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Abstract 
 
In this paper, our main aim is to discuss some monotonic and logarithmic concavity properties of three-
parameter Mittag-Leffler function by using its Weierstrassian product representation and some earlier 
results on power series. In addition, by using the relationships between Mittag-Leffler type functions 
and some basic functions, we give some specific examples related to the monotonic and logarithmic 
concavity properties of some trigonometric and hyperbolic functions. 
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1. Introduction and preliminaries 
 

Studying on monotonic and geometric properties of certain special functions has become very 
attractive for mathematicians since their usefulness in solving problems on applied sciences. 
As a result of this attraction many authors began to investigate monotonic and geometric 
properties of some special functions such as Bessel, Struve, Lommel, Wright, Hypergeometric 
functions and their some analogous(see [1] and [2] for examples and references there in). In the 
literature, undoubtedly that one of the most important special function is the Mittag-Leffler 
function. This function is a generalization of the famous exponential function as well as it arises 
in solving on biological, physical, engineering and earth sciences problems. Due to its vast 
potential in the applied sciences the Mittag-Leffler function and its generalizations is still 
studying intensively by the many mathematicians. It is known that the exponential function 
arises in the solution of integer order differential equations, while the Mittag-Leffler function 
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has a similar role in the solution of non-integer order differential equations. The historical 
overview and detailed information about the Mittag-Leffler function may be found in [3, 4]. 
The outcomes of this paper is as follow: In the rest of Section 1 we give the definitions of 
Mittag-Leffler functions and remind some interesting properties like reality of the zeros and 
infinite product representation of three-parameter Mittag Leffler function. Also, we remind a 
useful lemma to prove monotonic properties and give the definition of logarithmic concavity 
of a function. In Section 2, we give our main results and their consequences, while the Section 
3 is devoted for some applications of our main results. 
 
Now, we would like to remind the definition of Mittag-Leffler functions and their some 
properties. In 1903, Gösta Magnus Mittag-Leffler defined the one-parameter Mittag-Leffler 
function by the following power series: 
 

𝜙𝜙(𝛼𝛼, 𝑥𝑥) = �
𝑛𝑛≥0

𝑥𝑥𝑛𝑛

Γ(𝛼𝛼𝛼𝛼 + 1)
, 𝛼𝛼 ∈ ℂ, ℜ(𝛼𝛼) > 0,                            (1) 

 
 where Γ denotes the Euler’s gamma function. It can be easily seen that this function is a 
generalization of the exponential function. In order to see this it is enough to write (𝛼𝛼𝛼𝛼)! =
Γ(𝛼𝛼𝛼𝛼 + 1) in the denominator. Later on, Wiman [9] introduced another function called two-
parameter Mittag-Leffler function with the similar properties as follow:  
 

𝜙𝜙(𝛼𝛼,𝛽𝛽, 𝑥𝑥) = �
𝑛𝑛≥0

𝑥𝑥𝑛𝑛

Γ(𝛼𝛼𝛼𝛼 + 𝛽𝛽)
, 𝛼𝛼,𝛽𝛽 ∈ ℂ, ℜ(𝛼𝛼) > 0.                           (2) 

 
In 1971, three-parameter Mittag-Leffler function (or so-called Prabhakar’s function) was 
introduced by Prabhakar [8] in the following form: 
 

𝜙𝜙(𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝑥𝑥) = �
𝑛𝑛≥0

(𝛾𝛾)𝑛𝑛𝑥𝑥𝑛𝑛

𝛼𝛼! Γ(𝛼𝛼𝛼𝛼 + 𝛽𝛽)
, 𝛼𝛼,𝛽𝛽, 𝛾𝛾 ∈ ℂ, ℜ(𝛼𝛼) > 0, ℜ(𝛽𝛽) > 0,       (3) 

 
where (𝛾𝛾)𝑛𝑛 denotes the Pochhammer symbol and it is defined by (𝑎𝑎)𝑛𝑛 = Γ(𝑎𝑎+𝑛𝑛)

Γ(𝑎𝑎)
. It is important 

to remind here that by giving certain special values to the parameters 𝛼𝛼,𝛽𝛽 and 𝛾𝛾 in the function 
𝑥𝑥 ↦ 𝜙𝜙(𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝑥𝑥), it is possible to obtain some trigonometric and hyperbolic functions. 
 
In the present paper, our main aim is to investigate the sign of the three-parameter Mittag-
Leffler function. Also, we will show that the mentioned function is a decreasing function on an 
interval determined by its first positive zero. Further, we will discuss logarithmic concavity of 
this function in the certain sets defined by its real zeros. Finally, we will define a new function 
by using three-parameter Mittag-Leffler function and its derivative, and investigate its 
monotonicity on ℝ+. For this purpose, we remember some interesting properties of three-
parameter Mittag-Leffler function read as follow. 
 
In order to state their some results, Baricz and Prajapati [1] defined the following three 
transformations mapping the set  
 

 ��1
𝛼𝛼

,𝛽𝛽� :𝛼𝛼 > 1,𝛽𝛽 > 0� 
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into itself:  
 

 𝐴𝐴: �1
𝛼𝛼

,𝛽𝛽� → � 1
2𝛼𝛼

,𝛽𝛽� ,   𝐵𝐵: �1
𝛼𝛼

,𝛽𝛽� → � 1
2𝛼𝛼

,𝛼𝛼 + 𝛽𝛽�, 
 

 𝐶𝐶: �1
𝛼𝛼

,𝛽𝛽� → �
�1
𝛼𝛼

,𝛽𝛽 − 1� , if 𝛽𝛽 > 1

�1
𝛼𝛼

,𝛽𝛽� , if  0 < 𝛽𝛽 ≤ 1
. 

