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point theorem, the conditions for the existence of positive solutions are derived. Finally, to
show the applicability of the main result, an illustrative example is also involved.

1. Introduction

Fractional calculus and fractional differential equations have recently gained significance due to the expansion of the application
fields against real world problems in the areas of applied mathematics, engineering, physics, system control, etc. One reason for
such interest is that fractional differential equations can explain more precise results with respect to integer order models, see
[1]-[5]. Moreover, a lot of scientists have been studying on the existence results of positive solutions for fractional boundary
value problems and the systems of fractional differential equations by means of methods of nonlinear analysis. The importance
of the area of coupled systems of fractional order differential equations comes from that they can be observed in a large number
of problems of applied nature. For details and examples on the topic, see [6]-[15] and the references therein.

Other than the commonly mentioned Riemann-Liouville and Caputo fractional differential equations, there is a gap in in-
vestigation of Hadamard fractional differential equations and coupled systems under different boundary conditions on an
bounded/unbounded domain. One of the main speciality of Hadamard fractional derivative is that the definition contains
logarithmic function of arbitrary exponent. For some recent results on boundary value problems of Hadamard fractional
differential equations and coupled systems, we refer to [16]-[33].

In [23], Zhai and Wang investigated the following coupled Hadamard type fractional boundary value problems:

HpPyut) + f(t,v(@) =a, 1<p<2, te(le),
HDav(r) + g(t,u(t) =b, 1<g<2, te(l,e),

u())=0, "Drtue) = 3 ufl v,
i=1

w(1)=0, HDpilye) = Zaflﬁfu(g),
=1
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where D denotes the Hadamard-type fractional derivative; I is the Hadamard-type fractional integral. By the use of
increasing ¢ — (h,r) concave operators, the authors obtained the existence and uniqueness of solutions for Hadamard fractional
differential systems.

Motivated particularly by the above mentioned papers, we are interested in investigating a coupled system of Hadamard
fractional differential equations, which include both integral boundary conditions and m-point fractional integral boundary
conditions:

HD u() + it u@).v() =0, n-1<d<n, te(le),
HpT2v(t) + fot,u(),v(1) =0, m—1<9r<m, te(l,e),

uD=w' (D =...=u" (1) =0, HD?i 1u(e) f gl(t)u(t)—+z/lHI 14(0'1 (1.1)

v(1)=v'(1) = ... =v™m=D(1) = 0, Hsz‘lv(e)zfgg(t)v(t)—+zaj’1‘l’jv(a§),

where n,m e N, nm > 3, # D’fi and 7 szf are the Hadamard-type fractional derivatives of order 9, ¥, respectively.

Hlﬁi and Hlaf are the Hadamard-type fractional integrals of order §; >0 (i =1,2,...,p), @; >0 (j = 1,2,...,9), fi.~ €

C([1,€] X [0,00) X [0,00),[0,00)), g1,82 € C([1,e],(0,00)) and 4; 20 (i = 1,2,...,p), 0; 20 (j = 1,2,...,q), 0],05 € (1,e) are
given constants.

We deal with the analysis of existence result of positive solutions for Hadamard differential systems. We accentuate that there
are a lot of studies on Riemann-Liouville or Caputo type fractional differential systems. To the best authors’ knowledge, there
are a little number of papers which are studied on the systems of nonlinear Hadamard fractional differential equations. Here,
unlike other papers, we attempt to study new Hadamard differential systems which consist of both integral boundary conditions
and m-point fractional integral boundary conditions on an bounded domain.

We prepare the following sections of this paper as follows: Section 2 includes some preliminaries. We also summarize all
properties of the corresponding Green’s function. We indicate the existence of positive solutions of the problem and an example
illustrating our result is ensured in Section 3.

2. Preliminaries

In this section, basic concepts, notations and some lemmas about the Hadamard-type fractional calculus are demonstrated for
the convenience of the readers.

Definition 2.1 ([4]). The Hadamard fractional derivative of fractional order v > 0 for a function k : [1,c0) — R is defined as

1 d\n 4 t\n—v—1 ds
H _ _
DY k(1) = —r(n_v)(t—dt) fl(logg) Ko)— n-l<v<mn=pl+1,

where [v] denotes the integer part of the real number v and log(-) = log,(-).

Definition 2.2 ([4]). The Hadamard fractional integral of order v > O for a function & : [1,00) — R is defined as

Hy vl “s
I k() = r()f( k() V>0,

provided the integral exists.

Lemma 2.3 ([4]). If a,v,u > 0, then

H v ! -1 _ r(:u) f +v—-1 H v £ -1 _
(1iog Ly = o sdog Ly (D og Ly = o

in particular, (YD)} (log £)"/)(x) = 0,j = 1,2,....,[v] + 1.

