

= +

=

n n n n n
t

t

t
  (17)

where 

,

( ),

( ) .

R F F D

Q D F F

D F F

2
1

2
1 3

4
1

P

U

v v v v

v v v

2 1

1

1 3

{ { {

{ { {

{ { {

= - -

= - +

= - -

n n nt
t

n

t
t

t
t

t
t

tx
tx

-

-

-

  (18)

The next step is to obtain the corresponding equations 
of motion. Thus, we consider the 5D Einstein equations 
G 0AB =t  or, equivalently, R 0AB =t ; i.e., the Ricci curvature 
tensor vanishes, as usual. Hence, we have 

,

, ,

R

R

0

0 0U

AB

55

&

&

=

= =

t

t

,R 0v5 =t  and , ,0 0U Qv&= =

,R 0v =nt  and ,0U =  and , ,0 0Q Pv v&= =n   (19)

which means that the solution set, SKK , of the standard  KK 
theory turns out to be 

, , .S 0 0 0P Q UKK v v= = = =n" ,   (20)

Let us now investigate the dimensionally reduced field 
equations of the WYKK theory, where the source-free field 
equations become D R 0A

A
BCD =t t  in the five dimensions. 

It is useful to consider the equivalent form (3) of field 
equations (2) to obtain the computational advantage in the 
orthonormal chart, as follows: 

.D R D R D RA
A

BCD C BD D BC/ -t t t t t tt
t
t t t t t t t t t   (21)

If we define 

, ,

, ,

D R D R

D R D R

P S

Q U

A
A

v v A
A

A
A

v v A
A

5

5 5 5

/ /

/ /

mv mv mv mv

m m m m

t t t t

t t t t

t
t t t t t t t

t
t t t t t

t
t
t t t t t t

t
t t t t

  (22)

and by substituting the expressions (15) into the equation 
(21) together with the connection terms (13), performing 
some manipulations, and then employing the vielbeins 
(16) to convert the resulting equations into the desired 
field equations that are written in coordinate basis, we find 
reduced equations in the following forms: 
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[ ( ) ( )( ) ],R R D D D D2 1 1 42 1 2p p p p p p= - - - - -n
n

n
n- - -u

(36)

where the tilde quantities denote fields in the Einstein 
frame, as usual, under the Weyl rescaling of the metric with 
a conformal factor, xp^ h , as follows: 

( ) ( ) ( ) .g x x g xv v
2p=n nu   (37)

After that, for D 5= , the KK action (9) changes 

,I d x dy g R
2
1
2

4

Ml
= -tu
t tu tu

t
#   (38)

,d x dy g R D
2
1 8 4A

A
A

A
2

4 5 2 1 2

M\
p {p p p p p p= - - -- - -

t
t t

t
6 @#

(39)

by using g gDp- = -u . Hence, to obtain the correct 
coefficient of Rt , meaning that 15 2p {p =- , we must choose 

/1 3p {= - . Therefore, the conformal transformation of the 
metric (10) becomes 

.g
g A A

A
A/ /

/

/

/MN
v v

v

2 3 4 3

4 3

4 3

4 3

{ {

{

{

{
=

+n n n
-

tu e o    (40)

Inspired by equation (40), one can write a generalized KK 
metric ansatz, which is the special case of the DeWitt 
ansatz (Cvetic et al. 2003), in terms of the actual 4D fields 
as follows: 

,g
e A

e
e g e A A

e A
MN

v v

v

2

2

2 2

2=
+a}

n
b}

n

b}

b}
n

b}
t d n  (41)

where the x} }= ^ h  is a new scalar field, and a  and b  
are arbitrary constants, which will be determined later. The 
obvious choice of the vielbein basis is inspired by coframes 
(12) as (see, e.g., Pope, Perry 2009).

, ( ),E x y e E xx=n a} nt t t^ ^h h      

, ) [ ( ) ] .(E x y e x dyA( )x5 = +b}t t   
(42)

By using the relation between dual fields, 
( ) ,E X EB

A X
B

A
B

Ak d= =t t t t tt
t t

t
t
t

t  the basis vectors are explicitly 
found to be 

,

, ( ) ,

,

x y e A x

x y e

X X

X X

X
x

x

y

5 y

k k k

k k

= -

=

a}
n

b}

-

-

n n
t

t

t t

t

t t

t

^
^

^

^

h
h

h

h

6 @
  (43)

where the EX
v vk d= nn

t
t
t

t   is also satisfied in four dimensions. 
We can employ the horizontal lift basis formalism, which is 
the easiest way to obtain not only field equations but also 
invariants. For this purpose, the 5D connection coefficients 
can be written as follows (Misner et al. 1973): 