 
Putting 𝑊𝑊𝑏𝑏 = 𝐴𝐴(𝑊𝑊𝑎𝑎) ∪ 𝐵𝐵(𝑊𝑊𝑎𝑎), where 𝑊𝑊𝑎𝑎 = ��1

𝛼𝛼
,𝛽𝛽� : 1 < 𝛼𝛼 < 2,𝛽𝛽 ∈ [𝛼𝛼 − 1,1] ∪ [𝛼𝛼, 2]�, the 

authors denoted by 𝑊𝑊𝑖𝑖 the smallest set containing 𝑊𝑊𝑏𝑏 and invariant with respect to 
transformations mapping 𝐴𝐴,𝐵𝐵 and 𝐶𝐶. It is important to emphasize here that with the help of a 
result of Peresyolkova [7], Kumar and Pathan [5] showed that if �1

𝛼𝛼
,𝛽𝛽� ∈ 𝑊𝑊𝑖𝑖 and 𝛾𝛾 > 0, then 

all the zeros of the three-parameter Mittag-Leffler function 𝜙𝜙(𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝑥𝑥) are real and simple. 
The next Lemma 1.1 which will be used in the proof include an infinite product representation 
and interlacing properties of the real zeros for the three-parameter Mittag-Leffler function 
𝜙𝜙(𝛼𝛼,𝛽𝛽, 𝛾𝛾,−𝑥𝑥2) and it is proven by Baricz and Prajapati in [1].  
 
Lemma 1.1 (see [1])  If �1

𝛼𝛼
,𝛽𝛽� ∈ 𝑊𝑊𝑖𝑖 and 𝛾𝛾 > 0, then the function 𝑥𝑥 ↦ 𝜙𝜙(𝛼𝛼,𝛽𝛽, 𝛾𝛾,−𝑥𝑥2) has 

infinitely many zeros which are all real. Denoting by 𝜆𝜆𝛼𝛼,𝛽𝛽,𝛾𝛾,𝑛𝑛 the 𝛼𝛼th positive zero of 𝑥𝑥 ↦
𝜙𝜙(𝛼𝛼,𝛽𝛽, 𝛾𝛾,−𝑥𝑥2) under the same conditions the Weierstrassian decomposition 
 

𝜙𝜙(𝛼𝛼,𝛽𝛽, 𝛾𝛾,−𝑥𝑥2) =
1

Γ(𝛽𝛽)
�
𝑛𝑛≥1

�1 −
𝑥𝑥2

𝜆𝜆𝛼𝛼,𝛽𝛽,𝛾𝛾,𝑛𝑛
2 �                                        (4) 

 
 is valid. Moreover, if 𝜉𝜉𝛼𝛼,𝛽𝛽,𝛾𝛾,𝑛𝑛 denotes the 𝛼𝛼th positive zero of Ψ′(𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝑥𝑥), where 
Ψ(𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝑥𝑥) = 𝑥𝑥𝛽𝛽𝜙𝜙(𝛼𝛼,𝛽𝛽, 𝛾𝛾,−𝑥𝑥2), then the positive zeros 𝜆𝜆𝛼𝛼,𝛽𝛽,𝛾𝛾,𝑛𝑛 and 𝜉𝜉𝛼𝛼,𝛽𝛽,𝛾𝛾,𝑛𝑛 are interlaced.  

 
In addition, the following Lemma 1.2 given by Biernacki and Krzyż (see [2]) will be used to 
prove some monotonic properties of the mentioned functions. 
 
Lemma 1.2 (see [2])  Consider the power series 𝑓𝑓(𝑥𝑥) = ∑𝑛𝑛≥0 𝑎𝑎𝑛𝑛𝑥𝑥𝑛𝑛 and 𝑔𝑔(𝑥𝑥) = ∑𝑛𝑛≥0 𝑏𝑏𝑛𝑛𝑥𝑥𝑛𝑛, 
where 𝑎𝑎𝑛𝑛 ∈ ℝ and 𝑏𝑏𝑛𝑛 > 0 for all 𝛼𝛼 ∈ {0,1, … }, and suppose that both converge on (−𝑟𝑟, 𝑟𝑟), 𝑟𝑟 >
0. If the sequence {𝑎𝑎𝑛𝑛

𝑏𝑏𝑛𝑛
}𝑛𝑛≥0 is increasing(decreasing), then the function 𝑥𝑥 ↦ �𝑓𝑓(𝑥𝑥)

𝑔𝑔(𝑥𝑥)
� is also 

increasing(decreasing) on (0, 𝑟𝑟).  
 
Here, it is important to note that the above result remains true for the even or odd functions. 
Finally, the definition of logarithmic concavity of a function can be given as follow:  
 
Definition 1.3 (see[6])  A function 𝑓𝑓 is said to be log-concave on interval (𝑎𝑎, 𝑏𝑏) if the 
function log 𝑓𝑓 is a concave function on (𝑎𝑎, 𝑏𝑏).  
 
In order to prove the logarithmic concavity of a function 𝑓𝑓 on the interval (𝑎𝑎, 𝑏𝑏), it is sufficient 
to show that one of the following two conditions hold true:   

1.  𝑓𝑓
′

𝑓𝑓
 monotone decreasing on (𝑎𝑎, 𝑏𝑏).  

