http://communications.science.ankara.edu.tr

COMBINATORIAL RESULTS OF COLLAPSE FOR ORDER-PRESERVING AND ORDER-DECREASING TRANSFORMATIONS

Emrah KORKMAZ
Department of Mathematics, Çukurova University, Adana, TURKEY

Abstract

The full transformation semigroup \mathcal{T}_{n} is defined to consist of all functions from $X_{n}=\{1, \ldots, n\}$ to itself, under the operation of composition. In 9], for any α in \mathcal{T}_{n}, Howie defined and denoted collapse by $c(\alpha)=\bigcup_{t \in i m(\alpha)}\left\{t \alpha^{-1}:\left|t \alpha^{-1}\right| \geq 2\right\}$. Let \mathcal{O}_{n} be the semigroup of all orderpreserving transformations and \mathcal{C}_{n} be the semigroup of all order-preserving and decreasing transformations on X_{n} under its natural order, respectively. Let $E\left(\mathcal{O}_{n}\right)$ be the set of all idempotent elements of $\mathcal{O}_{n}, E\left(\mathcal{C}_{n}\right)$ and $N\left(\mathcal{C}_{n}\right)$ be the sets of all idempotent and nilpotent elements of \mathcal{C}_{n}, respectively. Let U be one of $\left\{\mathcal{C}_{n}, N\left(\mathcal{C}_{n}\right), E\left(\mathcal{C}_{n}\right), \mathcal{O}_{n}, E\left(\mathcal{O}_{n}\right)\right\}$. For $\alpha \in U$, we consider the set $\operatorname{im}^{c}(\alpha)=\left\{t \in \operatorname{im}(\alpha):\left|t \alpha^{-1}\right| \geq 2\right\}$. For positive integers $2 \leq k \leq r \leq n$, we define $$
\begin{aligned} \mathcal{U}(k) & =\left\{\alpha \in \mathcal{U}: t \in \operatorname{im}^{c}(\alpha) \text { and }\left|t \alpha^{-1}\right|=k\right\}, \\ \mathcal{U}(k, r) & =\left\{\alpha \in \mathcal{U}(k):\left|\bigcup_{t \in i m^{c}(\alpha)} t \alpha^{-1}\right|=r\right\} . \end{aligned}
$$

The main objective of this paper is to determine $|\mathcal{U}(k, r)|$, and so $|\mathcal{U}(k)|$ for some values r and k.

1. Introduction

For any non-empty finite set X, the set \mathcal{T}_{X} of all transformations of X (i.e., all maps X to itself) is a semigroup under composition, and is called the full transformation semigroup on X. For any $n \in \mathbb{N}$, if $X=X_{n}=\{1, \ldots, n\}$, then \mathcal{T}_{X} is denoted by \mathcal{T}_{n}. A transformation $\alpha \in \mathcal{T}_{n}$ is called order-preserving, if $x \leq y$ implies $x \alpha \leq y \alpha$ for all $x, y \in X_{n}$ and decreasing (increasing), if $x \alpha \leq x(x \alpha \geq x)$ for all $x \in X_{n}$. The subsemigroup of all order-preserving transformations in \mathcal{T}_{n} is denoted by \mathcal{O}_{n} and the order-decreasing transformations in \mathcal{T}_{n} is denoted by \mathcal{D}_{n}.

[^0]The subsemigroup of all order-preserving and decreasing (increasing) transformations in \mathcal{T}_{n} is denoted by $\mathcal{C}_{n}\left(\mathcal{C}_{n}^{+}\right)$i.e., $\mathcal{C}_{n}=\mathcal{O}_{n} \cap \mathcal{D}_{n}$. Umar proved that \mathcal{D}_{n} and \mathcal{D}_{n}^{+}are isomorphic in 15, Corollary 2.7.]. Furthermore, Higgins proved that \mathcal{C}_{n} and \mathcal{C}_{n}^{+}are isomorphic semigroups in [8, Remarks, p. 290]. For any transformation α in \mathcal{T}_{n}, the collapse, the fix, the image and the kernel are denoted and definded, respectively, by

$$
\begin{aligned}
c(\alpha) & =\bigcup_{t \in \operatorname{im}(\alpha)}\left\{t \alpha^{-1}:\left|t \alpha^{-1}\right| \geq 2\right\}, \quad(\alpha)=\left\{x \in X_{n}: x \alpha=x\right\} \\
i m(\alpha) & =\left\{x \alpha: x \in X_{n}\right\}, \text { and } \operatorname{ker}(\alpha)=\left\{(x, y): x \alpha=y \alpha \text { for all } x, y \in X_{n}\right\} .
\end{aligned}
$$

Given transformation α in \mathcal{T}_{n} is called collapsible, if there exists $t \in \operatorname{im}(\alpha)$ such that $\left|t \alpha^{-1}\right| \geq 2$.