.g g g f f f2
1

X AB X AC X BCABC ABC ACB CBAC ABk k kC = + - + + +t t t t t t t t t tt t t t t t t t t t t t t t t t t t t t tt t t6 @   (44)

The reduced field equations, which can be written by 
considering the , ,P Q Uv vn" ,  set, have already been given 
in our previous work (Başkal and Kuyrukcu 2013). However, 
the expressions (30) – (32) containing the , ,P Q Uv vn" ,  
set clearly seem to be more accurate than those containing 
the , ,P Q Uv vn" ,  set, and we now have the three equations 
corresponding to the three variables. Another way of 
obtaining the field equations is the 5D WYKK action, 
which is given by 

.I d x dy Rg R
2
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ABCD2
4

Ml
= -t
t t t t

t
#   (34)

By substituting the dimensionally reduced form of the 
Kretschmann invariant, R RK ABCD

ABCD=t t t , which is found to 
be in  Başkal and Kuyrukcu (2013), into action (34) and 
dropping the total derivative terms that can come out with 
the help of Leibniz rule from the action gives 
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(35)

Finally, the independent variation of action, g, , , ,I F {C n6 @  
(35) with respect to the four variables gives the four field 
equations. The Palatini variation of the above action with 
respect to the metric g" ,  should directly produce the 
dimensionally reduced equations of (4). However, we cannot 
directly obtain equations (30) – (32) from the variational 
principle, as expected. For instance, the connection variation 
d C" ,  leads to an equation that can transform into (30) 
by using various identities (which are given by Başkal and 
Kuyrukcu 2013). Additionally, to obtain expressions that 
can be written in forms of (31) and (32), we should vary the 
action with respect to the field tensor F" ,  and the partial 
derivative of the boson fields {n" ,  rather than the usual 
variables A" ,  and {" , , respectively; otherwise we cannot 
obtain the proper equations (Çelik 2021). 

3. The Reduced Field Equations from the 
Transformed WYKK theory
To obtain the field equations that are not only dimensionally 
reduced but also transformed from the conformal rescaling 
procedure, it is useful to first write the D-dimensional 
Weyl-rescaled Ricci scalar, Ru  (Hawking and Ellis 1999, 
Dabrowski et al. 2009), as 
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we obtain the following components of the Ricci tensor in 
the coordinate basis 
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(52)

where 
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Finally, one easily finds the solution set of the conformal 
KK theory as { , , }S 0 0 0P Q UKK v= = = =ny

u u u u . Next, we 
can introduce that 
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   (54)

Then, we can derive the desired field equations in coordinate 
basis, as mentioned before, by substituting the connections 
(46) together with the , ,P Q Uny y

t u u
t t u" ,  set in (53), and use the 

vielbeins fields (51) in the following forms: 
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where 
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Here, the commutation coefficients, f fAB
C

BA
C= -t tt t

t
t t
t , are 

evaluated by , fX X XAB
C

A B C/k k kt t t tt t t t
t
tt t t6 @ , and the block diagonal 

metric becomes ( , )g diag g 1AB v= +nt t t t t . The nonzero 
commutators of the anholonomic basis vectors (43) now 
take the form 
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Hence, the required higher-dimensional components of the 
connection are found by considering (44) and (45): 
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  (46)

Conversely, in the noncoordinate basis the Riemann tensor 
is defined by Misner et al. (1973)
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Now, the dimensionally reduced vielbein components of the 
curvature tensor can be obtained using (43), (45), and (46) 
in (47) 
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After introducing R Pv v/n n
t u
t t t t  and R Qv v5 /t utt t  together with  

R U55 /t ut t and finding the vielbeins and the inverse vielbeins 
as 
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where the 4D Ricci tensor and Ricci scalar appear in the 
above conformal equation. Furthermore, the comparison 
between the invariants (35) and (62) causes us to introduce 
new interaction terms such as , ,R D2 2} } }  and 4} .

