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Abstract

We will give the simplicial analogues of Hurewicz and Poincaré theorems as an application
of simplicial homology and homotopy.

1. Introduction

Let X be a topological space. Then we have a singular simplicial set. C∗(X)which is chain complex is obtained with its singular
homology H∗(X ;Z). Any singular homology of X can be get from S∗(X). So the concept of simplicial sets was defined as
combinatorial models of spaces. In the following diagram, one can see relations among simplicial sets and spaces:

Simplical sets
|.|−→ CW- complexes

S∗ ◦ |.| ↓ ↓ |.| ◦S∗

Simplical sets S∗←− Topological spaces

In [1], J.C. Moore defined simplicial groups. Author also gave the isomorphism

π∗(|G |)∼= H∗(NG ),

where NG is Moore chain complex of and|G | is geometrical realization of G . J.W. Milnor [2] shown that a loop space is
homotopy equivalent to the geometric realization of any simplicial group. Hence, the homotopy groups of any space is defined
as the homology of a Moore chain complex.

The simplicial modules and simplicial algebras are developed by M. André [3] and D. Quillen [4]. They constructed ways of
building simplicial resolutions of algebras and defined a homology and cohomology of commutative algebras. Also Z. Arvasi
[5, 6], analyses the Higher order Peiffer elements of simplicial algebras.

In this work, firstly we will give some preliminaries for simplicial modules and their homology and homotopy. Then we will
proof the main theorem called as Hurewicz Theorem and also its corollary called as Poincaré Theorem. These theorems are
applications for homology and homotopy of simplicial modules.
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2. ∆-sets

For details of this section you can see [7].

A ∆-set, X = {Xn}n≥0, is a sequence with the maps, di : Xn→ Xn−1, satisfying the ∆-identity:

did j = d jdi+1

for i≥ j and 0≤ i≤ n.

Remark: We can write ∆-idenitity:

di : (r0,r1, · · · ,rn) 7→ (r0, · · · ,ri−1,ri+1, · · ·rn).

A ∆-set M = {Mn}n≥0 is defined a ∆-module satisfying Mn is a module, and di is a module homomorphism. Given any category
C , a ∆-object is a sequence of objects in C , with faces as morphisms in C .

We have a category O+ with the objects which are finite order sets, morphisms which are monoton functions. We can write the
objects as n≥ 0,[n] = {0,1, · · · ,n}, and the morphisms generated by di : [n−1]→ [n] such that

di( j) =

 j j < i
j+1 j ≥ i ,

0≤ i≤ n.

Corollary 2.1. ∆-sets has one to one correspondence to contravarient fuctors from O+ to S.

A ∆-map is a sequence of f := fn(Xn→ Yn) satisfying the following commutative diagram, that is n≥ 0, f0di = di f .

Xn
f−→ Yn

↓ ↓
Xn−1 −→

f
Yn−1

A ∆-subset of X is any sequece of Yn ⊆ Xn satisfying

di(Yn)⊆ Yn−1

where X is a ∆-set, 0≤ i≤ n < ∞. Suppose X and Y are ∆-set. If there exists a bijective ∆-map between X and Y , then X is
isomorphic to Y .

2.1. Geometric realization of ∆-sets

Suppose A is a ∆-set. A geometrical realization of A, |A|, is determined as

|A|=
⊔

x ∈ An
n≥ 0

(∆n,x)/∼=
∞⊔

n=0

∆
n×An/∼

where ∼ is obtained by (z,dix)∼ (diz,x) for x ∈ An, z ∈ ∆n−1 is labeled by dix.

2.2. Homology of ∆-sets

It is well known that a chain complex is a collection of C = {Cn} with diferantial ∂n : Cn→Cn−1 which is satisfy Im(∂n+1)⊆
Ker(∂n), namely ∂n ∂n+1 is trivial. Then the homology can be defined as

Hn(C) = Ker(∂n)/Im(∂n+1).

Proposition 2.2 ([7]). For a ∆-abelian group G, G is a chain complex with ∂∗ where

∂n :
n

∑
i=0

(−1)idi : Gn −→ Gn−1.
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Proof. We must show that ∂n ◦∂n+1 is trivial.

∂n−1 ◦∂n =
n−1

∑
i=0

(−1)idi

n

∑
j=0

(−1) jd j,

=
n

∑
0≤i< j≤n

(−1)i+ jdid j +
n

∑
0≤ j<i≤n−1

(−1)i+ jdid j,

=
n

∑
0≤i< j≤n

(−1)i+ jdid j +
n

∑
0≤ j<i+1≤n

(−1)i+ jd jdi+1,

=
n

∑
0≤i< j≤n

(−1)i+ jdid j +
n

∑
0≤i< j<n

(−1)i+ j−1d jdi,

= 0.