An element e of a semigroup S is called idempotent if $e^{2}=e$ and the set of all idempotents in S is denoted by $E(S)$. An element a of a finite semigroup S with a zero, denoted by 0 , is called nilpotent if $a^{m}=0$ for some positive integer m, and furthermore, if $a^{m-1} \neq 0$, then a is called an m-nilpotent element of S. Note that zero element is an 1-nilpotent element. The set of all nilpotent elements of S is denoted by $N(S)$. It was proven a finite semigroup S with zero is nilpotent when exactly the unique idempotent of S is the zero element (see, [6, Proposition 8.1.2]). The reader is referred to [5] and [11] for additional details in semigroup theory.

Recall that Fibonacci sequence $\left\{f_{n}\right\}$ is defined by the recurrence relation $f_{n}=$ $f_{n-1}+f_{n-2}$ for $n \geq 3$, where $f_{1}=f_{2}=1$ (see 10]). As proved in [13, Theorem 2.1], $\left|\mathcal{C}_{n}\right|=\left|\mathcal{C}_{n}^{+}\right|=C_{n}=\frac{1}{n+1}\binom{2 n}{n}$, the n-th Catalan number for $n \geq 1$ (see, [7]). That is why \mathcal{C}_{n} is also called the Catalan monoid. In [13, Proposition 2.3] and 8, Theorem 3.19], it has been shown that $\left|N\left(C_{n}\right)\right|=\left|N\left(C_{n}^{+}\right)\right|=C_{n-1}$ and $\left|E\left(\mathcal{C}_{n}\right)\right|=\left|E\left(\mathcal{C}_{n}^{+}\right)\right|=2^{n-1}$. Also, from 10, Theorem 2.1 and Theorem 2.3], we have that $\left|\mathcal{O}_{n}\right|=\binom{2 n-1}{n-1}$ and $\left|E\left(\mathcal{O}_{n}\right)\right|=f_{2 n}$.

As indicated in 5 if $\alpha \in \mathcal{C}_{n}$, we use

$$
\alpha=\left(\begin{array}{ccc}
A_{1} & \cdots & A_{r} \tag{1}\\
a_{1} & \cdots & a_{r}
\end{array}\right)
$$

to notifty that $\operatorname{im}(\alpha)=\left\{a_{1}=1<a_{2}<\ldots<a_{r}\right\}$ and $a_{i} \alpha^{-1}=A_{i}$ for each $1 \leq i \leq r$. Furthermore, $A_{1}, A_{2}, \ldots, A_{r}$ which are pairwise disjoint subsets of X_{n} are called blocks of α. It is clear that such an α is an idempotent if and only if $a_{i} \in A_{i}$ for all i. As defined in [4] a set $K \subseteq X_{n}$ is called convex if K is in the form $[i, i+t]=\{i, i+1, \ldots, i+t-1, i+t\}$. A partition $P=\left\{A_{1}, \ldots, A_{r}\right\}$ of X_{n} for $1 \leq r \leq n$ is called an ordered partition, and written $P=\left(A_{1}<\cdots<A_{r}\right)$ if $x<y$ for all $x \in A_{i}$ and $y \in A_{i+1}(1 \leq i \leq r-1)$. For a given $\alpha \in \mathcal{C}_{n}$ let $\operatorname{im}(\alpha)=\left\{a_{1}=1<a_{2}<\ldots<a_{r}\right\}$ and $A_{i}=a_{i} \alpha^{-1}$ for every $1 \leq i \leq r$. Then, the set of kernel clasess of $\alpha, X_{n} / \operatorname{ker}(\alpha)=\left\{A_{1}, \ldots, A_{r}\right\}$, is an ordered convex partition of X_{n}. Since $N\left(\mathcal{C}_{n}\right)$ is a nilpotent subsemigroup of \mathcal{C}_{n}, if $\alpha \in N\left(\mathcal{C}_{n}\right)$, then $1 \alpha=2 \alpha=1$, and that $\left|1 \alpha^{-1}\right| \geq 2$.