Another way of obtaining the reduced Kretschmann scalar 
(62) is directly using the conformal transformation rule of 
the squaring curvature R Rnymv

nymvu u , which is expressed as 
(see, e.g., Carneiro et al. 2004, Bao et al. 2008) 
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if the metric changes as 

( ) ( ) .g x e g x( )x2=ny
p

nyu   (64)

Conversely, the 5D metric (41) can be rewritten in terms of 
4D fields as follows: 
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which means that the new conformal factor is equal to 
( ) ( )x xp a}= . Hence, equation (63) changes the following 

result for  D = 5
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Moreover, a comparison between metrics (10) and (65) 
leads us to obtain a new potential term, e( ) ( )xb a }- . As a result, 
terms  R RABCD

ABCDt t in (35), the anholonomic components of 
RABt t t , and Rt , which comes from equation (14), rescale under 
the redefined scalar field, ( )x e( ) ( )x{ = b a }- , transformation. 
For example, the curvature invariant changes accordingly in 
the following form: 
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We should also calculate the following necessary relations of 
the function ( )x}  as 

,

,

( ) ,

D D

D D e F

D
2
1 ( )

5 5

5 5

} }

} } }

} b a } }

=

= =

= -

n y n y

n n
b a }

m
m
n

m
m

-

t

t t

t

t t t t

t t t t t
t

t

t t t
t

  (68)

In this regard, we have the solution set: 
{ , , , }S 0 0 0 0P S Q UWYKK = = = = =ymv mv ym m

u u u u u . Again, it 
is easy to see that S Q Q= -mv vm mv

u u u , so that we can ignore 
equation (57) without loss of generality. Hence, the final 
forms of the reduced field equations of the transformed 
WYKK theory become 
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As expected, the corresponding equations of motion are 
more complicated than those given in (30) – (32).

4. The Reduced Actions from the Transformed 
WYKK Theory
By considering a popular dimensional reduction method, 
the quadratic curvature term can be expanded as 
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As is well-known, the invariant does not depend on the 
choice of basis. Thus, by using directly (48) – (50) and the 
relation  R F F R F F2 =nymv

nm yv
nymv

ny mv and after long but 
careful manipulations and reorganization of the terms, we 
have the following reduced expression: 
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we can say that it seems that there is a typographical error 
in Pope because the same coefficient, i.e., ( )2 3a b- + , was 
also obtained in Perry (2009). Finally, if we consider the 
modified WYKK action from (62), then we have 
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(72)

Now, we have to set 0b =  to obtain a standard form of 
R Rnymv

nymv . Hence, the two special cases are investigated to 
find the new reduced equations in the following subsections:

5.1 The 2b a= -  case

For 2b a= -  case, the field equations (60) are simplified 
as follows: 
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Here, the conformal KK equations { , , }P Q Uny y
u u u  become 
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from the 4D point of view. There is full agreement between 
the above equations (74) and Pope for N = 4. Conversely, for 
action (72) one finds that 

and it is clear that 05
5} }= =t
t , by considering the new 

versions of the connections (13), which are obtained the 
same way 
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As a mathematical challenge, if we substitute all results into 
equation (66), after careful calculations, we exactly obtain 
equation (62). Conversely, in the lower dimension, the 
modified KK action (38) is transformed into 
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where we use Rt  that is obtained by (48)–(50), and 
g e g e g( )D 4{- = - = -p a b }+t  for D 5= . We can find 

exactly the same result by considering the rescaled curvature 
scalar in Einstein frame, which is once again given by 
Carneiro et al. (2004) and Bao et al. (2008)

[ ( )( ) ( ) ],R e R D D D D1 2 2 12 p p p= - - - - -p
n

n
n

n-u    (71)

together with the equations (67) and (68). This is the easy way, 
if one wants to obtain field equations from implementing 
the least action principle to the action after computing the 
Ricci scalar by only considering (71).

5. The Special Cases
It is easy to read off from the action (70) that to rid of the 
coefficient of the Einstein-Hilbert term, i.e., to obtain 
minimally coupled gravity, we must choose .2b a= -
Besides, the term } }n n  can be a canonical normalized 
term if /1 122a = , i.e., ( , ) ( / , / ) .1 2 3 1 3! "a b =
Note that, ( , ) ( / , / )1 3 2 3a b = -  in (40) also satisfies the 
condition 2b a= - , and see Gibbons and Wiltshire (1986) 
for ( , ) ( / , / )1 3 2 3a b = - . Conversely, for a  D N 1= +
dimensional spacetime, the proper values of the constants 
become  /[ ( )( )]N N1 2 1 22a = - -  and ( )N 2b a= - -  
in Pope, meaning that ( , ) ( / , / )1 2 3 1 3! "a b =  is 
obviously correct for N 4= . The Rt  term in (70) is also 
compatible with the result of Pope for N 4= , except for the 
coefficient of the term D }n n , which is a total divergence and 
does not contribute to the field equations, as usual. However, 
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in the four dimensions. Moreover, the final form of the 
action (72) is similarly reorganized as: 
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In this case, the coefficient of the gravitational part ,R
which does not have its canonical form, becomes e2a}

in (70), but the R Rnymv
nymv  term is canonical in (79). The 

equation (78) also gives the D F 0=t
t
y  and F F 0=tx

tx , 
if  0Q =u and 0U =u , respectively, despite ( )x 0!} . As 
mentioned before, this is not a problem for the WYKK 
theory due to the structure of general field equations (77). 
Actually,  0U !u  is the necessary condition in this case; 
otherwise all equations in (77) fall into triviality. Besides, we 
can now determine the following new Lorentz force density 
term including boson fields as follows: 

( ),f D F F}= -m m tx
tx   (80)

from the last equations of (77) and (78) if we choose the 
parameter /1 4a = - , and without considering, certainly, 
( )x 0!} .