2. (log 𝑓𝑓)′′ < 0. 
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2. Main results 
 
In this section, we present our main results and their consequences.  
 
Theorem 2.1  Let �1

𝛼𝛼
,𝛽𝛽� ∈ 𝑊𝑊𝑖𝑖 , 𝛾𝛾 > 0 and denote the 𝛼𝛼th positive zero of the three-parameter 

Mittag-Leffler function 𝜙𝜙(𝛼𝛼,𝛽𝛽, 𝛾𝛾,−𝑥𝑥2) by 𝜆𝜆𝛼𝛼,𝛽𝛽,𝛾𝛾,𝑛𝑛. Further, consider the following sets: 
 

𝐴𝐴1 = �
𝑛𝑛≥1

�𝜆𝜆𝛼𝛼,𝛽𝛽,𝛾𝛾,2𝑛𝑛−1, 𝜆𝜆𝛼𝛼,𝛽𝛽,𝛾𝛾,2𝑛𝑛�, 𝐴𝐴2 = �
𝑛𝑛≥1

�𝜆𝜆𝛼𝛼,𝛽𝛽,𝛾𝛾,2𝑛𝑛, 𝜆𝜆𝛼𝛼,𝛽𝛽,𝛾𝛾,2𝑛𝑛+1� 

 
and 

𝐴𝐴3 = �0, 𝜆𝜆𝛼𝛼,𝛽𝛽,𝛾𝛾,1� ∪ 𝐴𝐴2. 
 
Then, the three-parameter Mittag-Leffler function Φ(𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝑥𝑥) = Γ(𝛽𝛽)𝜙𝜙(𝛼𝛼,𝛽𝛽, 𝛾𝛾,−𝑥𝑥2) has the 
following properties:   

i. the function 𝑥𝑥 ↦ Φ(𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝑥𝑥) is negative on 𝐴𝐴1 and it is positive on 𝐴𝐴3,  
ii. the function 𝑥𝑥 ↦ Φ(𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝑥𝑥) is a decreasing function on �0, 𝜆𝜆𝛼𝛼,𝛽𝛽,𝛾𝛾,1�,  
iii. the function 𝑥𝑥 ↦ Φ(𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝑥𝑥) is strictly logarithmic concave on 𝐴𝐴3. 

Proof. i. In order to prove our assertion, firstly, we consider the Weierstrassian product 
representation of the three-parameter Mittag-Leffler function 𝜙𝜙(𝛼𝛼,𝛽𝛽, 𝛾𝛾,−𝑥𝑥2) given by (4). 
Thus, the function 𝑥𝑥 ↦ Φ(𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝑥𝑥) can be written as the following infinite product:  
 

Φ(𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝑥𝑥) = �
𝑛𝑛≥1

�1 −
𝑥𝑥2

𝜆𝜆𝛼𝛼,𝛽𝛽,𝛾𝛾,𝑛𝑛
2 � = 𝒫𝒫𝑛𝑛𝒬𝒬𝑛𝑛,                                             (5) 

 
 where  
 

𝒫𝒫𝑛𝑛 = �
𝑛𝑛≥1

�
𝜆𝜆𝛼𝛼,𝛽𝛽,𝛾𝛾,𝑛𝑛 + 𝑥𝑥
𝜆𝜆𝛼𝛼,𝛽𝛽,𝛾𝛾,𝑛𝑛
2 �  and 𝒬𝒬𝑛𝑛 = �

𝑛𝑛≥1

�𝜆𝜆𝛼𝛼,𝛽𝛽,𝛾𝛾,𝑛𝑛 − 𝑥𝑥�. 

 
Since 𝜆𝜆𝛼𝛼,𝛽𝛽,𝛾𝛾,𝑛𝑛’s are all positive, it is clear that 𝒫𝒫𝑛𝑛 > 0 for all 𝑥𝑥 ∈ ℝ+ ∪ {0}. Also, from the 
following chain of inequalities  
 

 0 < 𝜆𝜆𝛼𝛼,𝛽𝛽,𝛾𝛾,1 < 𝜆𝜆𝛼𝛼,𝛽𝛽,𝛾𝛾,2 < 𝜆𝜆𝛼𝛼,𝛽𝛽,𝛾𝛾,3 < ⋯ < 𝜆𝜆𝛼𝛼,𝛽𝛽,𝛾𝛾,𝑛𝑛 < ⋯, 
 

for the zeros, we can make the following observations: if 𝑥𝑥 ∈ �𝜆𝜆𝛼𝛼,𝛽𝛽,𝛾𝛾,2𝑛𝑛−1, 𝜆𝜆𝛼𝛼,𝛽𝛽,𝛾𝛾,2𝑛𝑛�, then the 
first (2𝛼𝛼 − 1) terms of 𝒬𝒬𝑛𝑛 is strictly negative and the rest is strictly positive. On the other hand, 
if 𝑥𝑥 ∈ �𝜆𝜆𝛼𝛼,𝛽𝛽,𝛾𝛾,2𝑛𝑛, 𝜆𝜆𝛼𝛼,𝛽𝛽,𝛾𝛾,2𝑛𝑛+1�, then the first (2𝛼𝛼) terms of 𝒬𝒬𝑛𝑛 is strictly negative and the 
remained terms are strictly positive. Moreover, it is clear that all the terms of 𝒬𝒬𝑛𝑛 are strictly 
positive for 𝑥𝑥 ∈ �0, 𝜆𝜆𝛼𝛼,𝛽𝛽,𝛾𝛾,1�. In conclusion, we deduce that the function 𝑥𝑥 ↦ Φ(𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝑥𝑥) is 
negative on 𝐴𝐴1 and it is positive on 𝐴𝐴3. 

