http://communications.science.ankara.edu.tr

DOMINATOR SEMI STRONG COLOR PARTITION IN GRAPHS

Praba VENKATRENGAN ${ }^{1}$, Swaminathan VENKATASUBRAMANIAN ${ }^{2}$ and Raman SUNDARESWARAN ${ }^{3}$
${ }^{1}$ Department of Mathematics, Shrimati Indira Gandhi College, Tiruchirappalli, Tamilnadu, INDIA
${ }^{2}$ Ramanujan Research Center in Mathematics, Saraswathi Narayanan College, Madurai, Tamilnadu, INDIA
${ }^{3}$ Sri Sivasubramaniya Nadar College of Engineering, Chennai, Madurai, Tamilnadu, INDIA

Abstract

Let $G=(V, E)$ be a simple graph. A subset S is said to be SemiStrong if for every vertex v in $V,|N(v) \cap S| \leq 1$, or no two vertices of S have the same neighbour in V, that is, no two vertices of S are joined by a path of length two in V. The minimum cardinality of a semi-strong partition of G is called the semi-strong chromatic number of G and is denoted by $\chi_{s} G$. A proper colour partition is called a dominator colour partition if every vertex dominates some colour class, that is, every vertex is adjacent with every element of some colour class. In this paper, instead of proper colour partition, semi-strong colour partition is considered and every vertex is adjacent to some class of the semi-strong colour partition.Several interesting results are obtained.

1. Introduction

Let $G=(V, E)$ be a finite, undirected graph. We follow standard definitions of graph theory [2, 8]. A proper vertex coloring of a graph is defined as coloring the vertices of a graph such that no two adjacent vertices are colored using same color. A subset S of a graph $G=(V, E)$ is said to be a dominting set if every vertex not in S is adjacent to at least one vertex of $V-S$. The domination number $\gamma(G)$ is the number of vertices in a smallest dominating set for G [9, 10]. S. M. Hedetniemi 11, 12 introduced and discussed the concept of dominator coloring and dominator partition of graphs. S.Arumugam et.al. discussed further in dominator coloring in graphs [1. The combination of the two most important fields in graph

[^0]theory namely, Coloring and domination have a lot of research results. A dominator coloring of a graph G is a proper coloring, such that every vertex of G dominates at least one color class (possibly its own class). Gera et. al. [6] defined dominator colouring in a graph G as a proper colour partition in which every vertex dominates some color class. The dominator chromatic number of G, denoted by $\chi_{d}(G)$, is the minimum number of colors among all dominator colorings of G. Gera researched further in 7] on dominator coloring and safe clique partitions. Kazemi proposed the concept of total dominator coloring in graphs and studied its properties (15]. A proper coloring, such that each vertex of the graph is adjacent to every vertex of some (other) color class. For more results on the total dominator coloring, refer to 14 . 16 . M. Chellali and F. Maffray discussed Dominator colorings in some classes of graphs [4]. In 2015, Merouane et al. [17] proposed the dominated coloring which is defined as a proper coloring such that every color class is dominated by at least one vertex. The dominated chromatic number of G, denoted by $\chi_{d o m}(G)$, is the minimum number of colors among all dominated colorings of G. For comprehensive results of coloring and domination in graphs, color class domination in graphs introudced and studied in detail. refer to [5, 20, 21]. As a generalization of strong set introduced by Claude Berge [3, E.Sampathkumar defined semi-strong sets 18 in a graph. In a simple graph G, a subset S of the vertex set $V(G)$ of G is called a semi-strong set of G if $|N[v] \cap S| \leq 1$ for v in $V(G)$. E.Sampathkumar also introduced Chromatic partition of a graph 19 and studied its properties. Also, G. Jothilakshmi et al studied (k,r) - Semi Strong Chromatic Number of a Graph 13]. Instead of proper color partition, semi-strong partition 18 of $V(G)$ is considered and domination property that every vertex dominates semi-strong color class is added. The minimum cardinality of such a partition is found for some classes of graphsand bounds are obtained. Interesting results in this new concepts are derived.

Definition 1. A subset S of $V(G)$ is called a maximal semi-strong set of G if S is semi-strong and no proper super set of S is semi-strong. The maximum cardinality of a maximal semi-strong set of G is called semi-strong number of G and is denoted by $s s(G)$.

Definition 2. A dominator coloring of a graph G is a proper coloring in which each vertex of the graph dominates every vertex of some color class.

Definition 3. A semi-strong coloring of G is called a dominator semi-strong color partition of G if every vertex of G dominates an element of the partition. The minimum cardinality of such a partition is called the dominator semi-strong color partition number of G and is denoted by $\chi_{s}^{d}(G)$.

Since the trivial partition is a semi-strong coloring of G, the existence of dominator semi-strong color partition is guaranteed in any graph.
2. $\chi_{s}^{d}(G)$ for Some Well-Known Graphs

Observation 1. (i) $\chi_{s}^{d}\left(K_{n}\right)=\chi_{d}\left(K_{n}\right)=n$.
(ia) $\chi_{s}^{d}\left(K_{n}-e\right)=n$ (since $K_{n}-e$ has a full degree vertex).
(ii) $\chi_{s}^{d}\left(K_{1, n}\right)=n+1, \chi_{s}\left(K_{1, n}\right)+\gamma\left(K_{1, n}\right)=n+1$.
(iii) $\chi_{d}\left(K_{m, n}\right)=2<\chi_{s}^{d}\left(K_{m, n}\right)$ if $m \leq n$ and $n \geq 3$.

Remark 1. Let $\Pi=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ be a dominator semi-strong color partition of G. A vertex $u \in V$ can dominate V_{i} if and only if $\left|V_{i}\right|=1$.
Theorem 1. For any Path $P_{n}, \chi_{s}^{d}\left(P_{n}\right)=\left\lceil\frac{n}{2}\right\rceil+1, n \geq 2$.
Proof. Let P_{n} be a path on n vertices.
Case 1: $n=4 k, k \geq 1$
Let $\Pi=\left\{V_{1}, V_{2}, \ldots, V_{2 k}, V_{2 k+1}\right\}$ where $V_{1}=\left\{v_{2}, v_{3}, v_{6}, v_{7}, \ldots, v_{4 k-2}, v_{4 k-1}\right\}, V_{2}=$ $\left\{v_{1}\right\}, V_{3}=\left\{v_{5}\right\}, \ldots, V_{k}=\left\{v_{4 k-3}\right\}, V_{k+1}=\left\{v_{4}\right\}, V_{k+2}=\left\{v_{8}\right\}, \ldots, V_{2 k+1}=\left\{v_{4 k}\right\}$. Then Π is a dominator semi-strong color partition of P_{n}. Therefore $\chi_{s}^{d}\left(P_{n}\right) \leq$ $2 k+1=\left\lceil\frac{n}{2}\right\rceil+1$.

