http://communications.science.ankara.edu.tr

Commun.Fac.Sci.Univ.Ank.Ser. A1 Math. Stat. Volume 71, Number 3, Pages 769–777 (2022) DOI::10.31801/cfsuasmas.1019458 ISSN 1303-5991 E-ISSN 2618-6470

Research Article; Received: November 5, 2021; Accepted: March 29, 2022

COMBINATORIAL RESULTS OF COLLAPSE FOR ORDER-PRESERVING AND ORDER-DECREASING TRANSFORMATIONS

Emrah KORKMAZ

Department of Mathematics, Çukurova University, Adana, TURKEY

ABSTRACT. The full transformation semigroup \mathcal{T}_n is defined to consist of all functions from $X_n = \{1, \ldots, n\}$ to itself, under the operation of composition. In [9], for any α in \mathcal{T}_n , Howie defined and denoted collapse by $c(\alpha) = \bigcup_{t \in im(\alpha)} \{t\alpha^{-1} : |t\alpha^{-1}| \ge 2\}$. Let \mathcal{O}_n be the semigroup of all order-

preserving transformations and C_n be the semigroup of all order-preserving and decreasing transformations on X_n under its natural order, respectively. Let $E(\mathcal{O}_n)$ be the set of all idempotent elements of \mathcal{O}_n , $E(\mathcal{C}_n)$ and $N(\mathcal{C}_n)$ be the sets of all idempotent and nilpotent elements of \mathcal{C}_n , respectively. Let U be one of $\{C_n, N(\mathcal{C}_n), E(\mathcal{C}_n), \mathcal{O}_n, E(\mathcal{O}_n)\}$. For $\alpha \in U$, we consider the set $im^c(\alpha) = \{t \in im(\alpha) : |t\alpha^{-1}| \geq 2\}$. For positive integers $2 \leq k \leq r \leq n$, we define

$$\begin{aligned} \mathcal{U}(k) &= \{ \alpha \in \mathcal{U} : t \in im^c(\alpha) \text{ and } |t\alpha^{-1}| = k \}, \\ \mathcal{U}(k,r) &= \{ \alpha \in \mathcal{U}(k) : | \bigcup_{\substack{t \in im^c(\alpha)}} t\alpha^{-1}| = r \}. \end{aligned}$$

The main objective of this paper is to determine $|\mathcal{U}(k, r)|$, and so $|\mathcal{U}(k)|$ for some values r and k.

1. INTRODUCTION

For any non-empty finite set X, the set \mathcal{T}_X of all transformations of X (i.e., all maps X to itself) is a semigroup under composition, and is called the *full trans*formation semigroup on X. For any $n \in \mathbb{N}$, if $X = X_n = \{1, \ldots, n\}$, then \mathcal{T}_X is denoted by \mathcal{T}_n . A transformation $\alpha \in \mathcal{T}_n$ is called *order-preserving*, if $x \leq y$ implies $x\alpha \leq y\alpha$ for all $x, y \in X_n$ and *decreasing (increasing)*, if $x\alpha \leq x$ ($x\alpha \geq x$) for all $x \in X_n$. The subsemigroup of all order-preserving transformations in \mathcal{T}_n is denoted by \mathcal{O}_n and the order-decreasing transformations in \mathcal{T}_n is denoted by \mathcal{D}_n .

©2022 Ankara University

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

²⁰²⁰ Mathematics Subject Classification. 20M20.

Keywords. Order-preserving/decreasing transformation, collapse, nilpotent, idempotent. emrahkorkmaz90@gmail.com; ©0000-0002-4085-0419.