 
ii. It is clear from the part i. that Φ(𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝑥𝑥) > 0 for all 𝑥𝑥 ∈ �0, 𝜆𝜆𝛼𝛼,𝛽𝛽,𝛾𝛾,1�. In order to prove the 
function 𝑥𝑥 ↦ Φ(𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝑥𝑥) is a decreasing function on the interval �0, 𝜆𝜆𝛼𝛼,𝛽𝛽,𝛾𝛾,1�, it is sufficient 
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to show that Φ′(𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝑥𝑥) < 0 for all 𝑥𝑥 ∈ �0, 𝜆𝜆𝛼𝛼,𝛽𝛽,𝛾𝛾,1�. For this purpose, considering the 
logarithmic derivative of (5). So, using the basic properties of logarithm function we can write 
that  
 

Φ′(𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝑥𝑥)
Φ(𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝑥𝑥)

= �
𝑛𝑛≥1

2𝑥𝑥
𝑥𝑥2 − 𝜆𝜆𝛼𝛼,𝛽𝛽,𝛾𝛾,𝑛𝑛

2  

 
 or  
 

Φ′(𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝑥𝑥) = Φ(𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝑥𝑥)�
𝑛𝑛≥1

2𝑥𝑥
𝑥𝑥2 − 𝜆𝜆𝛼𝛼,𝛽𝛽,𝛾𝛾,𝑛𝑛

2 . 

 
 It is easy to check that 
 

�
𝑛𝑛≥1

2𝑥𝑥
𝑥𝑥2 − 𝜆𝜆𝛼𝛼,𝛽𝛽,𝛾𝛾,𝑛𝑛

2 < 0 

 
for all 𝑥𝑥 ∈ �0, 𝜆𝜆𝛼𝛼,𝛽𝛽,𝛾𝛾,1�. As a consequence, Φ′(𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝑥𝑥) < 0 for 𝑥𝑥 ∈ �0, 𝜆𝜆𝛼𝛼,𝛽𝛽,𝛾𝛾,1� which is 
desired. 
 
iii. In order to prove this assertion, second condition in Definition 1.3 can be used. Namely, 
we will show that [logΦ(𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝑥𝑥)]′′ < 0 for all 𝑥𝑥 ∈ 𝐴𝐴3. Therefore, by utilizing the infinite 
product representation given by (5) we can write that  

 
𝑑𝑑2

𝑑𝑑𝑥𝑥2
[logΦ(𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝑥𝑥)] =

𝑑𝑑2

𝑑𝑑𝑥𝑥2
log�

𝑛𝑛≥1

�1 −
𝑥𝑥2

𝜆𝜆𝛼𝛼,𝛽𝛽,𝛾𝛾,𝑛𝑛
2 �                                                           

=
𝑑𝑑2

𝑑𝑑𝑥𝑥2
�
𝑛𝑛≥1

log�1 −
𝑥𝑥2

𝜆𝜆𝛼𝛼,𝛽𝛽,𝛾𝛾,𝑛𝑛
2 �                                                            

=
𝑑𝑑
𝑑𝑑𝑥𝑥

�
𝑛𝑛≥1

−2𝑥𝑥
𝜆𝜆𝛼𝛼,𝛽𝛽,𝛾𝛾,𝑛𝑛
2 − 𝑥𝑥2

                                                                        

= −2�
𝑛𝑛≥1

𝜆𝜆𝛼𝛼,𝛽𝛽,𝛾𝛾,𝑛𝑛
2 + 𝑥𝑥2

�𝜆𝜆𝛼𝛼,𝛽𝛽,𝛾𝛾,𝑛𝑛
2 − 𝑥𝑥2�2

.                                                                

 
 Since 
 

�
𝑛𝑛≥1

𝜆𝜆𝛼𝛼,𝛽𝛽,𝛾𝛾,𝑛𝑛
2 + 𝑥𝑥2

�𝜆𝜆𝛼𝛼,𝛽𝛽,𝛾𝛾,𝑛𝑛
2 − 𝑥𝑥2�2

> 0 

 
for all 𝑥𝑥 ∈ 𝐴𝐴3, we can say that [logΦ(𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝑥𝑥)]′′ < 0 for all 𝑥𝑥 ∈ 𝐴𝐴3 and the function 𝑥𝑥 ↦
Φ(𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝑥𝑥) is strictly logarithmic concave on 𝐴𝐴3.   

 
Taking 𝛾𝛾 = 1 in Theorem 2.1, we get the following results for the two-parameter Mittag-Leffler 
function: 
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Corollary 2.2  Let �1
𝛼𝛼

,𝛽𝛽� ∈ 𝑊𝑊𝑖𝑖 and denote the 𝛼𝛼th positive zero of the two-parameter Mittag-
Leffler function 𝜙𝜙(𝛼𝛼,𝛽𝛽,−𝑥𝑥2) by 𝜆𝜆𝛼𝛼,𝛽𝛽,𝑛𝑛. Further, consider the following sets:  
 

𝐵𝐵1 = �
𝑛𝑛≥1

�𝜆𝜆𝛼𝛼,𝛽𝛽,2𝑛𝑛−1, 𝜆𝜆𝛼𝛼,𝛽𝛽,2𝑛𝑛�,𝐵𝐵2 = �
𝑛𝑛≥1

�𝜆𝜆𝛼𝛼,𝛽𝛽,2𝑛𝑛, 𝜆𝜆𝛼𝛼,𝛽𝛽,2𝑛𝑛+1� 𝑎𝑎𝛼𝛼𝑑𝑑 𝐵𝐵3 = �0, 𝜆𝜆𝛼𝛼,𝛽𝛽,1� ∪ 𝐵𝐵2. 