Let Π_{1} be a χ_{s}^{d}-partition of P_{n}. The maximum cardinality of an element of Π_{1} is at most $2 k$. There are at least $2 k$ singletons to dominate $4 k$ elements, since no single element can dominate two elements of a set which are at a distance 2 . Therefore $|\Pi| \geq 2 k+1$. Therefore $\chi_{s}^{d}\left(P_{4 k}\right)=2 k+1=\left\lceil\frac{n}{2}\right\rceil+1$.

Case 2: Let $n=4 k+1, k \geq 1$
Let $\Pi=\left\{V_{1}, V_{2}, \ldots, V_{2 k}, V_{2 k+1}, V_{2 k+2}\right\}$ where $V_{1}=\left\{v_{2}, v_{3}, v_{6}, v_{7}, \ldots, v_{4 k-2}, v_{4 k-1}\right\}$, $V_{2}=\left\{v_{1}\right\}, V_{3}=\left\{v_{5}\right\}, \ldots, V_{k}=\left\{v_{4 k-3}\right\}, V_{k+1}=\left\{v_{4 k+1}\right\}, V_{k+2}=\left\{v_{4}\right\}$, $V_{k+3}=\left\{v_{8}\right\}, \ldots, V_{2 k+2}=\left\{v_{4 k}\right\}$. Then Π is a dominator semi-strong color partition of P_{n}. Therefore $\chi_{s}^{d}\left(P_{n}\right) \leq 2 k+2=\left\lceil\frac{n}{2}\right\rceil+1$.

Arguing as in case $1, \chi_{s}^{d}\left(P_{4 k+1}\right) \geq 2 k+2=\left\lceil\frac{n}{2}\right\rceil+1$. Therefore $\chi_{s}^{d}\left(P_{n}\right)=\left\lceil\frac{n}{2}\right\rceil+1$, where $n=4 k+1$.

Case 3: Let $n=4 k+2, k \geq 0$
Let $\Pi=\left\{V_{1}, V_{2}, \ldots, V_{2 k}, V_{2 k+1}, V_{2 k+2}\right\}$ where
$V_{1}=\left\{v_{2}, v_{3}, v_{6}, v_{7}, \ldots, v_{4 k-2}, v_{4 k-1}, v_{4 k+2}\right\}, V_{2}=\left\{v_{1}\right\}, V_{3}=\left\{v_{5}\right\}, \ldots, V_{k}=$ $\left\{v_{4 k-3}\right\}, V_{k+1}=\left\{v_{4 k+1}\right\}, V_{k+2}=\left\{v_{4}\right\}, V_{k+3}=\left\{v_{8}\right\}, \ldots, V_{2 k+2}=\left\{v_{4 k}\right\}$. Then Π is a dominator semi-strong color partition of P_{n}. Therefore $\chi_{s}^{d}\left(P_{n}\right) \leq 2 k+2=\left\lceil\frac{n}{2}\right\rceil+1$.

Arguing as in case $1, \chi_{s}^{d}\left(P_{4 k+2}\right) \geq 2 k+2=\left\lceil\frac{n}{2}\right\rceil+1$. Therefore $\chi_{s}^{d}\left(P_{n}\right)=\left\lceil\frac{n}{2}\right\rceil+1$, where $n=4 k+2$.

Case 4: Let $n=4 k+3, k \geq 0$
Let $\Pi=\left\{V_{1}, V_{2}, \ldots, V_{2 k}, V_{2 k+1}, V_{2 k+2}, V_{2 k+3}\right\}$ where
$V_{1}=\left\{v_{2}, v_{3}, v_{6}, v_{7}, \ldots, v_{4 k-2}, v_{4 k-1}, v_{4 k+2}\right\}, V_{2}=\left\{v_{1}\right\}, V_{3}=\left\{v_{5}\right\}, \ldots, V_{k}=$ $\left\{v_{4 k-3}\right\}, V_{k+1}=\left\{v_{4 k-3}\right\}, V_{k+2}=\left\{v_{4 k+1}\right\}, V_{k+3}=\left\{v_{4}\right\}, V_{k+4}=\left\{v_{8}\right\}, \ldots, V_{2 k+2}=$ $\left\{v_{4 k}\right\}, V_{2 k+3}=\left\{v_{4 k+3}\right\}$. Then Π is a dominator semi-strong color partition of P_{n}. Therefore $\chi_{s}^{d}\left(P_{n}\right) \leq 2 k+3=\left\lceil\frac{n}{2}\right\rceil+1$.

Arguing as in case $1, \chi_{s}^{d}\left(P_{4 k+3}\right) \geq 2 k+3=\left\lceil\frac{n}{2}\right\rceil+1$. Therefore $\chi_{s}^{d}\left(P_{n}\right)=\left\lceil\frac{n}{2}\right\rceil+1$, where $n=4 k+3$.

Theorem 2. $\chi_{s}^{d}\left(C_{n}\right)=\left\lceil\frac{n}{2}\right\rceil+1, n \geq 3$.
Proof. Let C_{n} be a cycle on n vertices.
Case 1: $n=4 k, k \geq 1$
Let $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{4 k}\right\}$. Let $\Pi=\left\{V_{1}, V_{2}, \ldots, V_{2 k}, V_{2 k+1}\right\}$ where
$V_{1}=\left\{v_{2}, v_{3}, v_{6}, v_{7}, \ldots, v_{4 k-2}, v_{4 k-1}\right\}, V_{2}=\left\{v_{1}\right\}, V_{3}=\left\{v_{5}\right\}, \ldots, V_{k+1}=\left\{v_{4 k-3}\right\}, V_{k+2}=$ $\left\{v_{4}\right\}, V_{k+3}=\left\{v_{8}\right\}, \ldots, V_{2 k+1}=\left\{v_{4 k}\right\}$. Then Π is a dominator semi-strong color partition of C_{n}. Therefore $\chi_{s}^{d}\left(C_{n}\right) \leq|\Pi|=2 k+1=\frac{4 k}{2}+1=\left\lceil\frac{n}{2}\right\rceil+1$.