E. KORKMAZ

The subsemigroup of all order-preserving and decreasing (increasing) transformations in \mathcal{T}_n is denoted by \mathcal{C}_n (\mathcal{C}_n^+) i.e., $\mathcal{C}_n = \mathcal{O}_n \cap \mathcal{D}_n$. Umar proved that \mathcal{D}_n and \mathcal{D}_n^+ are isomorphic in [15, Corollary 2.7.]. Furthermore, Higgins proved that \mathcal{C}_n and \mathcal{C}_n^+ are isomorphic semigroups in [8, Remarks, p. 290]. For any transformation α in \mathcal{T}_n , the *collapse*, the *fix*, the *image* and the *kernel* are denoted and definded, respectively, by

$$c(\alpha) = \bigcup_{t \in im(\alpha)} \{ t\alpha^{-1} : |t\alpha^{-1}| \ge 2 \}, \quad (\alpha) = \{ x \in X_n : x\alpha = x \},$$

 $im(\alpha) = \{x\alpha : x \in X_n\}, \text{ and } \ker(\alpha) = \{(x,y) : x\alpha = y\alpha \text{ for all } x, y \in X_n\}.$

Given transformation α in \mathcal{T}_n is called *collapsible*, if there exists $t \in im(\alpha)$ such that $|t\alpha^{-1}| \geq 2$.

An element e of a semigroup S is called *idempotent* if $e^2 = e$ and the set of all idempotents in S is denoted by E(S). An element a of a finite semigroup S with a zero, denoted by 0, is called *nilpotent* if $a^m = 0$ for some positive integer m, and furthermore, if $a^{m-1} \neq 0$, then a is called an m-nilpotent element of S. Note that zero element is an 1-nilpotent element. The set of all nilpotent elements of S is denoted by N(S). It was proven a finite semigroup S with zero is nilpotent when exactly the unique idempotent of S is the zero element (see, [6, Proposition 8.1.2]). The reader is referred to [5] and [11] for additional details in semigroup theory.

Recall that Fibonacci sequence $\{f_n\}$ is defined by the recurrence relation $f_n = f_{n-1} + f_{n-2}$ for $n \ge 3$, where $f_1 = f_2 = 1$ (see [10]). As proved in [13, Theorem 2.1], $|\mathcal{C}_n| = |\mathcal{C}_n^+| = C_n = \frac{1}{n+1} {\binom{2n}{n}}$, the *n*-th Catalan number for $n \ge 1$ (see, [7]). That is why \mathcal{C}_n is also called the Catalan monoid. In [13, Proposition 2.3] and [8, Theorem 3.19], it has been shown that $|N(C_n)| = |N(C_n^+)| = C_{n-1}$ and $|E(\mathcal{C}_n)| = |E(\mathcal{C}_n^+)| = 2^{n-1}$. Also, from [10, Theorem 2.1 and Theorem 2.3], we have that $|\mathcal{O}_n| = {\binom{2n-1}{n-1}}$ and $|E(\mathcal{O}_n)| = f_{2n}$.

As indicated in [5] if $\alpha \in \mathcal{C}_n$, we use

$$\alpha = \begin{pmatrix} A_1 & \cdots & A_r \\ a_1 & \cdots & a_r \end{pmatrix} \tag{1}$$

to notify that $im(\alpha) = \{a_1 = 1 < a_2 < \ldots < a_r\}$ and $a_i \alpha^{-1} = A_i$ for each $1 \leq i \leq r$. Furthermore, A_1, A_2, \ldots, A_r which are pairwise disjoint subsets of X_n are called *blocks* of α . It is clear that such an α is an idempotent if and only if $a_i \in A_i$ for all *i*. As defined in [4] a set $K \subseteq X_n$ is called *convex* if *K* is in the form $[i, i+t] = \{i, i+1, \ldots, i+t-1, i+t\}$. A partition $P = \{A_1, \ldots, A_r\}$ of X_n for $1 \leq r \leq n$ is called an *ordered partition*, and written $P = (A_1 < \cdots < A_r)$ if x < y for all $x \in A_i$ and $y \in A_{i+1}$ $(1 \leq i \leq r-1)$. For a given $\alpha \in C_n$ let $im(\alpha) = \{a_1 = 1 < a_2 < \ldots < a_r\}$ and $A_i = a_i \alpha^{-1}$ for every $1 \leq i \leq r$. Then, the set of kernel clasess of α , $X_n/\ker(\alpha) = \{A_1, \ldots, A_r\}$, is an ordered convex partition of X_n . Since $N(C_n)$ is a nilpotent subsemigroup of C_n , if $\alpha \in N(C_n)$, then $1\alpha = 2\alpha = 1$, and that $|1\alpha^{-1}| \geq 2$.