Several authors studied certain problems concerning combinatorial aspects of semigroup theory during the years. The vast majority of papers have been written in this area such as $3,9,12,13,15,16$. The rank (minimal size of a generating set) and idempotent rank (minimal size of an idempotent generating set) of several transformations semigroups have been studied in 9$], 12$ and 16 by using the combinatorial methods. A mapping $\alpha: \operatorname{dom}(\alpha) \subseteq X_{n} \rightarrow \operatorname{im}(\alpha) \subseteq X_{n}$ is called a partial transformation, and the set of all partial transformations is a semigroup under composition and denoted by \mathcal{P}_{n}. In the articles 1 and 14 the numbers $\left|\mathcal{T}_{n}(k, r)\right|$ and $\left|\mathcal{P}_{n}(k, r)\right|$ were calculated for $r=k=2,3$. Since then, $\mathcal{T}_{n}(k, r)$ were determined for $r=k$ for $2 \leq k \leq n$ in [2]. In the present paper, we calculate $\left|\mathcal{C}_{n}(k, k)\right|,\left|\mathcal{C}_{n}(k, 2 k)\right|,\left|\mathcal{C}_{n}(2, n)\right|,\left|N\left(\mathcal{C}_{n}\right)(k, k)\right|,\left|N\left(\mathcal{C}_{n}\right)(k, 2 k)\right|,\left|N\left(\mathcal{C}_{n}\right)(2, n)\right|$, $\left|E\left(\mathcal{C}_{n}\right)(k, r)\right|,\left|\mathcal{O}_{n}(k, k)\right|$ and $\left|E\left(\mathcal{O}_{n}\right)(k, k)\right|$. These invariants could be interesting and useful in the study of structure of semigroups.

2. Collapsible elements in \mathcal{C}_{n}

Let $\mathcal{U}(k, r)=\mathcal{C}_{n}(k, r)$ for positive integers $2 \leq k \leq r \leq n$. Then, it is obvious that $\left|\mathcal{C}_{n}(k, r)\right|=0$ if k does not divide r, and further $\left|\mathcal{C}_{n}(n, n)\right|=1$. Note that 1_{n} which denotes identity element of \mathcal{C}_{n} and \mathcal{O}_{n} is the only non-collapsible element of \mathcal{C}_{n} and \mathcal{O}_{n} then, the number of collapsible elements in \mathcal{C}_{n} and \mathcal{O}_{n} are $C_{n}-1$ and $\binom{2 n-1}{n-1}-1$, respectively. The proof of the next combinatorial result is easy and is omitted.

Lemma 1. For positive integers k and n where $1 \leq k \leq n$,

$$
\sum_{i=1}^{n-k+1}\binom{n-i}{n-k-i+1}=\binom{n}{k}
$$

Theorem 1. For positive integers k and n where $2 \leq k \leq n$,

$$
\left|\mathcal{C}_{n}(k, k)\right|=\binom{n}{k}
$$

Proof. For a given $\alpha \in \mathcal{C}_{n}(k, k)$ it is clear that there exists $i \in i m(\alpha)$ such that $\left|i \alpha^{-1}\right|=k$ and $\min \left(i \alpha^{-1}\right)=i$. So,

$$
\alpha=\left(\begin{array}{cccccccc}
\{1\} & \{2\} & \cdots & \{i-1\} & {[i, k+i-1]} & \{k+i\} & \cdots & \{n\} \\
1 & 2 & \cdots & i-1 & i & (k+i) \alpha & \cdots & n \alpha
\end{array}\right)
$$

where $1 \leq i \leq n-k+1$. As can be seen the above form, we choose elements of $i m(\alpha)$ from the set $[i+1, n]$ for the set $[k+i, n]$. There are $\binom{n-(i+1)+1}{n-(k+i)+1}=\binom{n-i}{n-k-i+1}$ ways to do that. This yields, there are $\binom{n-i}{n-k-i+1}$ elements in $\mathcal{C}_{n}(k, k)$ for a fixed i. Since $1 \leq i \leq n-k+1$, it follows directly from Lemma 1 that

$$
\left|\mathcal{C}_{n}(k, k)\right|=\sum_{i=1}^{n-k+1}\binom{n-i}{n-k-i+1}=\binom{n}{k}
$$

Our next result computes $\left|\mathcal{C}_{n}(k, 2 k)\right|$.
Proposition 1. For positive integers k and n where $2 \leq k \leq n$,

$$
\left|\mathcal{C}_{n}(k, 2 k)\right|=\sum_{i=1}^{n-2 k+1} \sum_{j=i+k}^{n-k+1} \sum_{l=j-k+1}^{j}\binom{l-i-1}{j-k-i}\binom{n-l}{n-k-j+1}
$$