There are at least $2 k$ singletons and no single element can dominate a two element set which are at a distance 2. Therefore $\chi_{s}^{d}\left(C_{4 k}\right) \geq\left\lceil\frac{n}{2}\right\rceil+1$. Therefore $\chi_{s}^{d}\left(C_{4 k}\right)=\left\lceil\frac{n}{2}\right\rceil+1$.

Case 2: Let $n=4 k+1, k \geq 1$
Let $\Pi=\left\{V_{1}, V_{2}, \ldots, V_{2 k}, V_{2 k+1}, V_{2 k+2}\right\}$ where $V_{1}=\left\{v_{2}, v_{3}, v_{6}, v_{7}, \ldots, v_{4 k-2}, v_{4 k-1}\right\}$, $V_{2}=\left\{v_{1}\right\}, V_{3}=\left\{v_{5}\right\}, \ldots, V_{k+1}=\left\{v_{4 k-3}\right\}, V_{k+2}=\left\{v_{4 k+1}\right\}, V_{k+3}=\left\{v_{4}\right\}$, $\ldots, V_{2 k+2}=\left\{v_{4 k}\right\}$. Then Π is a dominator semi-strong color partition of P_{n}. Therefore $\chi_{s}^{d}\left(C_{4 k+1}\right) \leq|\Pi|=2 k+2=\left\lceil\frac{4 k+1}{2}\right\rceil+1=\left\lceil\frac{n}{2}\right\rceil+1$.

There are at least $2 k$ singletons and no single element can dominate a two element set which are at a distance 2 . Therefore $\chi_{s}^{d}\left(C_{4 k+1}\right) \geq\left\lceil\frac{n}{2}\right\rceil+1$ and hence $\chi_{s}^{d}\left(C_{4 k+1}\right)=$ $\left\lceil\frac{n}{2}\right\rceil+1$.

Case 3: Let $n=4 k+2, k \geq 1$
Let $\Pi=\left\{V_{1}, V_{2}, \ldots, V_{2 k}, V_{2 k+1}, V_{2 k+2}\right\}$ where $V_{1}=\left\{v_{2}, v_{3}, v_{6}, v_{7}, \ldots, v_{4 k-2}, v_{4 k-1}\right\}$, $V_{2}=\left\{v_{4 k+1}, v_{4 k+2}\right\}, V_{3}=\left\{v_{1}\right\}, V_{4}=\left\{v_{5}\right\}, \ldots, V_{k+2}=\left\{v_{4 k-3}\right\}, V_{k+3}=\left\{v_{4}\right\}, V_{k+4}=$ $\left\{v_{8}\right\}, \ldots, V_{2 k+2}=\left\{v_{4 k}\right\}$. Then Π is a dominator semi-strong color partition of C_{n}. Therefore $\chi_{s}^{d}\left(C_{4 k+2}\right) \leq|\Pi|=2 k+2+1=\left\lceil\frac{n}{2}\right\rceil+1$.

There are at least $2 k$ singletons and no single element can dominate a two element set which are at a distance 2. Any doubleton must consist of consecutive vertices. Therefore $\chi_{s}^{d}\left(C_{4 k+2}\right) \geq\left\lceil\frac{n}{2}\right\rceil+1$. Therefore $\chi_{s}^{d}\left(C_{4 k+2}\right)=\left\lceil\frac{n}{2}\right\rceil+1$.

Case 4: Let $n=4 k+3, k \geq 0$
Let $\Pi=\left\{V_{1}, V_{2}, \ldots, V_{2 k}, V_{2 k+1}, V_{2 k+2}, V_{2 k+3}\right\}$ where
$V_{1}=\left\{v_{2}, v_{3}, v_{6}, v_{7}, \ldots, v_{4 k-1}, v_{4 k+2}\right\}, V_{2}=\left\{v_{1}\right\}, V_{3}=\left\{v_{5}\right\}, \ldots, V_{k+1}=\left\{v_{4 k-3}\right\}$, $V_{k+2}=\left\{v_{4 k+1}\right\}, V_{k+3}=\left\{v_{4}\right\}, \ldots, V_{2 k+2}=\left\{v_{4 k}\right\}, V_{2 k+3}=\left\{v_{4 k+3}\right\}$. Then Π is a dominator semi-strong color partition of C_{n}. Therefore $\chi_{s}^{d}\left(C_{4 k+3}\right) \leq|\Pi|=2 k+3=$ $\left\lceil\frac{4 k+3}{2}\right\rceil+1=\left\lceil\frac{n}{2}\right\rceil+1$.

There are at least $2 k+1$ singletons and no single element can dominate a two element set which are at a distance 2. Any doubleton set must consist of consecutive vertices. Therefore $\chi_{s}^{d}\left(C_{4 k+3}\right) \geq\left\lceil\frac{n}{2}\right\rceil+1$. Therefore $\chi_{s}^{d}\left(C_{4 k+3}\right)=\left\lceil\frac{n}{2}\right\rceil+1$.

Theorem 3. For Complete bi-partite graph $K_{m, n}, \chi_{s}^{d}\left(K_{m, n}\right)=\max \{m, n\}+1$.
Proof. Let V_{1}, V_{2} be the partite sets of $K_{m, n}$.