Several authors studied certain problems concerning combinatorial aspects of semigroup theory during the years. The vast majority of papers have been written in this area such as [3, 9, 12, 13, 15, 16]. The rank (minimal size of a generating set) and idempotent rank (minimal size of an idempotent generating set) of several transformations semigroups have been studied in [9], [12] and [16] by using the combinatorial methods. A mapping $\alpha : dom(\alpha) \subseteq X_n \to im(\alpha) \subseteq X_n$ is called a *partial transformation*, and the set of all partial transformations is a semigroup under composition and denoted by \mathcal{P}_n . In the articles [1] and [14] the numbers $|\mathcal{T}_n(k,r)|$ and $|\mathcal{P}_n(k,r)|$ were calculated for r = k = 2,3. Since then, $\mathcal{T}_n(k,r)$ were determined for r = k for $2 \leq k \leq n$ in [2]. In the present paper, we calculate $|\mathcal{C}_n(k,k)|, |\mathcal{C}_n(k,2k)|, |\mathcal{C}_n(2,n)|, |N(\mathcal{C}_n)(k,k)|, |N(\mathcal{C}_n)(k,2k)|, |N(\mathcal{C}_n)(2,n)|,$ $|E(\mathcal{C}_n)(k,r)|, |\mathcal{O}_n(k,k)|$ and $|E(\mathcal{O}_n)(k,k)|$. These invariants could be interesting and useful in the study of structure of semigroups.

2. Collapsible elements in C_n

Let $\mathcal{U}(k,r) = \mathcal{C}_n(k,r)$ for positive integers $2 \leq k \leq r \leq n$. Then, it is obvious that $|\mathcal{C}_n(k,r)| = 0$ if k does not divide r, and further $|\mathcal{C}_n(n,n)| = 1$. Note that 1_n which denotes identity element of \mathcal{C}_n and \mathcal{O}_n is the only non-collapsible element of \mathcal{C}_n and \mathcal{O}_n then, the number of collapsible elements in \mathcal{C}_n and \mathcal{O}_n are $C_n - 1$ and $\binom{2n-1}{n-1} - 1$, respectively. The proof of the next combinatorial result is easy and is omitted.

Lemma 1. For positive integers k and n where $1 \le k \le n$,

$$\sum_{i=1}^{n-k+1} \binom{n-i}{n-k-i+1} = \binom{n}{k}.$$

Theorem 1. For positive integers k and n where $2 \le k \le n$,

$$|\mathcal{C}_n(k,k)| = \binom{n}{k}.$$

Proof. For a given $\alpha \in C_n(k,k)$ it is clear that there exists $i \in im(\alpha)$ such that $|i\alpha^{-1}| = k$ and $\min(i\alpha^{-1}) = i$. So,

where $1 \leq i \leq n-k+1$. As can be seen the above form, we choose elements of $im(\alpha)$ from the set [i+1,n] for the set [k+i,n]. There are $\binom{n-(i+1)+1}{n-(k+i)+1} = \binom{n-i}{n-k-i+1}$ ways to do that. This yields, there are $\binom{n-i}{n-k-i+1}$ elements in $\mathcal{C}_n(k,k)$ for a fixed *i*. Since $1 \leq i \leq n-k+1$, it follows directly from Lemma 1 that

$$|\mathcal{C}_n(k,k)| = \sum_{i=1}^{n-k+1} \binom{n-i}{n-k-i+1} = \binom{n}{k}.$$

Our next result computes $|\mathcal{C}_n(k, 2k)|$.