For a given ∆-set X , the homology H∗(X ;G) of X with coefficients in an abelian group G can be defined as

H∗(X ;G) = H∗(Z(X)⊗G,∂∗).

Here Z(Xn) is a free abelian group with generator Xn, Z(X) = {Z(Xn)}n≥0.

3. Simplicial modules

Let R be a fixed commutative ring. Fore more details about simplicial modules and algebras, we refer to [5, 6], [8]-[10].

A simplicial R-module (shotrly simplicial module) is a ∆-module M with degeneracies and faces satisfying the following
identities:

d jdi = di−1d j, for j < i,

s jsi = si+1s j, for j ≤ i,

also

d jsi =

 si−1d j j < i
id j = i, i+1

sid j−1 j > i+1.

These are defined as simplicial identities.

A simplicial module homomorphism f : M→M′is a sequence of module homomorphisms fn : Mn→M′n (n≥ 0) satisfying the
following commutative diagram, i.e fn−1 di = di fn and fnsi = si fn+1 :

Mn+1
si←− Mn

di−→ Mn−1
fn+1 ↓ fn ↓ ↓ fn−1
M′n+1 ←−

si
M′n −→

di
M′n−1

M is defined as simplicial submodule of M′ if each Mn is a submodule of M′n. A simplicial module M is said to be isomorphic
to a simplicial module M′, if a bijective simplicial module homomorphism f : M→M′exists.

3.1. Geometric realization of simplicial modules

The standart n-simplex ∆n is

∆
n = {(r0,r1, · · ·rn) | ri ≥ 0 and

n

∑
i=0

ri = 1}

where di : ∆n−1 −→ ∆n and si : ∆n+1 −→ ∆n are given as

di(r0,r1, · · · ,rn−1) = (r0, · · · ,ri−1,0,ri, · · · ,rn−1),

si(r0,r1, · · · , tn+1) = (r0, · · · ,ri−1,ri + ri+1, · · · ,rn+1),
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where 0≤ i≤ n.

Suppose M is a simplicial module. Its geometric realization |M| is a CW-complex such that

|M| =
⊔

x ∈Mn
n≥ 0

(∆n,x)/∼=
∞⊔
(∆n×Mn)/∼

n=0

.

Here (∆n,x) is ∆n associated with x ∈Mn, ∼ is generated by

(z,dix)∼ (diz,x)

x ∈Mn, z ∈ ∆n−1 associated with dix,

(z,six)∼ (siz,x)

x ∈Mn, z ∈ ∆n+1 associated with six.

3.2. Homotopy and fibrant simplicial modules

Suppose f ,g : M→ N are simplicial module homomorphisms. If we have a simplicial module homomorphism F : M× I→ N
satisfying F |M×0 = f , F |M×1 = g, then we can say that f homotopic to g and can be written as f ' g. Suppose that X is any
simplicial submodule of M, f ;g : M→ N are simplicial module homomorphisms satisfying f |X = g|X . If we have a homotopy
F : M× I→ N satisfying F |M×0 = f and F |M×1 = g and F |X×I = f , then we say that f homotopic to g relative to X , and can
be shown as f ' g rel X .

The image of fx0 : ∆[0]→M is a simplicial submodule of M which has only element fx0(0,0, · · · ,0) = SI(x0) for each dimen-

sion where M is any simplicial module and x0 ∈M0. So a basepoint ∗ of M is a sequence of { fx0(

n+1︷ ︸︸ ︷
0,0 · · · ,0)}n≥0 correspond to

x0 ∈M0.

A pointed simplicial module is a simplicial module with basepoint. Suppose M and N are pointed simplicial modules. A
pointed simplicial module homomorphism f : M→ N is a simplicial module homomorphism which preserve the basepoints.
We usually use ∗ for defining the basepoint.

For given pointed simplicial module homomorphisms f ,g : M→ N, pointed homotopy means that f and g are homotopic rel ∗.

We should assume that there is a homotopy relation ' on the module of simplicial module homomorphisms from M to Nwhere
N is a fibrant simplicial module. So, we will define fibrant simplicial module.

Given a simplicial module M, if d jxk = dkx j+1, where j ≥ k; k, j+1 6= i, then the elements a0, · · · ,ai−1,ai+1, · · · ,an ∈Mn−1
are called matching faces w.r.t i.