Case 1: Let $m<n$.
Let $V_{1}=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ and $V_{2}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.
Let $\Pi=\left\{\left\{u_{1}, v_{1}\right\}, \ldots,\left\{u_{m-1}, v_{m-1}\right\},\left\{u_{m}\right\},\left\{v_{m}\right\}, \ldots,\left\{v_{n}\right\}\right\}$. Then each of v_{1}, v_{2}, \ldots, v_{n} dominates $\left\{u_{m}\right\}$, and each of $u_{1}, u_{2}, \ldots, u_{m-1}$ dominates $\left\{v_{n}\right\}$. Therefore Π is a dominator semi-strong color partition of $K_{m, n}$.
Therefore $\chi_{s}^{d}\left(K_{m, n}\right) \leq|\Pi|=m+n-(m-1)=n+1$.
No two elements of V_{1} can belong to an element of Π. Also no two elements of V_{2} can belong to an element of Π. Any element of V_{1} dominates all elements of V_{2}. So is the case with V_{2}. Therefore Π must consist of at least one singleton from V_{1} and one singletons from V_{2}. Therefore $\chi_{s}^{d}\left(K_{m, n}\right) \geq m-1+2+(n-m)=n+1$. Therefore $\chi_{s}^{d}\left(K_{m, n}\right)=n+1=\max \{m, n\}+1$.
Case 2: Let $m=n$
Let $\Pi=\left\{\left\{u_{1}, v_{1}\right\}, \ldots,\left\{u_{m-1}, v_{m-1}\right\},\left\{u_{m}\right\}, \ldots,\left\{v_{n}\right\}\right\}$. Proceeding as in case 1, $\chi_{s}^{d}\left(K_{m, n}\right)=m+1=\max \{m, n\}+1$.
Corollary 1. $\chi_{s}^{d}\left(K_{1, n}\right)=n+1$.
Theorem 4. $\chi_{s}^{d}\left(K_{m}\left(a_{1}, a_{2}, \ldots, a_{m}\right)\right)=m+\max \left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$.
Proof. Let $a_{1} \leq a_{2} \leq \ldots \leq a_{m}$. Let $V\left(K_{m}\left(a_{1}, a_{2}, \ldots, a_{m}\right)\right)=\left\{u_{1}, u_{2}, \ldots, u_{m}\right.$, $\left.v_{1,1}, v_{1,2}, \ldots, v_{1, a_{1}}, \ldots, v_{m, 1}, \ldots, v_{m, a_{m}}\right\}$. Let $\Pi=\left\{\left\{u_{1}\right\}, \ldots,\left\{u_{m}\right\},\left\{v_{1,1}, v_{2,1}, \ldots\right.\right.$, $\left.\left.v_{m, 1}\right\}, \ldots,\left\{v_{1, a_{1}}, v_{2, a_{1}}, \ldots, v_{m, a_{1}}\right\},\left\{v_{2, a_{2}}, v_{3, a_{2}}, \ldots, v_{m, a_{2}}\right\}, \ldots,\left\{v_{m, a_{m}}\right\}\right\}$. Then $|\Pi|=m+a_{m}=m+\max \left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$.

Therefore $\chi_{s}^{d}\left(K_{m}\left(a_{1}, a_{2}, \ldots, a_{m}\right)\right) \leq m+\max \left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$. Any χ_{s}^{d}-partition must contain $u_{1}, u_{2}, \ldots, u_{m}$ as singletons for dominating the pendent vertices. Further no two pendent vertices at any $u_{i}, 1 \leq i \leq m$ can belong to an element of the partition. Therefore $\chi_{s}^{d}\left(K_{m}\left(a_{1}, a_{2}, \ldots, a_{m}\right)\right) \geq m+\max \left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$. Therefore $\chi_{s}^{d}\left(K_{m}\left(a_{1}, a_{2}, \ldots, a_{m}\right)\right)=m+\max \left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$.

Let G be the graph shown in Figure 1

Figure 1. $G=K_{4}(1,2,3,3)$ with $\chi_{s}^{d}(G)=7$
Let $\Pi=\left\{\left\{v_{1}\right\},\left\{v_{2}\right\},\left\{v_{3}\right\},\left\{v_{4}\right\},\left\{v_{5}, v_{6}, v_{8}, v_{11}\right\},\left\{v_{7}, v_{9}, v_{12}\right\},\left\{v_{10}, v_{13}\right\}\right\}$. Then Π is a χ_{s}^{d}-partition of G. Therefore $\chi_{s}^{d}(G)=|\Pi|=4+3=7$.

Theorem 5. $\chi_{s}^{d}\left(K_{a_{1}, a_{2}, \ldots, a_{m}}\right)=a_{1}+a_{2}+\ldots+a_{m}$ if $m \geq 3$.
Proof. Let $m \geq 3$. Then any vertex of $K_{a_{1}, a_{2}, \ldots, a_{m}}$ is a common vertex of two vertices. Hence no two vertices can be included in an element of a χ_{s}^{d}-partition. Hence $\chi_{s}^{d}\left(K_{a_{1}, a_{2}, \ldots, a_{m}}\right)=a_{1}+a_{2}+\ldots+a_{m}$ if $m \geq 3$.

Theorem 6. $\chi_{s}^{d}(P)=7$ where P is the Petersen graph.
Proof. Consider the graph in Figure 2. Let $V(P)=\left\{v_{1}, v_{2}, \ldots, v_{10}\right\}$.
Let $\Pi=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{5}\right\},\left\{v_{6}, v_{9}\right\},\left\{v_{7}\right\},\left\{v_{8}\right\},\left\{v_{10}\right\}\right\}$. Then Π is a dominator semi-strong color partition of P. Therefore $\chi_{s}^{d}(P) \leq 7$.

Figure 2. Petersen Graph

In any χ_{s}^{d}-partition of P, no three-element set can appear. Since for any three element set of P, there exists a vertex which is adjacent to two of the element of that set. Any three 2 element sets must have three singletons for domination. Hence the remaining one element must appear as a singleton. Therefore $\chi_{s}^{d}(P) \geq 7$. Therefore $\chi_{s}^{d}(P)=7$.

Remark 2. (i) $1 \leq \chi_{s}^{d}(G) \leq n$.
(ii) $\chi_{s}^{d}(G)=1$ if and only if $G=K_{1}$.

Observation 2. Let G be a graph with full degree vertex. Then $\chi_{s}^{d}(G)=|V(G)|$.
Proof. Let Π be a χ_{s}^{d}-partition of G. Let $V_{1} \in \Pi$. If $\left|V_{1}\right| \geq 2$, then any two points of V_{1} are adjacent with full degree vertex, a contradiction. Therefore $\left|V_{1}\right|=1$. Therefore $\chi_{s}^{d}(G)=|V(G)|$.

Corollary 2. $\chi_{s}^{d}\left(W_{n}\right)=n$.
Corollary 3. $\chi_{s}^{d}\left(F_{n}\right)=n$.