 
Then, the two-parameter Mittag-Leffler function Φ(𝛼𝛼,𝛽𝛽, 𝑥𝑥) = Γ(𝛽𝛽)𝜙𝜙(𝛼𝛼,𝛽𝛽,−𝑥𝑥2) has the 
following properties: 

i. the function 𝑥𝑥 ↦ Φ(𝛼𝛼,𝛽𝛽, 𝑥𝑥) is negative on 𝐵𝐵1 and it is positive on 𝐵𝐵3,  
ii. the function 𝑥𝑥 ↦ Φ(𝛼𝛼,𝛽𝛽, 𝑥𝑥) is a decreasing function on �0, 𝜆𝜆𝛼𝛼,𝛽𝛽,1�,  
iii. the function 𝑥𝑥 ↦ Φ(𝛼𝛼,𝛽𝛽, 𝑥𝑥) is strictly logarithmic concave on 𝐵𝐵3.  

 
Taking 𝛽𝛽 = 𝛾𝛾 = 1 in Theorem 2.1, we obtain the following results for the one-parameter 
Mittag-Leffler function: 

 
Corollary 2.3  Let 𝛼𝛼 > 1 and denote the 𝛼𝛼th positive zero of the one-parameter Mittag-Leffler 
function 𝜙𝜙(𝛼𝛼,−𝑥𝑥2) by 𝜆𝜆𝛼𝛼,𝑛𝑛. Further, consider the following sets:  
 

𝐶𝐶1 = �
𝑛𝑛≥1

�𝜆𝜆𝛼𝛼,2𝑛𝑛−1, 𝜆𝜆𝛼𝛼,2𝑛𝑛�,𝐶𝐶2 = �
𝑛𝑛≥1

�𝜆𝜆𝛼𝛼,2𝑛𝑛, 𝜆𝜆𝛼𝛼,2𝑛𝑛+1� and 𝐶𝐶3 = �0, 𝜆𝜆𝛼𝛼,1� ∪ 𝐶𝐶2. 

 
Then, the one-parameter Mittag-Leffler function Φ(𝛼𝛼, 𝑥𝑥) = Γ(𝛽𝛽)𝜙𝜙(𝛼𝛼,−𝑥𝑥2) has the following 
properties:   

i. the function 𝑥𝑥 ↦ Φ(𝛼𝛼, 𝑥𝑥) is negative on 𝐶𝐶1 and it is positive on 𝐶𝐶3,  
ii. the function 𝑥𝑥 ↦ Φ(𝛼𝛼, 𝑥𝑥) is a decreasing function on �0, 𝜆𝜆𝛼𝛼,1�,  
iii. the function 𝑥𝑥 ↦ Φ(𝛼𝛼, 𝑥𝑥) is strictly logarithmic concave on 𝐶𝐶3. 

 
Theorem 2.4  Suppose that 𝛼𝛼 > 1,𝛽𝛽 > 0 and 𝛾𝛾 > 0. Let 𝜆𝜆𝛼𝛼,𝛽𝛽,𝛾𝛾,𝑛𝑛 denote the 𝛼𝛼th positive zero 
of the function 𝑥𝑥 ↦ 𝜙𝜙(𝛼𝛼,𝛽𝛽, 𝛾𝛾,−𝑥𝑥2).Then, the function 𝑥𝑥 ↦ 𝜙𝜙(𝛼𝛼,𝛽𝛽, 𝛾𝛾,−𝑥𝑥2) is strictly 
logarithmic concave on 𝐴𝐴3. 
  
Proof. It is well-known from the definition of Euler’s Gamma function that it is positive defined 
for 𝛽𝛽 > 0. On the other hand, it can be easily checked that multiplying by a positive constant 
does not change the logarithmic concavity property of a function. Now, rewrite the function 
𝑥𝑥 ↦ 𝜙𝜙(𝛼𝛼,𝛽𝛽, 𝛾𝛾,−𝑥𝑥2) as follow:  
 

𝜙𝜙(𝛼𝛼,𝛽𝛽, 𝛾𝛾,−𝑥𝑥2) =
1

Γ(𝛽𝛽)
Φ(𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝑥𝑥). 

 
 Since 1

Γ(𝛽𝛽)
> 0 for 𝛽𝛽 > 0 and the function 𝑥𝑥 ↦ Φ(𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝑥𝑥) is strictly logarithmic concave on 

𝐴𝐴3, we conclude that the function 𝑥𝑥 ↦ 𝜙𝜙(𝛼𝛼,𝛽𝛽, 𝛾𝛾,−𝑥𝑥2) is strictly logarithmic concave on 𝐴𝐴3.  
 

Taking 𝛾𝛾 = 1 and 𝛽𝛽 = 𝛾𝛾 = 1, respectively, in Theorem 2.4, we get the following results:  
 
Corollary 2.5  Suppose that 𝛼𝛼 > 1 and 𝛽𝛽 > 0. Then, the function 𝜙𝜙(𝛼𝛼,𝛽𝛽,−𝑥𝑥2) is strictly 
logarithmic concave in 𝐵𝐵3, while the function 𝑥𝑥 ↦ 𝜙𝜙(𝛼𝛼,−𝑥𝑥2) is strictly logarithmic concave 
in 𝐶𝐶3.  
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The following is the our last result and it is concerned with the some monotonic properties of a 
function defined by the three-parameter Mittag-Leffler function and its derivative. 
 