6. Conclusion
In this work, by employing an alternative form of the basis 
equation of the considered model in the review section, we 
have recomputed the reduced field equations in terms of 
the new { , , }P Q Uny y  set, i.e., the equations of the typical 
KK theory. The new expressions (30)–(32) seem to be more 
accurate than others, including the { , , }P Q Uny y  set in 
Başkal and Kuyrukcu (2013). Then, using simplifications 
that result from the horizontal lift basis, we have generalized 
the resulting equations to the Einstein frame in which the 
conformal metric ansatz contains arbitrary parameters a  
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Finally, we can say that the quadratic term R Rnymv
nymv  

does not have its canonical form in this case, as expected. 
However, to avoid this problem, we can set ( )x 0} =  which 
is not an acceptable condition in the KK theories, so that 
a nonphysical constraint, F F 0=tx

tx , arises from the last 
equation of (74). In fact, this is the well-known inconsistency 
problem of the KK theories. Conversely, in the considered 
model,  Qyu and Uu  in (74) are not necessarily zero, and even 
if ( )x 0} = , we do not have F F 0=tx

tx , but the Lorentz 
force density term, f F D F=m m

t
x

x
t , appears in the last 

equation of (73) as 

( ),f D F F= -m m tx
tx   (76)

which can also be obtained from equations (18) and (32) 
if we recall that ( )x 1{ =  in Başkal and Kuyrukcu (2013).

5.2 The 0b =  case

Let us investigate the reduced equations by assuming that 
0b = . This strong restriction actually breaks the high-

dimensional structure of the metric (41). Nonetheless, 
this case still deserves attention from the viewpoint of the 
considered model, and a  is a free parameter. In this regard, 
we have from equation (60) that 
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where the corresponding equations of motion of the unified 
theory are equal to 
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and b . After these reduction procedures, we have derived 
the desired set of field equations, which are governed by 
the new conformal { , , }P Q Uny y

u u u  set, and the transformed 
quadratic action in the coordinate basis both by considering 
the vielbeins fields and the conformal transformation rules. 
Conversely, we have investigated the consequences of the two 
possible cases,  2b a= - and 0b = , on this approach. As 
we mentioned in our previous work (Başkal and Kuyrukcu 
2013), for the condition ( )x 0} = , the standard KK theory 
renders the well-known nonphysical constraint, ,F F 0=tx

tx

whereas this Lorentz invariant term does not have to be 
equal to zero in the WYKK theory because of the more 
general field equation (73). By contrast, the Lorentz force 
density, f F D F=m m

t
x

x
t , appears for the former case naturally. 

Additionally, even if ( )x 0!} , we have demonstrated that 
the density term can only be equal to the negative gradient 
of the new invariant, i.e.,  ( )f D F F}= -m m tx

tx for the latter 
case with /1 4a = - .

Let us finally remark that we can extend our formalism to 
investigate the dimensionally reduced form of equation (7), 
whose second term had already been calculated in (62), in the 
5D generalized KK theory for completeness. Furthermore, 
whether the first equation of (60) can be written in the form 
of the equation (8) can be studied. We have already shown 
that (Kuyrukcu 2016) the first field equations, i.e., 

( ) ,D D F F F4
1 2 0P P Q Q Q2{- - - + =m yv v ym yv m ym v mv y  (81)

which is given by Başkal and Kuyrukcu (2013) or can be 
obtained from (30) using P P=ny ny  and ( / )1 2Q Q{= -y y

, can exactly be written in the following Camenzind’s current 
density form

( ) ( ),D R D T g T D T g T2
1

2
1= - - -n

n
ymv m yv yv v ym ym           (82)

for the case in which ,0 0Q U= =m ,  or more generally 
0Q =m , and D 0U =m  . Here Tyv  represents the stress-

energy tensor that comes from the KK theory of gravity 
(Liu and Wesson 1997). We are working on obtaining such 
relationships for the model under consideration.
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