3. Main Results

Theorem 7. $\max \left\{\chi_{s}(G), \gamma(G)\right\} \leq \chi_{s}^{d}(G) \leq \chi_{s}(G)+\gamma(G)$.
Proof. Since any χ_{s}^{d}-partition of G is a χ_{s}-partition of $G, \chi_{s}(G) \leq \chi_{s}^{d}(G)$. Let $\Pi=$ $\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ where $k=\chi_{s}^{d}(G)$ be a χ_{s}^{d}-partition of G. Let $x_{i} \in V_{i}, 1 \leq i \leq k$. Let $S=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$. Let $v \in V-S$. Then v dominates some color class, say V_{i}. Therefore v is adjacent with x_{i}. Therefore $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ dominates G. That is, S is a dominating set of G. That is, $\gamma(G) \leq|S|=k=\chi_{s}^{d}(G)$. Therefore $\max \left\{\chi_{s}(G), \gamma(G)\right\} \leq \chi_{s}^{d}(G)$ 。

Let $\Pi=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ be a χ_{s}-coloring of G. Assign colors $\chi_{s}(G)+1, \ldots, \chi_{s}(G)$ $+\gamma(G)$ to the vertices of a minimum dominating set of G, leaving the rest of the vertices colored as before. Then the resulting partition is a dominator semi-strong color partition of G. Therefore, $\chi_{s}^{d}(G) \leq|\Pi|+\gamma(G)=\chi_{s}(G)+\gamma(G)$.

Remark 3. The set S need not be a minimum dominating set. For example, when $G=P_{6}, \chi_{s}^{d}(G)=4$. But $\gamma\left(P_{6}\right)=2$.

Theorem 8. Let a, b be positive integers with $a \leq b$. Then there exists a graph G such that $\chi_{d}(G)=a$ and $\chi_{s}^{d}(G)=b$.

Proof. When $a=b, \chi_{d}\left(K_{a}\right)=\chi_{s}^{d}\left(K_{a}\right)=a$. Let $a<b$. Let $G=K_{a_{1}, a_{2}, \ldots, a_{k}}$ where $k=a$. Then $\chi_{d}(G)=a$. Choose $a_{1}, a_{2}, \ldots, a_{k}$ such that $a_{1}+a_{2}+\ldots+a_{k}=$ b. Then $\chi_{s}^{d}(G)=b$.

Theorem 9. $\chi_{s}^{d}(G)=2$ if and only if $G=K_{2}$.
Proof. If $G=K_{2}$, then $\chi_{s}^{d}(G)=2$. Suppose $\chi_{s}^{d}(G)=2$. Let $\Pi=\left\{V_{1}, V_{2}\right\}$ be a χ_{s}^{d}-partition of G. Suppose $\left|V_{1}\right| \geq 2$. Then any vertex of V_{2} dominates V_{1} unless $\left|V_{2}\right|=1$. If $\left|V_{2}\right|>1$, then it is a contradiction. Therefore $\left|V_{2}\right|=1$. Similarly, $\left|V_{1}\right|=1$. Therefore $G=K_{2}$.

Corollary 4. Suppose T is a tree of order $n \geq 2$. Then $\chi(T)=2$. $\chi_{s}^{d}(T)=\chi(T)$ if and only if $\chi_{s}^{d}(T)=2$. That is if and only if $G=K_{2}$.
Theorem 10. Let G be a connected unicyclic graph. Then $\chi_{s}^{d}(G)=\chi(G)$ if and only if $G=C_{3}$.

Proof. If G is a cycle, then $\chi_{s}^{d}(G)=\chi(G)$ if and only if $G=C_{3}$. Suppose G contains $C_{2 n}$. Then $\chi(G)=2$, but $\chi_{s}^{d}(G) \geq 3$, a contradiction. Therefore G contains an odd cycle $C_{2 n+1}$. Then $\chi(G)=3$. If there exists a path attached with a vertex of $C_{2 n+1}$, then $\chi_{s}^{d}(G) \geq 4$, a contradiction. Therefore G is a cycle. Since $\chi_{s}^{d}(G)=\chi(G), G=C_{3}$.

Theorem 11. Let G be a connected graph. Then $\chi_{s}^{d}(G)=n$ if and only if either G has a full degree vertex or $N(G)=K_{n}$.

Proof. Let $\chi_{s}^{d}(G)=n$. Let $V(G)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$. Then $\Pi=\left\{\left\{u_{1}\right\},\left\{u_{2}\right\}, \ldots,\left\{u_{n}\right\}\right\}$ is a χ_{s}^{d}-partition of G. Let $\operatorname{diam}(G)=k \geq 3$. Let u and v be the end vertices of a diametrical path. Let $u=u_{1}, u_{2}, \ldots, u_{k+1}=v$. Then u and v have no common adjacent vertex. Therefore $\Pi_{1}=\left\{\{u, v\}, \ldots,\left\{u_{n}\right\}\right\}$. Then u dominates $\left\{u_{2}\right\}$ and v dominates $\left\{u_{k}\right\}$. Also $\{u, v\}$ is dominated by a single vertex. Therefore Π_{1} is a dominator semi-strong color partition of G. Therefore $\chi_{s}^{d}(G) \leq n-1$, a contradiction. Therefore $\operatorname{diam}(G) \leq 2$.

Suppose u_{1} and u_{2} are adjacent and $u_{1} u_{2}$ is not the edge of a triangle. Then $\left\{u_{1}, u_{2}\right\}$ can be taken as an element of a dominator semi-strong color partition of G with all other vertices as singletons. If u_{1} is adjacent with some $u_{i}, i \geq 3$ and u_{2} is adjacent with some $u_{j}, j \neq\{1,2\}$, then $\chi_{s}^{d}(G) \leq n-1$, a contradiction. Therefore if $|V(G)| \geq 4$ and $\operatorname{diam}(G) \leq 2$ and $u_{1} u_{2}$ is an edge such that u_{1} and u_{2} have separate adjacent vertices, then $u_{1} u_{2}$ is the edge of a triangle. In such case, $N(G)=K_{n}$. Suppose u_{1} is adjacent with some vertex u_{3} and u_{2} is not adjacent with any vertex of G other than u_{1}. Suppose u_{3} is adjacent with some vertex u_{4}. If u_{1} is not adjacent with u_{4}, then $\Pi_{2}=\left\{\left\{u_{1}, u_{3}\right\},\left\{u_{2}\right\},\left\{u_{4}\right\}, \ldots,\left\{u_{n}\right\}\right\}$ is a dominator semi-strong color partition of G, a contradiction. If u_{3} is adjacent with u_{1}, then u_{4} is also adjacent with u_{1}. Therefore G is a connected graph with a full degree vertex.