Proof. Given $\alpha \in \mathcal{C}_{n}(k, 2 k)$, let $A_{i}=[i, k+i-1]$ and $A_{j}=[j, k+j-1]$ be any two blocks of α each of which contain k elements. So,

$$
\alpha=\left(\begin{array}{cccccccccc}
\{1\} & \{2\} & \cdots & \{i-1\} & A_{i} & \{k+i\} & \cdots & A_{j} & \cdots & \{n\} \\
1 & 2 & \cdots & i-1 & i & (k+i) \alpha & \cdots & j \alpha & \cdots & n \alpha
\end{array}\right)
$$

where $1 \leq i \leq n-2 k+1$ and $i+k \leq j \leq n-k+1$. Let $j \alpha=l$ where $j-k+1 \leq l \leq j$. As can be seen above form, we choose elements of $\operatorname{im}(\alpha)$ from the set $[i+1, l-1]$ for the set $[k+i, j-1]$ and from the set $[l+1, n]$ for the set $[k+j, n]$. However, this can be done $\binom{l-i-1}{j-k-i}\binom{n-l}{n-k-j+1}$ ways. This yields, there are $\binom{l-i-1}{j-k-i}\binom{n-l}{n-k-j+1}$ elements in $\mathcal{C}_{n}(k, 2 k)$ for fixed i, j and l. Since $1 \leq i \leq n-2 k+1, i+k \leq j \leq n-k+1$ and $j-k+1 \leq l \leq j$, it follows quickly that

$$
\left|\mathcal{C}_{n}(k, 2 k)\right|=\sum_{i=1}^{n-2 k+1} \sum_{j=i+k}^{n-k+1} \sum_{l=j-k+1}^{j}\binom{l-i-1}{j-k-i}\binom{n-l}{n-k-j+1}
$$

Theorem 2. For positive even integer $n \geq 2$,

$$
\left|\mathcal{C}_{n}(2, n)\right|=\frac{2}{(n+2)}\binom{n}{\frac{n}{2}}
$$

Proof. For any $\alpha \in \mathcal{C}_{n}(2, n)$, it is clear that n must be even, and so $\left|\mathcal{C}_{n}(n, 2)\right|=0$ if 2 does not divide n. Then, the result will clearly follow if we establish a bijection between $\mathcal{C}_{n}(2, n)$ and $\mathcal{C}_{\frac{n}{2}}$. Define a map $\theta: \mathcal{C}_{n}(2, n) \rightarrow \mathcal{C}_{\frac{n}{2}}$ by $(\alpha) \theta=\alpha^{\prime}$ where

$$
\begin{cases}(2 i-1) \alpha=i \alpha^{\prime}+i-1, & i=1,2, \ldots, \frac{n}{2} \\ (2 i) \alpha=i \alpha^{\prime}+i-1, & i=1,2, \ldots, \frac{n}{2}\end{cases}
$$

that is,

$$
\begin{cases}j \alpha=\left(\frac{j+1}{2}\right) \alpha^{\prime}+\frac{j-1}{2}, & j=1,3, \ldots, n-1 ; \\ j \alpha=\frac{j}{2} \alpha^{\prime}+\frac{j-2}{2}, & j=2,4, \ldots, n .\end{cases}
$$

This yields, θ is a well-defined bijection. Since $\left|\mathcal{C}_{\frac{n}{2}}\right|=C_{\frac{n}{2}}$, the proof is completed.

Example 1. The function $\theta: \mathcal{C}_{6}(2,6) \rightarrow \mathcal{C}_{\frac{6}{2}}$ defined as in above is a bijection. Certainly,

$$
\begin{aligned}
\mathcal{C}_{6}(2,6)= & \left\{\left(\begin{array}{ccc}
\{1,2\} & \{3,4\} & \{5,6\} \\
1 & 2 & 3
\end{array}\right),\left(\begin{array}{ccc}
\{1,2\} & \{3,4\} & \{5,6\} \\
1 & 2 & 4
\end{array}\right),\right. \\
& \left(\begin{array}{ccc}
\{1,2\} & \{3,4\} & \{5,6\} \\
1 & 2 & 5
\end{array}\right),\left(\begin{array}{ccc}
\{1,2\} & \{3,4\} & \{5,6\} \\
1 & 3 & 4
\end{array}\right), \\
& \left.\left(\begin{array}{ccc}
\{1,2\} & \{3,4\} & \{5,6\} \\
1 & 3 & 5
\end{array}\right)\right\} \text { and } \\
\mathcal{C}_{3}= & \left\{\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 1
\end{array}\right),\left(\begin{array}{ccc}
1 & 2 & 3 \\
1 & 1 & 2
\end{array}\right),\left(\begin{array}{ccc}
1 & 2 & 3 \\
1 & 1 & 3
\end{array}\right)\right. \\
& \left.\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 2
\end{array}\right),\left(\begin{array}{ccc}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right)\right\}
\end{aligned}
$$

as wanted.
Let $\mathcal{U}(k, r)=N\left(\mathcal{C}_{n}\right)(k, r)$ for positive integers $2 \leq k \leq r \leq n$. Clearly, $\left|N\left(\mathcal{C}_{n}\right)(k, r)\right|=0$ if k does not divide r, and also $\left|N\left(\mathcal{C}_{n}\right)(n, n)\right|=1$ and $\mid N\left(\mathcal{C}_{n}(n-\right.$ $1, n-1) \mid=n-2$. Note that $\alpha \in N\left(\mathcal{C}_{n}\right), 1 \alpha=2 \alpha=1$ and $i \alpha \leq i-1$ for all $3 \leq i \leq n$, and so the number of collapsible emenets in $N\left(\mathcal{C}_{n}\right)$ is $\left|N\left(\mathcal{C}_{n}\right)\right|=C_{n-1}$.