Proposition 1. For positive integers k and n where $2 \le k \le n$,

$$|\mathcal{C}_n(k,2k)| = \sum_{i=1}^{n-2k+1} \sum_{j=i+k}^{n-k+1} \sum_{l=j-k+1}^{j} \binom{l-i-1}{j-k-i} \binom{n-l}{n-k-j+1}.$$

Proof. Given $\alpha \in C_n(k, 2k)$, let $A_i = [i, k+i-1]$ and $A_j = [j, k+j-1]$ be any two blocks of α each of which contain k elements. So,

$$\alpha = \begin{pmatrix} \{1\} & \{2\} & \cdots & \{i-1\} & A_i & \{k+i\} & \cdots & A_j & \cdots & \{n\} \\ 1 & 2 & \cdots & i-1 & i & (k+i)\alpha & \cdots & j\alpha & \cdots & n\alpha \end{pmatrix},$$

where $1 \leq i \leq n-2k+1$ and $i+k \leq j \leq n-k+1$. Let $j\alpha = l$ where $j-k+1 \leq l \leq j$. As can be seen above form, we choose elements of $im(\alpha)$ from the set [i+1, l-1] for the set [k+i, j-1] and from the set [l+1, n] for the set [k+j, n]. However, this can be done $\binom{l-i-1}{j-k-i}\binom{n-l}{n-k-j+1}$ ways. This yields, there are $\binom{l-i-1}{j-k-i}\binom{n-l}{n-k-j+1}$ elements in $\mathcal{C}_n(k, 2k)$ for fixed i, j and l. Since $1 \leq i \leq n-2k+1$, $i+k \leq j \leq n-k+1$ and $j-k+1 \leq l \leq j$, it follows quickly that

$$|\mathcal{C}_n(k,2k)| = \sum_{i=1}^{n-2k+1} \sum_{j=i+k}^{n-k+1} \sum_{l=j-k+1}^{j} \binom{l-i-1}{j-k-i} \binom{n-l}{n-k-j+1}.$$

Theorem 2. For positive even integer $n \ge 2$,

$$|\mathcal{C}_n(2,n)| = \frac{2}{(n+2)} \binom{n}{\frac{n}{2}}.$$

Proof. For any $\alpha \in C_n(2, n)$, it is clear that n must be even, and so $|C_n(n, 2)| = 0$ if 2 does not divide n. Then, the result will clearly follow if we establish a bijection between $C_n(2, n)$ and $C_{\frac{n}{2}}$. Define a map $\theta : C_n(2, n) \to C_{\frac{n}{2}}$ by $(\alpha)\theta = \alpha'$ where

$$\begin{cases} (2i-1)\alpha = i\alpha' + i - 1, & i = 1, 2, \dots, \frac{n}{2}; \\ (2i)\alpha = i\alpha' + i - 1, & i = 1, 2, \dots, \frac{n}{2}, \end{cases}$$

that is,

$$\begin{cases} j\alpha = (\frac{j+1}{2})\alpha' + \frac{j-1}{2}, & j = 1, 3, \dots, n-1; \\ j\alpha = \frac{j}{2}\alpha' + \frac{j-2}{2}, & j = 2, 4, \dots, n. \end{cases}$$

This yields, θ is a well-defined bijection. Since $|\mathcal{C}_{\frac{n}{2}}| = C_{\frac{n}{2}}$, the proof is completed.

772

Example 1. The function $\theta : C_6(2,6) \to C_{\frac{6}{2}}$ defined as in above is a bijection. Certainly,