Theorem 2.6  Let suppose that 𝛼𝛼,𝛽𝛽 and 𝛾𝛾 are positive real numbers. Then, the function 
 

𝑥𝑥 ↦ 𝐻𝐻(𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝑥𝑥) =
𝑥𝑥𝜙𝜙′(𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝑥𝑥)
𝜙𝜙(𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝑥𝑥)

 

 
is an increasing function on ℝ+. 

  
Proof. By using the infinite sum representation of the function 𝑥𝑥 ↦ 𝜙𝜙(𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝑥𝑥) given by (3), 
we may write  
 

𝐻𝐻(𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝑥𝑥) =
∑𝑛𝑛≥0 𝒮𝒮𝑛𝑛𝑥𝑥𝑛𝑛

∑𝑛𝑛≥0 𝒯𝒯𝑛𝑛𝑥𝑥𝑛𝑛
, 

 
 where 𝒮𝒮𝑛𝑛 = 𝑛𝑛(𝛾𝛾)𝑛𝑛

𝑛𝑛!Γ(𝛼𝛼𝑛𝑛+𝛽𝛽)
 and 𝒯𝒯𝑛𝑛 = (𝛾𝛾)𝑛𝑛

𝑛𝑛!Γ(𝛼𝛼𝑛𝑛+𝛽𝛽)
. With the help of the Lemma 1.2 it can be shown that 

the function 𝑥𝑥 ↦ 𝐻𝐻(𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝑥𝑥) is an increasing function on ℝ+. It is clear that 𝒮𝒮𝑛𝑛 ∈ ℝ and 𝒯𝒯𝑛𝑛 >
0 for 𝛼𝛼 > 0,𝛽𝛽 > 0, 𝛾𝛾 > 0 and 𝛼𝛼 ∈ {0,1,2, … }. On the other hand, according to famous Cauchy-
Hadamard Theorem, both power series ∑𝑛𝑛≥0 𝒮𝒮𝑛𝑛𝑥𝑥𝑛𝑛 and ∑𝑛𝑛≥0 𝒯𝒯𝑛𝑛𝑥𝑥𝑛𝑛 are convergent on ℝ. Now, 
we want to show that the radius of convergence of the both power series is ∞. Let 𝑅𝑅1 and 𝑅𝑅2 
denote the radii of convergence of the power series ∑𝑛𝑛≥0 𝒮𝒮𝑛𝑛𝑥𝑥𝑛𝑛 and ∑𝑛𝑛≥0 𝒯𝒯𝑛𝑛𝑥𝑥𝑛𝑛, respectively. 
Some basic computations yield that  

𝑅𝑅1 = lim
𝑛𝑛→∞

�
𝒮𝒮𝑛𝑛
𝒮𝒮𝑛𝑛+1

� = lim
𝑛𝑛→∞

�

𝛼𝛼(𝛾𝛾)𝑛𝑛
𝛼𝛼! Γ(𝛼𝛼𝛼𝛼 + 𝛽𝛽)

(𝛼𝛼 + 1)(𝛾𝛾)𝑛𝑛+1
(𝛼𝛼 + 1)! Γ(𝛼𝛼(𝛼𝛼 + 1) + 𝛽𝛽)

�                                          

= lim
𝑛𝑛→∞

𝛼𝛼 Γ(𝛾𝛾 + 𝛼𝛼)
Γ(𝛾𝛾) Γ(𝛼𝛼𝛼𝛼 + 𝛼𝛼 + 𝛽𝛽)

Γ(𝛼𝛼𝛼𝛼 + 𝛽𝛽) Γ(𝛾𝛾 + 𝛼𝛼 + 1)
Γ(𝛾𝛾)

                                                                        

= lim
𝑛𝑛→∞

Γ(𝛼𝛼𝛼𝛼 + 𝛼𝛼 + 𝛽𝛽)
Γ(𝛼𝛼𝛼𝛼 + 𝛽𝛽)

.                                                                                    (6) 

 
 The following asymptotic relation known as Stirling formulae  
 

 Γ(𝑥𝑥 + 1) ∼ √2𝜋𝜋𝑥𝑥𝑥𝑥𝑥𝑥𝑒𝑒−𝑥𝑥,          𝑥𝑥 → ∞ (7) 
 

 can be used to compute the limit in (6). Taking 𝑥𝑥 = 𝛼𝛼𝛼𝛼 + 𝛽𝛽 − 1 in (7) and using the asymptotic 
relation �1 + 𝑎𝑎

𝑥𝑥
�
𝑥𝑥
∼ 𝑒𝑒𝑎𝑎 for 𝑥𝑥 → ∞, we deduce that  

 
 Γ(𝛼𝛼𝛼𝛼 + 𝛽𝛽) ∼ √2𝜋𝜋(𝛼𝛼𝛼𝛼 + 𝛽𝛽)𝛼𝛼𝑛𝑛+𝛽𝛽−

1
2𝑒𝑒−(𝛼𝛼𝑛𝑛+𝛽𝛽),          𝛼𝛼 → ∞. (8) 

 
 Now, considering the relation (8) in (6) one can easily obtain  

𝑅𝑅1 = lim
𝑛𝑛→∞

Γ(𝛼𝛼𝛼𝛼 + 𝛼𝛼 + 𝛽𝛽)
Γ(𝛼𝛼𝛼𝛼 + 𝛽𝛽)