If the simplicial module M provides the homotopy extension condition, then it is called fibrant. Suppose the elements
a0, · · · ,ai−1,ai+1, · · · ,an ∈Mn−1 are matching faces w.r.t i, we have an element w ∈Mn such that d jw = a j for j 6= i. This
condition is called homotopy extension condition.

3.3. Homotopy modules

The homotopy module πn(M) is defined by

πn(M) = [Sn,M]

and so πn(M) = πn(|M|) where M is a pointed fibrant simplicial module.

An element x ∈Mn satisfying the condition dix = ∗ for all 0 ≤ i ≤ n, is named spherical. For a spherical element x ∈Mn,
the map fx : ∆[n]→M sends to quotient simplicial module Sn = ∆[n]/∂∆[n]. In contrast, a simplicial map f : Sn→M gets a
spherical element f (σn) ∈Mn, where σn is a nondegenerate element in Sn. So we have one to one correspondence such as

Spherical element in Mn ←→ Simplicial module homomorphism Sn −→M.
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Theorem 3.1. (Homotopy Addition Theorem) For pointed fibrant simplicial module M and spherical elements xi ∈Mn, the
equation in πn(M)

[x0]− [x1]+ [x2] · · ·+(−1)n+1[xn+1] = 0

satisfies if and only if there is x ∈ Kn+1 such that dix = xi where 0≤ i≤ n+1.

Proof. See [7], for details.

Suppose M is a fibrant simplicial module. If fx, fy are homotopic relative to ∂∆[n], then x,y ∈ Mn is x ' y. So a fibrant
simplicial module M is named minimal if it satisfies x' y⇒ x = y,

3.4. Homology of simplicial modules

For a simplicial module M, we define

NnM =
⋂
j=1

Ker(d j : Mn −→Mn−1),

such that x ∈ NnM, i.e x ∈Mn such that d jx = 1 for j > 0. That is,

dk(d0x) = d0dk+1x = 1

for any 0≤ k ≤ n−1.

A chain complex (C,∂ ) consists of modules and module homomorphisms

· · · −→Cn+1
∂n+1−→Cn

∂n−→Cn−1 −→ ·· ·

satisfying Im(∂n+1)⊆ Ker(∂n), i.e ∂n ◦∂n+1 is trivial. The homology Hn(C,∂ ) is written as Ker(∂n)/ Im(∂n+1).

Proposition 3.2. Given a simplicial module M, if

∂n =:
n

∑
i=0

(−1)idi : Mn −→Mn−1,

then ∂n−1 ◦∂n = 0, i.e M is a chain complex.

Proof. Similar to proposition 2.2.

Remark The homology H∗(M;A) of M with coefficients in a Z-module A is defined by

H∗(M;A) = H∗(Z(M)⊗Z A,∂∗),

where M is a simplicial module, Z(M) = {Z(Mn)}n≥0 and Z(Mn) is the free Z-module generated by Mn.

The Moore chain complex of simplicial R-module M, denoted NM, is the sequence of R-modules

· · · −→ Nn+1M
d0−→ NnM

d0−→ Nn−1M −→ ·· ·

The elements in ZnM, are called Moore cycles and the elements BnM are called Moore boundaries.
By definition,

Hn(NM,d0) = Ker(d0)/d0(Nn+1M),

=
n⋂

j=0

Ker(d j)/BnM,

= ZnM/BnM

= πn(M).

So, for the simplicial module M, we can write

Hn(NM,d0)∼= πn(M)∼= πn(|M|).

The significiance of this corollary is that the homology modules can be defined as the homology of chain complex.
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4. Hurewicz and Poincaré theorems for simplicial modules

Suppose M is a simplicial module and Z(M) = {Z(Mn)}n≥0 is a sequence of the free Z-module generated by Mn. By using
di : Mn −→Mn−1, si : Mn −→Mn+1, we can write

dZ(M)
i : Z(Mn)−→ Z(Mn−1)

and the degeneracies

sZ(M)
i : Z(Mn)−→ Z(Mn+1).

Hence Z(M) is a simplicial Z-module. The homology of M is defined by

H∗(M) = H∗(Z(M))∼= H∗(Z(M),∂ ).

Clearly, a simplicial module homomorphism f : M −→M′ induces a simplicial Z-module morphism Z( f ) : Z(M)−→ Z(M′).
So we have a functor such that M 7−→ Z(M), f 7−→ Z( f ). If f ' g : M −→ M′ (suppose that M′ is fibrant), we have
Z( f )' Z(g) : Z(M)−→ Z(M′). Hence if M 'M′ with M and M′ fibrant, we get Z(M)' Z(M′) and so H∗(M)∼= H∗(M′).