Lemma 2. For positive integers k and n where $2 \leq k \leq n$,

$$
\left|N\left(\mathcal{C}_{n}\right)(k, k)\right|=\binom{n-2}{n-k}
$$

Proof. Given $\alpha \in N\left(\mathcal{C}_{n}\right)(k, k)$, since $1 \alpha=2 \alpha=1$ and $\left|1 \alpha^{-1}\right|=k$, we have

$$
\alpha=\left(\begin{array}{ccccc}
{[1, k]} & \{k+1\} & \{k+2\} & \cdots & \{n\} \\
1 & (k+1) \alpha & (k+2) \alpha & \cdots & n \alpha
\end{array}\right) .
$$

As can be seen above form, we choose elements of $\operatorname{im}(\alpha)$ from the set $[2, n]$ for the set $[k+1, n-1]$. However, there are

$$
\left|N\left(\mathcal{C}_{n}\right)(k, k)\right|=\binom{n-2}{n-k}
$$

ways to do that, as required.
Proposition 2. For positive integers k and n where $2 \leq k \leq n$,

$$
\left|N\left(\mathcal{C}_{n}\right)(k, 2 k)\right|=\sum_{j=k+1}^{n-k+1} \sum_{l=2}^{j}\binom{l-2}{j-k-1}\binom{n-l}{n-k-j+1} .
$$

Proof. Given $\alpha \in N\left(\mathcal{C}_{n}\right)(k, 2 k)$, let $A_{1}=[1, k]$ and $A_{j}=[j, k+j-1]$ be any two blocks of α which contain k elements. This yields,

$$
\alpha=\left(\begin{array}{ccccc}
A_{1} & \{k+1\} & \cdots & A_{j} & \{n\} \\
1 & (k+1) \alpha & \cdots & j \alpha & n \alpha
\end{array}\right)
$$

where $k+1 \leq j \leq n-k+1$. Let $j \alpha=l$ where $2 \leq l \leq j$. As can be seen above form, we choose element of $i m(\alpha)$ from the set $[2, l-1]$ for the set $[k+1, j-1]$ and from the set $[l+1, n]$ for the set $[k+j, n]$. However, this can be done $\binom{l-2}{j-k-1}\binom{n-l}{n-k-j-1}$ ways. This yields, there are $\binom{l-2}{j-k-1}\binom{n-l}{n-k-j-1}$ elements in $N\left(\mathcal{C}_{n}\right)(k, 2 k)$ for fixed j and l. Since $k+1 \leq j \leq n-k+1$ and $2 \leq l \leq j$, it follows quickly that

$$
\left|N\left(\mathcal{C}_{n}\right)(k, 2 k)\right|=\sum_{j=k+1}^{n-k+1} \sum_{l=2}^{j}\binom{l-2}{j-k-1}\binom{n-l}{n-k-j+1} .
$$

Theorem 3. For positive even integer $n \geq 2$,

$$
\left|N\left(\mathcal{C}_{n}\right)(2, n)\right|=\frac{2}{n}\binom{n-2}{\frac{n-2}{2}}
$$

Proof. Let α be any element of $N\left(\mathcal{C}_{n}\right)(n, 2)$. Then, it is clear that n must be even, and so $\left|N\left(\mathcal{C}_{n}\right)(2, n)\right|=0$ if 2 does not divide n. If we construct a bijection between $N\left(\mathcal{C}_{\frac{n}{2}}\right)$ and $\left|N\left(\mathcal{C}_{n}\right)(2, n)\right|$, then this completes the proof. Define a map $\theta: N\left(\mathcal{C}_{n}\right)(2, n) \rightarrow N\left(\mathcal{C}_{\frac{n}{2}}\right)$ by $(\alpha) \theta=\alpha^{\prime}$ where

$$
\begin{cases}(2 i-1) \alpha=i \alpha^{\prime}+i-1, & i=1,2, \ldots, \frac{n}{2} \\ (2 i) \alpha=i \alpha^{\prime}+i-1, & i=1,2, \ldots, \frac{n}{2}\end{cases}
$$

that is,

$$
\begin{cases}j \alpha=\left(\frac{j+1}{2}\right) \alpha^{\prime}+\frac{j-1}{2}, & j=1,3, \ldots, n-1 \\ j \alpha=\frac{j}{2} \alpha^{\prime}+\frac{j-2}{2}, & j=2,4, \ldots, n\end{cases}
$$