= lim
𝑛𝑛→∞

√2𝜋𝜋(𝛼𝛼𝛼𝛼 + 𝛽𝛽 + 𝛼𝛼)𝛼𝛼𝑛𝑛+𝛽𝛽+𝛼𝛼−
1
2𝑒𝑒−(𝛼𝛼𝑛𝑛+𝛽𝛽+𝛼𝛼)

√2𝜋𝜋(𝛼𝛼𝛼𝛼 + 𝛽𝛽)𝛼𝛼𝑛𝑛+𝛽𝛽−
1
2𝑒𝑒−(𝛼𝛼𝑛𝑛+𝛽𝛽)
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= 𝑒𝑒−𝛼𝛼 lim
𝑛𝑛→∞

�1 +
𝛼𝛼

𝛼𝛼𝛼𝛼 + 𝛽𝛽�
𝛼𝛼𝑛𝑛+𝛽𝛽+𝛼𝛼−12

lim
𝑛𝑛→∞

(𝛼𝛼𝛼𝛼 + 𝛽𝛽)𝛼𝛼 = ∞.                                             

 
By following the similar procedure one can easily show that 𝑅𝑅2 = ∞. As a result, we can say 
that both power series ∑𝑛𝑛≥0 𝒮𝒮𝑛𝑛𝑥𝑥𝑛𝑛 and ∑𝑛𝑛≥0 𝒯𝒯𝑛𝑛𝑥𝑥𝑛𝑛 are convergent on ℝ. Now, if we consider 
the sequence 𝒰𝒰𝑛𝑛 = 𝒮𝒮𝑛𝑛

𝒯𝒯𝑛𝑛
= 𝛼𝛼, then we can say that the sequence {𝒰𝒰𝑛𝑛}𝑛𝑛≥0 is an increasing 

sequence since 𝒰𝒰𝑛𝑛+1
𝒰𝒰𝑛𝑛

= 𝑛𝑛+1
𝑛𝑛

> 1. By applying Lemma 1.2 we complete the proof.  
 

3. Applications 
 
This section is devoted for some applications of our results. It is known that, just like other 
special functions, three parameter Mittag-Leffler function reduces to the basic functions like 
exponential, trigonometric, hyperbolic and so on. Especially, using Taylor-Maclaurin series 
expansions of basic functions, many special cases of the functions 𝜙𝜙,Φ and 𝐻𝐻 can be obtained 
for the special values of 𝛼𝛼,𝛽𝛽 and 𝛾𝛾. Some of these functions are given below:   
 
• 𝜙𝜙(2,1,1,−𝑥𝑥2) = Φ(2,1,1, 𝑥𝑥) = cos𝑥𝑥,     𝐻𝐻(2,1,1, 𝑥𝑥) = 1

2 √𝑥𝑥tanh√𝑥𝑥. 

• 𝜙𝜙(2,3,1,−𝑥𝑥2) = 1−cos𝑥𝑥
𝑥𝑥2

,     Φ(2,3,1, 𝑥𝑥) = 2(1−cos𝑥𝑥)
𝑥𝑥2

,     𝐻𝐻(2,3,1, 𝑥𝑥) = √𝑥𝑥sinh√𝑥𝑥−2cosh√𝑥𝑥+2
2�cosh√𝑥𝑥−1�

. 

• 𝜙𝜙(2,1,2,−𝑥𝑥2) = Φ(2,1,2, 𝑥𝑥) = cos𝑥𝑥 − 𝑥𝑥sin𝑥𝑥
2

,     𝐻𝐻(2,1,2, 𝑥𝑥) = 3√𝑥𝑥sinh√𝑥𝑥+𝑥𝑥cosh√𝑥𝑥
2√𝑥𝑥sinh√𝑥𝑥+4cosh√𝑥𝑥

.  

• 𝜙𝜙(2,4,1,−𝑥𝑥2) = 𝑥𝑥−sin𝑥𝑥
𝑥𝑥3

,     Φ(2,4,1, 𝑥𝑥) = 6(𝑥𝑥−sin𝑥𝑥)
𝑥𝑥3

,     𝐻𝐻(2,4,1, 𝑥𝑥) = 𝑥𝑥cosh√𝑥𝑥−3√𝑥𝑥sinh√𝑥𝑥+2𝑥𝑥
2√𝑥𝑥�sinh√𝑥𝑥−√𝑥𝑥�

.  
 
It is possible to determine the sign, monotonicity and logarithmic concavity properties of the 
above mentioned functions by taking some special values for the parameters in Theorem 2.1, 
Theorem 2.4 and Theorem 2.6. Some of these examples are given below: 

 
Example 3.1  The following statements hold true.   

a. The function 𝑥𝑥 ↦ Φ(2,1,1, 𝑥𝑥) = cos𝑥𝑥 is negative on 𝜅𝜅1 = ⋃𝑛𝑛≥1 �𝜆𝜆2,1,1,2𝑛𝑛−1, 𝜆𝜆2,1,1,2𝑛𝑛� 
and it is positive on 𝜅𝜅3 = �0, 𝜆𝜆2,1,1,1� ∪ 𝜅𝜅2, where 𝜅𝜅2 = ⋃𝑛𝑛≥1 �𝜆𝜆2,1,1,2𝑛𝑛, 𝜆𝜆2,1,1,2𝑛𝑛+1� and 
𝜆𝜆2,1,1,𝑛𝑛 shows the 𝛼𝛼th positive root of the equation cos𝑥𝑥 = 0. 