As the geometric realization of any simplicial module is ∆-complex, the homology H∗(M) = H∗(|M|) is the simplicial homol-
ogy of the ∆-complex |M| . So, if |M| ' |M′| , then H∗(M)∼= H∗(|M′|).

Thus the homology H∗(M;A) with coefficients in A is defined by

H∗(M;A) = π∗(Z(M)⊗Z A)∼= H∗(Z(M)⊗Z A,∂ ),

where A is a free Z-module, Z(M)⊗Z A = {Z(M)⊗Z A}n≥0.

As using redued homology, one can obtain a single relation on Z(M). Suppose Z[M] is the quotient Z-module of Z(M) the
simplicial submodule with the basepoint ∗. So the reduced integral homology H∗(M)can be defined as

H∗(M) = π∗(Z[M])∼= H∗(Z[M],∂ ).

The reuced homology with coefficients in A is defined by

H∗(M;A) = π∗(Z[M]⊗Z A)∼= H∗(Z[M]⊗Z A,∂ ).

The inclusion j : M ↪→ Z(M) is a simplicial module homomorphism and the composite

j : M ↪→ Z(M)� Z[M]

is pointed simplicial module homomorphism. (Note that the basepoint in M is ∗ and the basepoint in Z(M) is 0.) The map j
induces a Z-module homomorphism

hn = j∗ : πn(M)−→ πn(Z[M]) = Hn(M)

where M is a fibrant simplicial module and n≥ 1, then this homomorphism is called Hurewicz homomorphism.

Theorem 4.1. (Hurewicz Theorem) Suppose M is any fibrant simplicial module with π i(M) = 0 for i < n with n≥ 2. Then
Hi(M) = 0 for i < n and hn : πn(M)−→ Hn(M) is an isomorphism.

Proof. Suppose M is a minimal simplicial module. Think that

j : M −→ Z[M].

We can write Mq = ∗ for q < n and Mn = πn(M), since M is minimal. Hence Z[M]q = {0} for q < n and Z[M]n = Z[Mn].

(1). hn is onto: As the following diagram is commutative

Mn ↪→ Z[Mn]
‖ ↓

πn(M) −→ Hn(M)

Hn(M) is generated by Mn as a Z-module. As hn is a Z-module homomorphism and every generator of Hn(M) is in its image,
it should be onto.
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(2). Ker(hn) = {0} : Assume that x ∈ Ker(hn). As x is 0 in

Hn(M) = Hn(Z[M],∂ ),

we have an element c ∈ Z[M]n+1 such that ∂ (y) = x in Z[M]n. Let y =
t
∑
j=1

n jy j with n j ∈ Z and y j ∈Mn+1. Then φ : Z[Mn]−→

πn(M) is the Z-module homomorphism such that φ |Mn : Mn −→ πn(M) = Mn is the identity map seen as the commutative
diagram

Z[Mn+1] −→ Z[Mn]
↑ ↑ ↘

Mn+1 Mn = πn(M).

For y j ∈Mn+1, we get

φ ◦∂ (y j) = φ(
n+1

∑
i=0

(−1)idiy j

=
n+1

∑
i=0

(−1)i
φ(diy j)

=
n+1

∑
i=0

(−1)idiy j ( ∵ diy j ∈Mn)

in πn(M). By using Homotopy Addition Theorem, we can get φ(∂ (y j)) = 0 for each j. So

x = φ jn(x) = φ(∂ (y)) = 0

in πn(M) and i.e Ker(hn) = {0}.

Theorem 4.2. (Poincaré Theorem) Suppose M is a connected (that is π0(|M|) = 0) fibrant simplicial module. Then there is an
isomorphism

h′ : π1(M)/[π1(M),π1(M)]−→ H1(M)

induced by h1 : π1(M)−→ H1(M).

Proof. Assume that M is a minimal simplicial module. By similar way, one can show that h′ is onto. To proof that that h′

is one to one, let φ : Z[M1]−→ π1(M)/[π1(M),π1(M)] be the Z-module homomorphism such that φ |M1 : M1 = π1(M)−→
π1(M)/[π1(M),π1(M)] is the quotient homomorphism consider the commutative diagram

Z[M2] −→ Z[M1]
↑ ↑ ↘

M2 M1 � π1(M)/[π1(M),π1(M)].

From after, one can continue the proof by same way of Hurewicz Theorem.

5. Conclusion

By using simplicial theory, we give applications for simplicial homology and simplicial homotopy. Also, we proof the
Hurewicz and Poincaré Theorems for simplicial modules.
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