Suppose G has no full degree vertex. Then the case that only one of u_{1}, u_{2} which are adjacent, has some other adjacent vertex does not hold. Therefore both u_{1} and u_{2} have different adjacent vertices. Therefore $u_{1} u_{2}$ is the edge of a triangle. Therefore $\operatorname{diam}(G) \leq 2$ and when $u_{1} u_{2}$ is an edge, then $u_{1} u_{2}$ is the edge of a triangle. Therefore $N(G)=K_{n}$. The converse is obvious.

Remark 4. Let G be the graph given in Figure 3.
Then $G=N(G), N(G)$ is not complete and G has no full degree vertex. Therefore $\chi_{s}^{d}(G)=4$ and $\chi_{s}(G)=3$.

Remark 5. Let G be the graph shown in Figure 4.
Then $N(G)=K_{5}-\{e\}$. G has a full degree vertex and hence $\chi_{s}^{d}(G)=5$ eventhough $N(G)$ is not complete. Hence $\chi_{s}(G)=4$ and $\chi_{s}^{d}(G)=5$.

Remark 6. Let G be a complete multipartite graph $K_{a_{1}, a_{2}, \ldots, a_{n}}, n \geq 3$. Then G has no full degree vertex. $\chi_{s}^{d}(G)=n$ and hence $N(G)=K_{n}$.

Observation 3. Let G be a cycle C_{n} with pendent vertex attached with exactly one vertex of C_{n}. Then $\chi_{s}^{d}(G)= \begin{cases}\chi_{s}^{d}\left(C_{n}\right)+1 & \text { if } n \not \equiv 1(\bmod 4) \\ \chi_{s}^{d}\left(C_{n}\right) & \text { otherwise }\end{cases}$

Proof. Let $V\left(C_{n}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$. Let u_{n+1} be a pendent vertex attached with u_{1}.
Case 1: Let $n=4 k$.

Figure 3. $G=N(G)=C_{5}$

Figure 4. G and $N(G)$

Let $\Pi=\left\{\left\{u_{4 k+1}, u_{3}, u_{4}, u_{7}, u_{8}, \ldots, u_{4 k-5}, u_{4 k-4}, u_{4 k-1}\right\},\left\{u_{1}\right\},\left\{u_{2}\right\},\left\{u_{5}\right\},\left\{u_{6}\right\}\right.$, $\left.\ldots,\left\{u_{4 k-3}\right\},\left\{u_{4 k-2}\right\},\left\{u_{4 k}\right\}\right\}$. Then Π is a dominator semi-strong color partition of G. Therefore $\chi_{s}^{d}(G) \leq 1+2 k+1=2 k+2=\left\lceil\frac{n}{2}\right\rceil+2=\chi_{s}^{d}\left(C_{n}\right)+1$.

There are at least $2 k$ singletons and no single element can dominate a 2 element set whose elements are at distance 2. Also for the pendent vertex either it appears as a singleton or its support appears as a singleton. Therefore $\chi_{s}^{d}(G) \geq\left\lceil\frac{n}{2}\right\rceil+2$. Therefore $\chi_{s}^{d}(G)=\left\lceil\frac{n}{2}\right\rceil+2=\chi_{s}^{d}\left(C_{n}\right)+1$.

Case 2: Let $n=4 k+1$.
Let $\Pi=\left\{\left\{u_{4 k+2}, u_{3}, u_{4}, u_{7}, u_{8}, \ldots, u_{4 k-1}, u_{4 k}\right\},\left\{u_{1}\right\},\left\{u_{2}\right\},\left\{u_{5}\right\},\left\{u_{6}\right\}, \ldots,\left\{u_{4 k+1}\right\}\right\}$. Then Π is a dominator semi-strong color partition of G. Therefore $\chi_{s}^{d}(G) \leq 1+k+$ $1+k=2 k+2=\left\lceil\frac{n}{2}\right\rceil+1=\chi_{s}^{d}\left(C_{n}\right)$.

If $\chi_{s}^{d}(G)<\left\lceil\frac{n}{2}\right\rceil+1$, then removing the pendent vertex we get that $\chi_{s}^{d}\left(C_{n}\right)<$ $\left\lceil\frac{n}{2}\right\rceil+1$, a contradiction. Therefore $\chi_{s}^{d}(G)=\left\lceil\frac{n}{2}\right\rceil+1=\chi_{s}^{d}\left(C_{n}\right)$.

Case 3: Let $n=4 k+2$.
Let $\Pi=\left\{\left\{u_{4 k+3}, u_{3}, u_{4}, u_{7}, u_{8}, \ldots, u_{4 k-5}, u_{4 k-4}, u_{4 k-1}, u_{4 k}\right\},\left\{u_{1}\right\},\left\{u_{2}\right\},\left\{u_{5}\right\},\left\{u_{6}\right\}\right.$, $\left.\ldots,\left\{u_{4 k-3}\right\},\left\{u_{4 k-2}\right\},\left\{u_{4 k+1}\right\},\left\{u_{4 k+2}\right\}\right\}$. Then Π is a dominator semi-strong color partition of G. Therefore $\chi_{s}^{d}(G) \leq\left\lceil\frac{n}{2}\right\rceil+2=\chi_{s}^{d}\left(C_{n}\right)+1$.

Arguing as in case 1 , we get that $\chi_{s}^{d}(G) \geq\left\lceil\frac{n}{2}\right\rceil+2$.
Therefore $\chi_{s}^{d}(G)=\left\lceil\frac{n}{2}\right\rceil+2=\chi_{s}^{d}\left(C_{n}\right)+1$.
Case 4: Let $n=4 k+3$.
Let $\Pi=\left\{\left\{u_{4 k+4}, u_{3}, u_{4}, u_{7}, u_{8}, \ldots, u_{4 k-1}, u_{4 k}\right\},\left\{u_{1}\right\},\left\{u_{2}\right\},\left\{u_{5}\right\},\left\{u_{6}\right\}, \ldots,\left\{u_{4 k+1}\right\}\right.$, $\left.\left\{u_{4 k+2}\right\},\left\{u_{4 k+3}\right\}\right\}$. Then Π is a dominator semi-strong color partition of G. Therefore $\chi_{s}^{d}(G) \leq|\Pi|=1+k+1+k+2=2 k+4=\left\lceil\frac{n}{2}\right\rceil+2=\chi_{s}^{d}\left(C_{n}\right)+1$.