$$\mathcal{C}_{6}(2,6) = \left\{ \left(\begin{array}{cccc} \{1,2\} & \{3,4\} & \{5,6\} \\ 1 & 2 & 3 \end{array} \right), \left(\begin{array}{cccc} \{1,2\} & \{3,4\} & \{5,6\} \\ 1 & 2 & 4 \end{array} \right), \\ \left(\begin{array}{cccc} \{1,2\} & \{3,4\} & \{5,6\} \\ 1 & 2 & 5 \end{array} \right), \left(\begin{array}{cccc} \{1,2\} & \{3,4\} & \{5,6\} \\ 1 & 3 & 4 \end{array} \right), \\ \left(\begin{array}{cccc} \{1,2\} & \{3,4\} & \{5,6\} \\ 1 & 3 & 5 \end{array} \right) \right\} \text{ and} \\ \mathcal{C}_{3} = \left\{ \left(\begin{array}{cccc} 1 & 2 & 3 \\ 1 & 1 & 1 \end{array} \right), \left(\begin{array}{cccc} 1 & 2 & 3 \\ 1 & 1 & 2 \end{array} \right), \left(\begin{array}{cccc} 1 & 2 & 3 \\ 1 & 1 & 2 \end{array} \right), \left(\begin{array}{cccc} 1 & 2 & 3 \\ 1 & 1 & 3 \end{array} \right), \\ \left(\begin{array}{cccc} 1 & 2 & 3 \\ 1 & 2 & 2 \end{array} \right), \left(\begin{array}{cccc} 1 & 2 & 3 \\ 1 & 2 & 3 \end{array} \right) \right\}, \end{array}$$

as wanted.

Let $\mathcal{U}(k,r) = N(\mathcal{C}_n)(k,r)$ for positive integers $2 \leq k \leq r \leq n$. Clearly, $|N(\mathcal{C}_n)(k,r)| = 0$ if k does not divide r, and also $|N(\mathcal{C}_n)(n,n)| = 1$ and $|N(\mathcal{C}_n(n-1,n-1))| = n-2$. Note that $\alpha \in N(\mathcal{C}_n)$, $1\alpha = 2\alpha = 1$ and $i\alpha \leq i-1$ for all $3 \leq i \leq n$, and so the number of collapsible ements in $N(\mathcal{C}_n)$ is $|N(\mathcal{C}_n)| = C_{n-1}$.

Lemma 2. For positive integers k and n where $2 \le k \le n$,

$$|N(\mathcal{C}_n)(k,k)| = \binom{n-2}{n-k}.$$

Proof. Given $\alpha \in N(\mathcal{C}_n)(k,k)$, since $1\alpha = 2\alpha = 1$ and $|1\alpha^{-1}| = k$, we have

$$\alpha = \begin{pmatrix} [1,k] & \{k+1\} & \{k+2\} & \cdots & \{n\} \\ 1 & (k+1)\alpha & (k+2)\alpha & \cdots & n\alpha \end{pmatrix}.$$

As can be seen above form, we choose elements of $im(\alpha)$ from the set [2, n] for the set [k+1, n-1]. However, there are

$$|N(\mathcal{C}_n)(k,k)| = \binom{n-2}{n-k}$$

ways to do that, as required.

Proposition 2. For positive integers k and n where $2 \le k \le n$,

$$|N(\mathcal{C}_n)(k,2k)| = \sum_{j=k+1}^{n-k+1} \sum_{l=2}^{j} \binom{l-2}{j-k-1} \binom{n-l}{n-k-j+1}.$$

E. KORKMAZ

Proof. Given $\alpha \in N(\mathcal{C}_n)(k, 2k)$, let $A_1 = [1, k]$ and $A_j = [j, k + j - 1]$ be any two blocks of α which contain k elements. This yields,

$$\alpha = \left(\begin{array}{ccc} A_1 & \{k+1\} & \cdots & A_j & \{n\} \\ 1 & (k+1)\alpha & \cdots & j\alpha & n\alpha \end{array}\right),$$

where $k+1 \leq j \leq n-k+1$. Let $j\alpha = l$ where $2 \leq l \leq j$. As can be seen above form, we choose element of $im(\alpha)$ from the set [2, l-1] for the set [k+1, j-1] and from the set [l+1, n] for the set [k+j, n]. However, this can be done $\binom{l-2}{j-k-1}\binom{n-l}{n-k-j-1}$ ways. This yields, there are $\binom{l-2}{j-k-1}\binom{n-l}{n-k-j-1}$ elements in $N(\mathcal{C}_n)(k, 2k)$ for fixed jand l. Since $k+1 \leq j \leq n-k+1$ and $2 \leq l \leq j$, it follows quickly that

$$|N(\mathcal{C}_n)(k,2k)| = \sum_{j=k+1}^{n-k+1} \sum_{l=2}^{j} {l-2 \choose j-k-1} {n-l \choose n-k-j+1}.$$