F(:u) (log f)p—v—l )

Lemma 2.4 ([4]). Let v > 0. Assume that ¢ € C[1,00) N L![1, c0), then the solution of Hadamard-type fractional differential
equation 7 DL ¢(t) = 0 can be denoted as

ot = cillogn)™,
i=1

and the following formula holds:
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m
Hpy BDY.c(t) = () + Z ci(logt)’™,

wherec; eR,i=1,2,...n,n—1<v<nn=[v]+1

Lemma 2.5. If x,y € C[1,e], then, for the functions u,v € C[1,e], the following system

HpMuy+ x(t) =0, n—-1<d,<n, te(l,e),

HD%fv(t)+y(t)=O, m—1<9<m, te(l,e),
u(D)=w'(1) = ... =™ (1) = 0, HD?flu(e)zfegl(z)u(t)d—t +Z/1H1ﬁl u(o®), @.1)

W)=V ()= =V D1 =0, HD{ve)= f gz(r>v<t>—+zcr*’1"f W),

Jo1t

can be given in the integral representations of the form

u(t) = f CHi(9)xo) %,
1 N

¢ d
W) = fl Halt, ()

where

Hi(t,s) =G(t,5) + Gat, s), (2.2)

Hy(t,s) = G3(t, ) + Ga(t, s), (2.3)
and

A1 i1
Gl<z,s)=g1(t,s>+zT(r(‘;gtlﬁ)gﬁ( ),

1 -1
Gatr, 5 = 80 f Gitt 90,

1

1 t192 1 o
Ga(t.5) = £, s)+ZT’(°g) 83,9,

“T(% + ;) &

(logr)?>~!

Gul(t,s) = feG(ts) (t)d—t
4 ’ - TY | 3 £ 82 ta

with

g1, ) =

91—1 9 —1
1 {(logt)” —(log "1 T<s<i<e, o

(@) |(lognh~1, I<t<s<e

g(t,8) =

$r—1 9y —1
1 {(logt)’2 —(logHy" ! 1<s<i<e, 25

L(%2) | (logn?2~1, 1<t<s<e,

gﬁi(O'* = (logo"i‘)ﬂ“’/”i (log )l91 Hi-l 1<s< oy <e,
e (logo)"1#hi-1 l<oj<s<e,

8y (05,5 = (logay)P2rai~! — (log )27l 1<s<o)<e,
2 (10go-§)’92+"f‘1, <o) <s<e,
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; . _ . (9 . _
e T =T(01) - 5L, P Gog ) and T =100 - X, T ogiry e

‘ 9,141
leT—fgl(t)(logt)‘ 7>0,
1

and

* * ¢ 9,1 di
Ti=y -fl g200logn™ 1< > 0.

Proof. Using Lemma (2.4), the above system (2.1) can be given by

u(t) = —m f (log - )”1 1x(s)— +c1(1og)”1 ™ + e2(log)"1 7% + .. + cu(log )1 7",
v =-c ) f (log - )1’2 ! y(s)— +dy(log)?”?~! + dy(log % + ... + d,p(log ">,
where ¢;,d; €R,i=1,..,nand j=1,..,m. Using the boundary conditions, we derive c; =c3 =...=¢, =0anddr =d3 = ... =
d,, = 0. Then,
u(t) = —m f (log - )’91 lx(s)— +ci1ognyh 1. (2.6)
H=-— log —)?271 —dltﬂzl. 2.7
W) mz)f( 0 )49 + dilog @.7)
By using Lemma (2.3)

H -1 ! ds
Dy u(®) =ciI'(9) - lx(S)?,

H ~92—1 d ds
DT () =dil'(d2) - 1y(S)?-

Using HD?i 1u(e) f 81 (t)u(t)— + Z /lHI Lu(o}), and HD?E Yo(e) = f gz(t)v(t)— + Z Uflfjv(oz), we have

p

L at BN A i Th\pr4pi-1 )9
c1 = T(ﬁ gl(t)u(f)t +£ x(s) 5 ;F(ﬂl +ﬁi)f (log . ) x(s) 5 )- (2.8)

_ 1 ‘ dt ‘ ds < gij 2 o) th+aj-1 ds
dy = W(ﬁ gz(t)v(t)T +]; Y(S)T _Z;l"(l’b—-l-aj)f (log T) 2 y(S)T)' (2.9)

Jj=
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Substituting (2.8) into (2.6), we get

(log,)m ! (logty1=! 91-1
u(t) =—=-— f () Tf (r)u(t)t m)ﬂ g) x(s)

Ai(log)?11 o _ ds
Z = (ong)’W' Lx(9)=

YT(9 + i)
‘(lorggi lf () (F(ﬁl)‘r:()go)gt)ﬁl 1 f <> (logt)ﬁl 1 f <r>u(z>—
F(ﬁ)f Gog )ﬁl 1 (s)%‘ i'(rlfﬂgfflﬁ; f' (log L )’W' ()
o ) éﬁzf:f;f [tz

(logn)” ! -
Tf (r)a(t)t F(ﬁ)f( O

P -1
Z“logo " (tog -1y 20

YT +Bi)
_f . S+Z/l(logt)’91 lfgﬁ +(1ogt)l91 lf e
=), gl(,s)x(s); 2T, + ) (o], $)x(s )— ¥ 1(Ou( )—
e ¥1-1
f Gitt o™ + 10 f 0u) %