Arguing as in case 1 , we get that $\chi_{s}^{d}(G) \geq\left\lceil\frac{n}{2}\right\rceil+2$.
Therefore $\chi_{s}^{d}(G)=\left\lceil\frac{n}{2}\right\rceil+2=\chi_{s}^{d}\left(C_{n}\right)+1$.
Proposition 1. If $\operatorname{diam}(G) \leq 2$, then $\chi_{s}^{d}(G) \geq\left\lceil\frac{n}{2}\right\rceil$, where $|V(G)|=n$.
Proof. Let G be a connected graph and $\operatorname{diam}(G) \leq 2$. If $\operatorname{diam}(G)=1$, then $G=K_{n}$ and $\chi_{s}^{d}(G)=n \geq\left\lceil\frac{n}{2}\right\rceil$. Suppose $\operatorname{diam}(G)=2$. Then $\chi_{s}^{d}(G) \geq \chi_{s}(G) \geq$ $\left\lceil\frac{n}{2}\right\rceil[?]$.

Remark 7. The converse of the above proposition need not be true.
For: $\chi_{s}^{d}\left(C_{n}\right)=\left\lceil\frac{n}{2}\right\rceil+1>\left\lceil\frac{n}{2}\right\rceil$ for all $n \geq 3$. When $n \geq 6$, $\operatorname{diam}\left(C_{n}\right) \geq 3$.
Definition 4. $C_{m}\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ is the graph obtained from the cycle C_{m} by attaching $a_{i}(\geq 1)$ pendent vertices at the vertex u_{i} of $C_{m}, 1 \leq i \leq m$.

Proposition 2. $\chi_{s}^{d}\left(C_{m}\left(a_{1}, a_{2}, \ldots, a_{m}\right)\right)=m+\max \left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$.
Proof. The proof follows on the same line as the proof of the Theorem 4.
Theorem 12. Let G be a connected graph. Then $\chi_{s}^{d}(G)=n-1$, where $|V(G)|=n$ if and only if $n \geq 4$. When $n=4, G=P_{4}$ or C_{4}. When $n=5, G$ is one of the ten graphs $P_{5}, C_{5}, D_{1,2}$ or $G_{i},(1 \leq i \leq 7)$ given in Figure 5. When $n \geq 6$, there exist two vertices say u_{1}, u_{2} such that u_{1} and u_{2} may be either adjacent or independent and there exist $u_{i},(3 \leq i \leq n)$ adjacent with u_{1} and not with u_{2}, there exist $u_{j},(j \neq i),(3 \leq k \leq n)$ such that u_{r} and u_{s} are adjacent with u_{k} and u_{1} may

Figure 5. A set of graphs $G_{1}, G_{2}, G_{3}, G_{4}, G_{5}, G_{5}, G_{7}$ with $n=5$ and $\chi_{s}^{d}(G)=n-1$
be adjacent with any $u_{k},(k \neq j), u_{2}$ may be adjacent with any $u_{k},(k \neq i)$ but u_{1} and u_{2} are not together adjacent with any u_{k}.

Proof. Let G be a connected graph. Let $\chi_{s}^{d}(G)=n-1$. Let $\Pi=\left\{\left\{u_{1}, u_{2}\right\},\left\{u_{3}\right\}\right.$, $\left.\left\{u_{4}\right\}, \ldots,\left\{u_{n}\right\}\right\}$ be a χ_{s}^{d}-partition of G.

Case 1: u_{1} and u_{2} are adjacent.
Let $u_{i}, 3 \leq i \leq n$, be such that u_{i} is not adjacent with both u_{1} and u_{2}. That is, either u_{i} is adjacent with u_{1} and not with u_{2} or u_{i} is adjacent with u_{2} and not with u_{1} or u_{i} is not adjacent with both u_{1} and u_{2}. Since Π is a χ_{s}^{d}-partition, there exist some $u_{i}, 3 \leq i \leq n$ adjacent with u_{1} and some $u_{j}, j \neq i, 3 \leq j \leq n$, adjacent with u_{2}. Then u_{i}, u_{2} have a common vertex u_{1} and u_{j}, u_{1} have a common vertex u_{2}. Any two of the vertices u_{3}, \ldots, u_{n} have a common vertex that is, $d\left(u_{r}, u_{s}\right) \leq 2$. Let $n \geq 6$. Suppose u_{r} and u_{s} are adjacent, $r \neq s, r, s \notin\{1,2\}, 3 \leq r, s \leq n$. Then there exist $u_{k}, 3 \leq k \leq n, k \neq\{r, s\}$ such that u_{i}, u_{j}, u_{k} form a triangle. If u_{r} and u_{s} are independent, then there exist $u_{k}, 3 \leq k \leq n, k \neq\{i, j\}$ such that u_{r}, u_{s}, u_{k} form a path of length 2 . If $n=5$, then only one vertex is left other than $u_{1}, u_{2}, u_{i}, u_{j}$, and the graph is either P_{5} or $D_{1,2}$ or C_{5}, a contradiction.
Subcase 1: $n=3$
Then $G=P_{3}$ or K_{3}. Then $\chi_{s}^{d}(G)=3$, a contradiction. Therefore $n \geq 4$.
Subcase 2: $n=4$
Then $G=P_{4}, C_{4}, K_{4}, K_{1,3}, K_{4}-\{e\}$. When $G=K_{4}, K_{1,3}, K_{4}-\{e\}, G$ has a full degree vertex. Therefore $\chi_{s}^{d}(G)=4$, a contradiction. Hence $G=P_{4}$ or C_{4}.
Subcase 3: $n=5$
Then $G=P_{5}, C_{5}, K_{5}, K_{1,4}, K_{5}-\{e\}, K_{5}-\left\{e_{1}, e_{2}\right\}$ or one of the following graphs shown in Figure 6:

Therefore $\chi_{s}^{d}(G)=4$ if $G=P_{5}, C_{5}, D_{1,2}$ or one of the following graphs shown in Figure 7:

Figure 6. A set of graphs $G_{1}, G_{2}, G_{3}, G_{4}, G_{5}, G_{5}, G_{7}$ with $n=5$