Theorem 3. For positive even integer $n \ge 2$,

$$|N(\mathcal{C}_n)(2,n)| = \frac{2}{n} \binom{n-2}{\frac{n-2}{2}}.$$

Proof. Let α be any element of $N(\mathcal{C}_n)(n,2)$. Then, it is clear that n must be even, and so $|N(\mathcal{C}_n)(2,n)| = 0$ if 2 does not divide n. If we construct a bijection between $N(\mathcal{C}_{\frac{n}{2}})$ and $|N(\mathcal{C}_n)(2,n)|$, then this completes the proof. Define a map $\theta: N(\mathcal{C}_n)(2,n) \to N(\mathcal{C}_{\frac{n}{2}})$ by $(\alpha)\theta = \alpha'$ where

$$\begin{cases} (2i-1)\alpha = i\alpha' + i - 1, & i = 1, 2, \dots, \frac{n}{2}; \\ (2i)\alpha = i\alpha' + i - 1, & i = 1, 2, \dots, \frac{n}{2}, \end{cases}$$

that is,

$$\begin{cases} j\alpha = (\frac{j+1}{2})\alpha' + \frac{j-1}{2}, & j = 1, 3, \dots, n-1; \\ j\alpha = \frac{j}{2}\alpha' + \frac{j-2}{2}, & j = 2, 4, \dots, n. \end{cases}$$

Now it is easy to check that θ is a well-defined bijection. Since $|N(\mathcal{C}_{\frac{n}{2}})| = C_{\frac{n}{2}-1}$, the proof is complete.

Example 2. The function $\theta : N(\mathcal{C}_8)(2,8) \to N(\mathcal{C}_{\frac{8}{2}})$ defined as in above is a bijection. Indeed, $= N(\mathcal{C}_8)(2,8) =$

$$N(C_4) = \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 3 \end{pmatrix}, \\ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 2 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 2 & 3 \end{pmatrix} \right\},$$
quired.

as required.

Let $\mathcal{U}(k,r) = E(\mathcal{C}_n)(k,r)$ for positive integers $2 \leq k \leq r \leq n$. Clearly, $|E(\mathcal{C}_n)(k,r)| = 0$ if k does not divide r, and also $|E(\mathcal{C}_n)(n,n)| = 1$. Note that the number of collapsible elements in $E(\mathcal{C}_n)$ is $2^{n-1} - 1$.

Theorem 4. For positive integers k, r and n where $2 \le k \le r \le n$ and r = kt,

$$|E(\mathcal{C}_n)(k,r)| = \binom{n+t-r}{t}.$$

Proof. If $\alpha \in E(\mathcal{C}_n)(k,r)$ and r = kt, then $\alpha = \begin{pmatrix} A_1 & A_2 & \cdots & A_{n+t-r} \\ 1 & a_2 & \cdots & a_{n+t-r} \end{pmatrix}$, where $a_i \in A_i$ for all $1 \leq i \leq n+t-r$. Since r = kt, ordered partition of α contains n+t-r blocks such that t blocks contain k elements and n-kt blocks contain one element. Without loss of generality assume that each of the sets A_1, A_2, \ldots, A_t contains k elements and each of the sets $A_{t+1}, A_{t+2}, \ldots, A_{n+t-r}$ contains one element. Since α is an idempotent, it is clear that α is the only element in $E(\mathcal{C}_n)(k,r)$ with this ordered partition. Hence, all elements of $E(\mathcal{C}_n)(k,r)$ are entirely determined by choosing t blocks which contain k elements. Since we choose t blocks $\binom{n+t-r}{t}$ ways, this completes the proof.

The next result is clear from the definition of $\mathcal{U}(k)$ and $\mathcal{U}(k, r)$:

$$|\mathcal{U}(k)| = \sum_{i=1}^{t} |\mathcal{U}(k, ik)|,$$

where $t = \frac{n}{k}$.