b. The function 𝑥𝑥 ↦ Φ(2,1,2, 𝑥𝑥) = cos𝑥𝑥 − 𝑥𝑥sin𝑥𝑥
2

 is negative on 𝜉𝜉1 =
⋃𝑛𝑛≥1 �𝜆𝜆2,1,2,2𝑛𝑛−1, 𝜆𝜆2,1,2,2𝑛𝑛� and it is positive on 𝜉𝜉3 = �0, 𝜆𝜆2,1,2,1� ∪ 𝜉𝜉2, where 𝜉𝜉2 =
⋃𝑛𝑛≥1 �𝜆𝜆2,1,2,2𝑛𝑛, 𝜆𝜆2,1,2,2𝑛𝑛+1� and 𝜆𝜆2,1,2,𝑛𝑛 shows the 𝛼𝛼th positive root of the equation 
2cos𝑥𝑥 − 𝑥𝑥sin𝑥𝑥 = 0. 
  

Example 3.2  The following assertions are valid.   
a. The function 𝑥𝑥 ↦ Φ(2,1,1, 𝑥𝑥) = cos𝑥𝑥 is a decreasing function on �0, 𝜆𝜆2,1,1,1�. 
b. The function 𝑥𝑥 ↦ Φ(2,3,1, 𝑥𝑥) = 2(1−cos𝑥𝑥)

𝑥𝑥2
 is a decreasing function on �0, 𝜆𝜆2,3,1,1�. 

c. The function 𝑥𝑥 ↦ Φ(2,1,2, 𝑥𝑥) = cos𝑥𝑥 − 𝑥𝑥sin𝑥𝑥
2

 is a decreasing function on �0, 𝜆𝜆2,1,2,1�. 
 

Example 3.3  The following statements hold true.   
a. The function 𝑥𝑥 ↦ Φ(2,1,1, 𝑥𝑥) = cos𝑥𝑥 is strictly logarithmic concave on the set 

�0, 𝜆𝜆2,1,1,1� ∪ 𝜅𝜅1, where 𝜅𝜅1 = ⋃𝑛𝑛≥1 �𝜆𝜆2,1,1,2𝑛𝑛, 𝜆𝜆2,1,1,2𝑛𝑛+1� and 𝜆𝜆2,1,1,𝑛𝑛 shows the 𝛼𝛼th 
positive root of the equation cos𝑥𝑥 = 0. 
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b. The function 𝑥𝑥 ↦ Φ(2,3,1, 𝑥𝑥) = 2(1−cos𝑥𝑥)
𝑥𝑥2

 is strictly logarithmic concave on the set 
�0, 𝜆𝜆2,3,1,1� ∪ 𝜅𝜅2, where 𝜅𝜅2 = ⋃𝑛𝑛≥1 �𝜆𝜆2,3,1,2𝑛𝑛, 𝜆𝜆2,3,1,2𝑛𝑛+1� and 𝜆𝜆2,3,1,𝑛𝑛 shows the 𝛼𝛼th 
positive root of the equation cos𝑥𝑥 = 1. 

c. The function 𝑥𝑥 ↦ Φ(2,1,2, 𝑥𝑥) = cos𝑥𝑥 − 𝑥𝑥sin𝑥𝑥
2

 is strictly logarithmic concave on the set 
�0, 𝜆𝜆2,1,2,1� ∪ 𝜅𝜅3, where 𝜅𝜅3 = ⋃𝑛𝑛≥1 �𝜆𝜆2,1,2,2𝑛𝑛, 𝜆𝜆2,1,2,2𝑛𝑛+1� and 𝜆𝜆2,1,2,𝑛𝑛 shows the 𝛼𝛼th 
positive root of the equation 2cos𝑥𝑥 − 𝑥𝑥sin𝑥𝑥 = 0. 

d. The function 𝑥𝑥 ↦ Φ(2,4,1, 𝑥𝑥) = 6(𝑥𝑥−sin𝑥𝑥)
𝑥𝑥3

 is strictly logarithmic concave on the set 
�0, 𝜆𝜆2,4,1,1� ∪ 𝜅𝜅4, where 𝜅𝜅4 = ⋃𝑛𝑛≥1 �𝜆𝜆2,4,1,2𝑛𝑛, 𝜆𝜆2,4,1,2𝑛𝑛+1� and 𝜆𝜆2,4,1,𝑛𝑛 shows the 𝛼𝛼th 
positive root of the equation sin𝑥𝑥 = 𝑥𝑥.  
  

Example 3.4  Each of the following functions  
 

𝐻𝐻(2,1,1, 𝑥𝑥) =
1
2√

𝑥𝑥tanh√𝑥𝑥,      𝐻𝐻(2,3,1, 𝑥𝑥) =
√𝑥𝑥sinh√𝑥𝑥 − 2cosh√𝑥𝑥 + 2

2�cosh√𝑥𝑥 − 1�
, 

 

𝐻𝐻(2,1,2, 𝑥𝑥) =
3√𝑥𝑥sinh√𝑥𝑥 + 𝑥𝑥cosh√𝑥𝑥
2√𝑥𝑥sinh√𝑥𝑥 + 4cosh√𝑥𝑥

  𝑎𝑎𝛼𝛼𝑑𝑑  𝐻𝐻(2,4,1, 𝑥𝑥) =
𝑥𝑥cosh√𝑥𝑥 − 3√𝑥𝑥sinh√𝑥𝑥 + 2𝑥𝑥

2√𝑥𝑥�sinh√𝑥𝑥 − √𝑥𝑥�
 

 
is an increasing function on ℝ+. 
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