Case 2: u_{i} and u_{j} are independent.
Let $u_{i}, 3 \leq i \leq n$, be not adjacent with both u_{1} and u_{2}. That is, either u_{i} is adjacent with u_{1} and not with u_{2} or u_{i} is adjacent with u_{2} and not with u_{1} or u_{i} is not adjacent with both u_{1} and u_{2}. Then Π is a χ_{s}^{d}-partition, there exist some u_{i}, $3 \leq i \leq n$ adjacent with u_{1} and some $u_{j}, j \neq i, 3 \leq j \leq n$, adjacent with u_{2}. Then u_{i}, u_{2} have a common vertex u_{1} and u_{j}, u_{1} have a common vertex u_{2}. Any two of the vertices u_{3}, \ldots, u_{n} have a common vertex that is, $d\left(u_{r}, u_{s}\right) \leq 2$. Let $n \geq 6$. Suppose u_{r} and u_{s} are adjacent, $r \neq s, r, s \notin\{1,2\}, 3 \leq r, s \leq n$. Then there exist $u_{k}, 3 \leq k \leq n, k \neq\{r, s\}$ such that u_{r}, u_{s}, u_{k} form a triangle. If u_{r} and u_{s} are independent, then there exist $u_{k}, 3 \leq k \leq n, k \neq\{r, s\}$ such that u_{r}, u_{s}, u_{k} form a path of length 2 . If $n=5$, then only one vertex is left other than $u_{1}, u_{2}, u_{i}, u_{j}$, and the graph is either P_{5} or a contraction.

4. Conclusion

In this paper, a study of dominator semi-strong partition and the parameter $\chi_{s}^{d}(G)$ is initiated. Further study can be made on the complexity of the parameter and Nordhaus-Gaddum type results for $\chi_{s}^{d}(G)$.

Author Contribution Statements The authors have made equal contributions in this work.

Declaration of Competing Interests The author declares that there are no conflicts of interest about the publication of this paper.

Figure 7. A set of graphs $G_{1}, G_{2}, G_{3}, G_{4}, G_{5}, G_{5}, G_{7}$ with $n=5$

Acknowledgements The authors are thankful to the referees for making valuable suggestions leading to the better presentations of this paper.

References

[1] Arumugam, S., Bagga, J., Chandrasekar, K.R., On dominator colorings in graphs, Proc. Indian Acad. Sci. (Math Sci.), 122(4) (2012), 561-578.
[2] Berge, C., Graphs and Hyper Graphs, North Holland, Amsterdam, 1973.
[3] Chartrand, G., Salehi, E., Zhang, P., The partition dimension of a graph, Aequationes Math., 59 (2000), 45-54. https://doi.org/10.1007/PL00000127
[4] Chellali, M., Maffray, F., Dominator colorings in some classes of graphs, Graphs and Combinatorics, 28 (2012), 97-107. https://doi.org/10.1007/s00373-010-1012-z
[5] Chitra, S., Gokilamani and Swaminathan, V., Color Class Domination in Graphs, Mathematical and Experimental Physics, Narosa Publishing House, 2010, 24-28.
[6] Gera, R., On dominator coloring in graphs, Graph Theory Notes, N. Y., 52 (2007), 25-30.
[7] Gera, R., Horton, S., Rasmussen, C., Dominator colorings and safe clique partitions, Congr. Num., 181 (2006), 19-32.
[8] Harary, F., Graph Theory, Addison-Wesley Reading, MA, 1969.
[9] Haynes, T.W., Hedetniemi, S.T., Slater, P.J., Fundamentals of Domination in Graphs, Marcel Dekker Inc., 1998.
[10] Haynes, T.W., Hedetniemi, S.T., Slater, P.J., Domination in Graphs: Advanced Topics, Marcel Dekker Inc., 1998.
[11] Hedetniemi, S.M., Hedetniemi, S.T., Laskar, R., McRae, A.A., Blair, J.R.S., Dominator Colorings of Graphs, 2006, Preprint.
[12] Hedetniemi, S.M., Hedetniemi, S.T., Laskar, R., McRae, A.A., Wallis, C.K., Dominator partitions of graphs, J. Combin. Systems Sci., 34(1-4) (2009), 183-192.
[13] Jothilakshmi, G., Pushpalatha, A.P., Suganthi, S., Swaminathan, V., (k,r)-Semi strong chromatic number of a graph, International Journal of Computer Applications, 21(2) (2011), 7-11.
[14] Kazemi, A.P., Total dominator chromatic number of a graph, Trans. Comb., 4 (2015), 57-68.
[15] Kazemi, A.P., Total dominator coloring in product graphs, Util. Math., 94 (2014), 329-345.
[16] Kazemi, A.P., Total dominator chromatic number and Mycieleskian graphs, Util. Math., 103 (2017), 129-137.
[17] Merouane, H.B., Haddad, M., Chellali, M., Kheddouci, H., Dominated colorings of graphs, Graphs and Combinatorics, 31 (2015), 713-727. https://doi.org/10.1007/s00373-014-1407-3
[18] Sampathkumar, E., Pushpa Latha, L., Semi-strong chromatic number of a graph, Indian Journal of Pure and Applied Mathematics, 26(1) (1995), 35-40.
[19] Sampathkumar, E., Venkatachalam, C.V., Chromatic partition of a graph, Discrete Mathematics, 74 (1989), 227-239. https://doi.org/10.1016/S0167-5060(08)70311-X
[20] Venkatakrishnan, Y.B., Swaminathan,V., Color class domination number of middle graph and center graph of $K_{1, n}, C_{n}, P_{n}$, Advanced Modeling and Optimization, (12) (2010), 233-237.
[21] Venkatakrishnan, Y.B., Swaminathan, V., Color class domination numbers of some classes of graphs, Algebra and Discrete Mathematics, 18(2) (2014), 301-305.

[^0]: 2020 Mathematics Subject Classification. 05C69, 05C15.
 Keywords. Dominator coloring, semi strong color partition, semi-strong coloring.
 ${ }^{\text {® }}$ prabasigc@yahoo.co.in; ©0000-0003-0171-3777
 $\square_{\text {Swaminathan.sulanesri@gmail.com; (D0000-0002-5840-2040 }}$
 $\square_{\text {sundareswaranr@ssn.edu.in-Corresponding author; ©0000-0002-0439-695X }}$