Example 3. We obtain $|E(\mathcal{C}_6)(2,4)| = \binom{6+2-4}{2} = 6$ by Theorem 4. Since n = 6, r = 4, k = 2, t = 2, each element in $E(\mathcal{C}_6)(2,4)$ have 6+2-4 blocks such that 2 blocks contain 2 elements and 2 blocks are singletons. Indeed, $E(\mathcal{C}_6)(2,4) = 6$

E. KORKMAZ

Furthermore, $|E(\mathcal{C}_6)(2)| = \sum_{i=1}^{3} |E(\mathcal{C}_6)(2,i2)| = |E(\mathcal{C}_6)(2,2)| + |E(\mathcal{C}_6)(2,4)| + |E(\mathcal{C}_6)(2,6)| = {6+1-2 \choose 1} + {6+2-4 \choose 2} + {6+3-6 \choose 3} = 12.$

3. Collapsible elements in \mathcal{O}_n

Let $U(k,r) = \mathcal{O}_n(k,r)$ for positive integers $2 \le k \le r \le n$. Then, it is clear that $|(\mathcal{O}_n)(r,k)| = 0$ if k does not divide r, and also $|(\mathcal{O}_n)(n,n)| = n$. By convention, we take $\binom{0}{0} = 1$ in the following theorem.

Theorem 5. For positive integers k and n where $2 \le k \le n$,

$$|\mathcal{O}_n(k,k)| = \sum_{i=1}^{n-k+1} \sum_{j=i}^{k+i-1} \binom{j-1}{i-1} \binom{n-j}{n-k-i+1}$$

Proof. For any $\alpha \in \mathcal{O}_n(k,k)$, let

$$\alpha = \begin{pmatrix} \{1\} & \{2\} & \cdots & \{i-1\} & [i,k+i-1] & \{k+i\} & \cdots & \{n\} \\ 1\alpha & 2\alpha & \cdots & (i-1)\alpha & i\alpha & (k+i)\alpha & \cdots & n\alpha \end{pmatrix},$$

where $1 \leq i \leq n-k+1$. As can be seen above form, the set of all value of $i\alpha$ is the set [i, k+i-1] and for all distinct $m, r \in X_n \setminus [i, k+i-1]$, it is clear that $m\alpha \neq r\alpha$. Let $i\alpha = j$ where $i \leq j \leq k+i-1$. Then, we choose elements of $im(\alpha)$ for the left and right sides of $i\alpha = j$. For the left side, we choose elements from the set [1, j-1] for the set [1, i-1]. There are $\binom{j-1}{i-1}$ ways to do that. For the right side, we choose the elements from the set [j+1,n] for the set [k+i,n]. There are $\binom{n-j}{n-k-i+1}$ ways to do that. This yields, there are $\binom{j-1}{i-1}\binom{n-j}{n-k-i+1}$ elements in $\mathcal{O}_n(k,k)$ for fixed i and j. Since $1 \leq i \leq n-k+1$ and $i \leq j \leq k+i-1$, it follows that

$$|\mathcal{O}_n(k,k)| = \sum_{i=1}^{n-k+1} \sum_{j=i}^{k+i-1} \binom{j-1}{i-1} \binom{n-j}{n-k-i+1}.$$

Let $\mathcal{U}(k,r) = E(\mathcal{O}_n)(k,r)$ for positive integers $2 \leq k \leq r \leq n$. Clearly, $|E(\mathcal{O}_n)(k,r)| = 0$ if k does not divide r. Notice that the number of collapsible elements in $E(\mathcal{O}_n)$ is $f_{2n} - 1$.