Now it is easy to check that θ is a well-defined bijection. Since $\left|N\left(\mathcal{C}_{\frac{n}{2}}\right)\right|=C_{\frac{n}{2}-1}$, the proof is complete.
Example 2. The function $\theta: N\left(\mathcal{C}_{8}\right)(2,8) \rightarrow N\left(\mathcal{C}_{\frac{8}{2}}\right)$ defined as in above is a bijection. Indeed, $=N\left(\mathcal{C}_{8}\right)(2,8)=$

$$
\begin{aligned}
& \left\{\left(\begin{array}{cccc}
\{1,2\} & \{3,4\} & \{5,6\} & \{7,8\} \\
1 & 2 & 3 & 4
\end{array}\right),\left(\begin{array}{cccc}
\{1,2\} & \{3,4\} & \{5,6\} & \{7,8\} \\
1 & 2 & 3 & 5
\end{array}\right),\right. \\
& \left(\begin{array}{cccc}
\{1,2\} & \{3,4\} & \{5,6\} & \{7,8\} \\
1 & 2 & 3 & 6
\end{array}\right),\left(\begin{array}{cccc}
\{1,2\} & \{3,4\} & \{5,6\} & \{7,8\} \\
1 & 2 & 4 & 5
\end{array}\right), \\
& \left.\left(\begin{array}{cccc}
\{1,2\} & \{3,4\} & \{5,6\} & \{7,8\} \\
1 & 2 & 4 & 6
\end{array}\right)\right\} \text { and }
\end{aligned}
$$

$$
\begin{aligned}
N\left(\mathcal{C}_{4}\right)= & \left\{\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 1 & 1 & 1
\end{array}\right),\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 1 & 1 & 2
\end{array}\right),\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 1 & 1 & 3
\end{array}\right),\right. \\
& \left.\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 1 & 2 & 2
\end{array}\right),\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 1 & 2 & 3
\end{array}\right)\right\},
\end{aligned}
$$

as required.
Let $\mathcal{U}(k, r)=E\left(\mathcal{C}_{n}\right)(k, r)$ for positive integers $2 \leq k \leq r \leq n$. Clearly, $\left|E\left(\mathcal{C}_{n}\right)(k, r)\right|=0$ if k does not divide r, and also $\left|E\left(\mathcal{C}_{n}\right)(n, n)\right|=1$. Note that the number of collapsible elements in $E\left(\mathcal{C}_{n}\right)$ is $2^{n-1}-1$.

Theorem 4. For positive integers k, r and n where $2 \leq k \leq r \leq n$ and $r=k t$,

$$
\left|E\left(\mathcal{C}_{n}\right)(k, r)\right|=\binom{n+t-r}{t}
$$

Proof. If $\alpha \in E\left(\mathcal{C}_{n}\right)(k, r)$ and $r=k t$, then $\alpha=\left(\begin{array}{cccc}A_{1} & A_{2} & \cdots & A_{n+t-r} \\ 1 & a_{2} & \cdots & a_{n+t-r}\end{array}\right)$, where $a_{i} \in A_{i}$ for all $1 \leq i \leq n+t-r$. Since $r=k t$, ordered partition of α contains $n+t-r$ blocks such that t blocks contain k elements and $n-k t$ blocks contain one element. Without loss of generality assume that each of the sets $A_{1}, A_{2}, \ldots, A_{t}$ contains k elements and each of the sets $A_{t+1}, A_{t+2}, \ldots, A_{n+t-r}$ contains one element. Since α is an idempotent, it is clear that α is the only element in $E\left(\mathcal{C}_{n}\right)(k, r)$ with this ordered partition. Hence, all elements of $E\left(\mathcal{C}_{n}\right)(k, r)$ are entirely determined by choosing t blocks which contain k elements. Since we choose t blocks $\binom{n+t-r}{t}$ ways, this completes the proof.

The next result is clear from the definition of $\mathcal{U}(k)$ and $\mathcal{U}(k, r)$:

$$
|\mathcal{U}(k)|=\sum_{i=1}^{t}|\mathcal{U}(k, i k)|
$$

where $t=\frac{n}{k}$.
Example 3. We obtain $\left|E\left(\mathcal{C}_{6}\right)(2,4)\right|=\binom{6+2-4}{2}=6$ by Theorem 4. Since $n=$ $6, r=4, k=2, t=2$, each element in $E\left(\mathcal{C}_{6}\right)(2,4)$ have $6+2-4$ blocks such that 2 blocks contain 2 elements and 2 blocks are singletons. Indeed, $E\left(\mathcal{C}_{6}\right)(2,4)=$

$$
\begin{aligned}
& \left\{\left(\begin{array}{cccc}
\{1,2\} & \{3,4\} & \{5\} & \{6\} \\
1 & 3 & 5 & 6
\end{array}\right),\left(\begin{array}{cccc}
\{1,2\} & \{3\} & \{4,5\} & \{6\} \\
1 & 3 & 4 & 6
\end{array}\right),\right. \\
& \left(\begin{array}{cccc}
\{1,2\} & \{3\} & \{4\} & \{5,6\} \\
1 & 3 & 4 & 5
\end{array}\right),\left(\begin{array}{ccc}
\{1\} & \{2,3\} & \{4,5\} \\
1 & 2 & 4
\end{array}\right) \\
& \left.\left(\begin{array}{cccc}
\{1\} & \{2,3\} & \{4\} & \{5,6\} \\
1 & 2 & 4 & 5
\end{array}\right),\left(\begin{array}{cccc}
\{1\} & \{2\} & \{3,4\} & \{5,6\} \\
1 & 2 & 3 & 5
\end{array}\right)\right\} .
\end{aligned}
$$

Furthermore, $\left|E\left(\mathcal{C}_{6}\right)(2)\right|=\sum_{i=1}^{3}\left|E\left(\mathcal{C}_{6}\right)(2, i 2)\right|=\left|E\left(\mathcal{C}_{6}\right)(2,2)\right|+\left|E\left(\mathcal{C}_{6}\right)(2,4)\right|+$ $\left|E\left(\mathcal{C}_{6}\right)(2,6)\right|=\binom{6+1-2}{1}+\binom{6+2-4}{2}+\binom{6+3-6}{3}=12$.

3. Collapsible elements in \mathcal{O}_{n}

Let $U(k, r)=\mathcal{O}_{n}(k, r)$ for positive integers $2 \leq k \leq r \leq n$. Then, it is clear that $\left|\left(\mathcal{O}_{n}\right)(r, k)\right|=0$ if k does not divide r, and also $\left|\left(\mathcal{O}_{n}\right)(n, n)\right|=n$. By convention, we take $\binom{0}{0}=1$ in the following theorem.

Theorem 5. For positive integers k and n where $2 \leq k \leq n$,

$$
\left|\mathcal{O}_{n}(k, k)\right|=\sum_{i=1}^{n-k+1} \sum_{j=i}^{k+i-1}\binom{j-1}{i-1}\binom{n-j}{n-k-i+1}
$$

Proof. For any $\alpha \in \mathcal{O}_{n}(k, k)$, let

$$
\alpha=\left(\begin{array}{cccccccc}
\{1\} & \{2\} & \cdots & \{i-1\} & {[i, k+i-1]} & \{k+i\} & \cdots & \{n\} \\
1 \alpha & 2 \alpha & \cdots & (i-1) \alpha & i \alpha & (k+i) \alpha & \cdots & n \alpha
\end{array}\right),
$$

where $1 \leq i \leq n-k+1$. As can be seen above form, the set of all value of $i \alpha$ is the set $[i, k+i-1]$ and for all distinct $m, r \in X_{n} \backslash[i, k+i-1]$, it is clear that $m \alpha \neq r \alpha$. Let $i \alpha=j$ where $i \leq j \leq k+i-1$. Then, we choose elements of $i m(\alpha)$ for the left and right sides of $i \alpha=j$. For the left side, we choose elements from the set $[1, j-1]$ for the set $[1, i-1]$. There are $\binom{j-1}{i-1}$ ways to do that. For the right side, we choose the elements from the set $[j+1, n]$ for the set $[k+i, n]$. There are $\binom{n-j}{n-k-i+1}$ ways to do that. This yields, there are $\binom{j-1}{i-1}\binom{n-j}{n-k-i+1}$ elements in $\mathcal{O}_{n}(k, k)$ for fixed i and j. Since $1 \leq i \leq n-k+1$ and $i \leq j \leq k+i-1$, it follows that

$$
\left|\mathcal{O}_{n}(k, k)\right|=\sum_{i=1}^{n-k+1} \sum_{j=i}^{k+i-1}\binom{j-1}{i-1}\binom{n-j}{n-k-i+1}
$$