Lemma 3. For positive integers k and n where $2 \le k \le n$,

$$|E(\mathcal{O}_n)(k,k)| = k(n-k+1).$$

Proof. For any $\alpha \in \mathcal{O}_n(k,k)$, let

$$\alpha = \begin{pmatrix} \{1\} & \{2\} & \cdots & \{i-1\} & [i,k+i-1] & \{k+i\} & \cdots & \{n\} \\ 1\alpha & 2\alpha & \cdots & (i-1)\alpha & i\alpha & (k+i)\alpha & \cdots & n\alpha \end{pmatrix},$$

where $1 \leq i \leq n - k + 1$. As can be seen above form, the set of all value of $i\alpha$ is the set [i, k + i - 1]. Moreover, since α is an idempotent, $m\alpha = m$ for all $m \in X_n \setminus [i, k + i - 1]$. Let $i\alpha = j$ where $i \leq j \leq k + i - 1$. Then, it is easy to see

that α is the only element in $E(\mathcal{O}_n)(k,k)$ for fixed *i* and *j*. Since $i \leq j \leq k+i-1$, there are *k* elements in $E(\mathcal{O}_n)(k,k)$ for fixed *i*. Since $1 \leq i \leq n-k+1$, it follows that

$$|E(\mathcal{O}_n)(k,k)| = k(n-k+1).$$

Declaration of Competing Interests The author has no competing interests to declare.

References

- Adenji, A.O., Science, C., Makanjuola, S.O., On some combinatorial results of collapse and properties of height in full transformation semigroups, *Afr. J. Comp. ICT.*, 1(2) (2008), 61-63.
- [2] Adenji, A.O., Science, C., Makanjuola, S.O., A combinatorial property of the full transformation semigroup, Afr. J. Comp. ICT., 2(1) (2009), 15-19.
- [3] Ayık, G., Ayık, H., Koç, M., Combinatorial results for order-preserving and order-decreasing transformations, Turk. J. Math., 35(4) (2011), 1-9. https://doi.org/10.3906/mat-1010-432
- [4] Catarino P. M., Higgins, P.M., The monoid of orientation-preserving mappings on a chain, Semigroup Forum, 58(2) (1999), 190-206. https://doi.org/10.1007/s002339900014
- [5] Clifford, A.H., Preston, G.B., The algebraic theory of semigroups. Vol.II., American Math. Soc., Providence, 1967.
- [6] Ganyushkin, O., Mazorchuk, V., Classical Finite Transformation Semigroups, Springer-Verlag, London, 2009.
- [7] Grimaldi R.P., Discrete and combinatorial mathematics, Pearson Education Inc., USA, 2003.
- P.M., Combinatorial results [8] Higgins, for semigroups of order-preserving 113(2)mappings, Math.Proc.CambridgePhil. Soc., (1993),281 - 296https://doi.org/10.1017/S0305004100075964
- Howie, J. M., The subsemigroup generated by the idempotents of a full transformation semigroup, J. London Math. Soc., 41(1) (1966), 707-716. https://doi.org/10.1112/jlms/s1-41.1.707
- [10] Howie, J. M., Products of idempotents in certain semigroups of transformations, Proc. Edinb. Math. Soc., 17(3) (1970/71), 223-236. https://doi.org/10.1017/S0013091500026936
- [11] Howie, J.M., Fundamentals of Semigroup Theory, Oxford University Press, New York, 1995.[12] Korkmaz, E., Ayık, H., Ranks of nilpotent subsemigroups of order-preserving and
- decreasing transformation semigroups, *Turk. J. Math.*, 45(4) (2021), 1626-1634. https://doi.org/10.3906/mat-2008-19
- [13] Laradji, A., Umar, A., On certain finite semigroups of order-decreasing transformations I, Semigroup Forum, 69(2) (2004), 184-200. https://doi.org/10.1007/s00233-004-0101-9
- [14] Mbah, M. A., Ndubisi, R. U., Achaku, D. T., On some combinatorial results of collapse in partial transformation semigroups, *Canadian Journal of Pure and Applied Sciences*, 1, (2020) 257-261. https://doi.org/10.15864/jmscm.1301
- [15] Umar, A., Semigroups of order-decreasing transformations: The isomorphism theorem, Semigroup Forum, 53(1) (1996), 220-224. https://doi.org/10.1007/BF02574137
- [16] Yağcı, M., Korkmaz, E., On nilpotent subsemigroups of the order-preserving and decreasing transformation semigroups, *Semigroup Forum*, 101(2) (2020), 486-289. https://doi.org/10.1007/s00233-020-10098-2