Let $\mathcal{U}(k, r)=E\left(\mathcal{O}_{n}\right)(k, r)$ for positive integers $2 \leq k \leq r \leq n$. Clearly, $\left|E\left(\mathcal{O}_{n}\right)(k, r)\right|=0$ if k does not divide r. Notice that the number of collapsible elements in $E\left(\mathcal{O}_{n}\right)$ is $f_{2 n}-1$.
Lemma 3. For positive integers k and n where $2 \leq k \leq n$,

$$
\left|E\left(\mathcal{O}_{n}\right)(k, k)\right|=k(n-k+1)
$$

Proof. For any $\alpha \in \mathcal{O}_{n}(k, k)$, let

$$
\alpha=\left(\begin{array}{cccccccc}
\{1\} & \{2\} & \cdots & \{i-1\} & {[i, k+i-1]} & \{k+i\} & \cdots & \{n\} \\
1 \alpha & 2 \alpha & \cdots & (i-1) \alpha & i \alpha & (k+i) \alpha & \cdots & n \alpha
\end{array}\right)
$$

where $1 \leq i \leq n-k+1$. As can be seen above form, the set of all value of $i \alpha$ is the set $[i, k+i-1]$. Moreover, since α is an idempotent, $m \alpha=m$ for all $m \in X_{n} \backslash[i, k+i-1]$. Let $i \alpha=j$ where $i \leq j \leq k+i-1$. Then, it is easy to see
that α is the only element in $E\left(\mathcal{O}_{n}\right)(k, k)$ for fixed i and j. Since $i \leq j \leq k+i-1$, there are k elements in $E\left(\mathcal{O}_{n}\right)(k, k)$ for fixed i. Since $1 \leq i \leq n-k+1$, it follows that

$$
\left|E\left(\mathcal{O}_{n}\right)(k, k)\right|=k(n-k+1)
$$

Declaration of Competing Interests The author has no competing interests to declare.

References

[1] Adenji, A.O., Science, C., Makanjuola, S.O., On some combinatorial results of collapse and properties of height in full transformation semigroups, Afr. J. Comp. ICT., 1(2) (2008), 61-63.
[2] Adenji, A.O., Science, C., Makanjuola, S.O., A combinatorial property of the full transformation semigroup, Afr. J. Comp. ICT., 2(1) (2009), 15-19.
[3] Ayık, G., Ayık, H., Koç, M., Combinatorial results for order-preserving and order-decreasing transformations, Turk. J. Math., 35(4) (2011), 1-9. https://doi.org/10.3906/mat-1010-432
[4] Catarino P. M., Higgins, P.M., The monoid of orientation-preserving mappings on a chain, Semigroup Forum, 58(2) (1999), 190-206. https://doi.org/10.1007/s002339900014
[5] Clifford, A.H., Preston, G.B., The algebraic theory of semigroups. Vol.II., American Math. Soc., Providence, 1967.
[6] Ganyushkin, O., Mazorchuk, V., Classical Finite Transformation Semigroups, SpringerVerlag, London, 2009.
[7] Grimaldi R.P., Discrete and combinatorial mathematics, Pearson Education Inc., USA, 2003.
[8] Higgins, P.M., Combinatorial results for semigroups of order-preserving mappings, Math. Proc. Cambridge Phil. Soc., 113(2) (1993), 281-296. https://doi.org/10.1017/S0305004100075964
[9] Howie, J. M., The subsemigroup generated by the idempotents of a full transformation semigroup, J. London Math. Soc., 41(1) (1966), 707-716. https://doi.org/10.1112/jlms/s141.1.707
[10] Howie, J. M., Products of idempotents in certain semigroups of transformations, Proc. Edinb. Math. Soc., 17(3) (1970/71), 223-236. https://doi.org/10.1017/S0013091500026936
[11] Howie, J.M., Fundamentals of Semigroup Theory, Oxford University Press, New York, 1995.
[12] Korkmaz, E., Ayık, H., Ranks of nilpotent subsemigroups of order-preserving and decreasing transformation semigroups, Turk. J. Math., 45(4) (2021), 1626-1634. https://doi.org/10.3906/mat-2008-19
[13] Laradji, A., Umar, A., On certain finite semigroups of order-decreasing transformations I, Semigroup Forum, 69(2) (2004), 184-200. https://doi.org/10.1007/s00233-004-0101-9
[14] Mbah, M. A., Ndubisi, R. U., Achaku, D. T., On some combinatorial results of collapse in partial transformation semigroups, Canadian Journal of Pure and Applied Sciences, 1, (2020) 257-261. https://doi.org/10.15864/jmscm. 1301
[15] Umar, A., Semigroups of order-decreasing transformations: The isomorphism theorem, Semigroup Forum, 53(1) (1996), 220-224. https://doi.org/10.1007/BF02574137
[16] Yağcı, M., Korkmaz, E., On nilpotent subsemigroups of the order-preserving and decreasing transformation semigroups, Semigroup Forum, 101(2) (2020), 486-289. https://doi.org/10.1007/s00233-020-10098-2

[^0]: 2020 Mathematics Subject Classification. 20M20.
 Keywords. Order-preserving/decreasing transformation, collapse, nilpotent, idempotent.
 ■emrahkorkmaz90@gmail.com; ©0000-0002-4085-0419.