Similarly, substituting (2.9) into (2.7), we get

1 P—1
V(1) = f G, s)y(s)— % f (r)va)—

Furthermore,
e d 4 4 d d
fl gioun< = fl g1(0) f1 G192
1 ¢ dt
+ 3 f g1(H(logn?1~! f gl (r)u(r)—
1
and

e d e e d d
f oo = f 0 f Gt s)y(s) 24
1 t 1 1 st

4

1 9,14t fe dt
o gz(t)(IOgt) r g2(0w(1) P

¢ d T ¢ ¢ ds d
f aoun® =X f Q1) f it s)x( 2L,
1 t T 1 st

¢ dt  Y*
f G 00 f Gs(t (=
1 t T

which provide

Then,

u(t) = feGl(t, s)x(s)é + fe Go(t, s)x(s)ﬁ
1 N 1 S

= feHl(t, S)x(S)é,
1 S

¢ d ¢ d
v(t) = f Gs(t.9)y(s5) = + f Galt s)y(s) =
1 N 1 S

¢ d
- f Ha(t, $)y(s)—.
1 N

The proof is completed. O
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Lemma 2.6. The functions gi(t, s), (i=1,2) given by (2.4) and (2.5) satisfy
(i) gi(t, s) are continuous functions and gi(t,s) > 0 for any t,s € [1,e], i = 1,2.
(ii)gi(t,s) < gi(e,s) for any t,s € [1,e], i = 1,2.

(iii)g1 (1, 5) > ())"171 g1 (e, 5) and (1, 8) > ()" go(e, 5) for any 1 € [e3, 3] and s € [1,e].

Proof. To show (i), it is easy to check that the functions g;(¢, s), (i=1,2) are continuous functions. Next, for 1 < s <7 <e, we
have

_ 1 -1 g Dvor-1

gi(t,8) = r(ﬁl)((lmgt) ! (IOgS) )
__ 9-1 91—, 1ogs 5
= F(ﬁl)((IOgt) 70— (logn™ (1 10gt) )
> %(aogoﬁl‘l(l - (1-1logs)"1™1)
>0.

Forl1 <t<s<e, gi(t,5) = (log t)ﬂl_1 > 0. Using a similar proof, we obtain g»(¢,s) > 0 for any ¢, s € [1,e]. To prove (ii),

(@)
for ] <s<t<e, we get

(#1 = Dilogn™ 2§ = (9 = Dlog H"1 2]
I'(@)
0 - ])(logt)ﬂl—z [1 -(1- log s)ﬁl—Z)]
= >0
')t

gll‘(t’ S) =

Then, g1,(¢, s) is increasing on [s,e] according to ¢. That is, g1 (¢, s) < g1(e, s) is obtained. It is easy to see that g (¢, s) < g1(e, s)
when 1 <t < s <e. Thus, gi(t,5) < g1(e,s) for any ¢, s € [1,e]. Similarly, we have g»(z,s) < g2(e, s) for any ¢, 5 € [1,e]. To
demonstrate (iif), for | <s<t<eandte [e%,e%],

g1(.) = ——((logn ! - <log§)’91‘1)

I'(@)
_ 1 -1 _ 9-1,, _ 10gs 5
= gy (ogn” ™! = ogn™ (1 - 12"
; h=11_(1_ 911
2 F(ﬁl)((IOgt) (1= (1 -logs)" ™)

1.9 _
2 (Z)ﬂ' 'g1(e, 9).

Itisclearthatfor 1 <t<s<eandte [e%,e%], g1(t,s) > (%)ﬂ'_lgl (e, s). In a similar manner, we get g>(t,s) > (‘l‘)ﬂz_lgz(e, s)

for any t € [e%,e%] and s € [1,e]. The proof is completed. O

Lemma 2.7. Let K1(s) = gi(e,s) + Zle Wl"ﬂﬁ.)gf"(ﬁ,@, Ka(s) = gale,s) + Zj‘:l %g;’(vzm, for s €[l,e] and
w =1+ Tllf]egl(t)ﬂ, wy =1+ %Tflegz(t)%. Then, the functions Hi(t,s), i = 1,2 defined by (2.2) and (2.3) ensure the
following properties:

(i) H(t,5) are continuous and Hi(t,s) > 0, for (1,5) € [1,e] x [1,e], i = 1,2;
(ii)H (1, 5) < K1 ()@, for (t,5) € [1,e] X [1,e];

(iii)minte[ei’e%] Hi(t,s) > (D 2Ki ()@, for se[1,el;

(iv) Ha(t, 5) < K ()@, for (1,5) € [1,e] X [1,e];

(v)ymin_ 1 3 Hy(t,5)> (5?72 Ky(s)m, for s € [1,e].
teled,ed]
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Proof. We can evidently see that (i) holds. To show (ii), for (¢,s) € [1,e] X [1,e], we have,

Hi(t,5) =G1(t,5) + Gat, s)

10 91—1
e s)+Z s i

1 191 1
% f G, s>g1<z>—

P ) .
Sgl(e,s)+;mgf (O'I,S)

1 ’ N /li i * dt

+T—lﬁ(gl(e,s)+i_zlmgf(ﬁl,s))gl(t)T

= Ki(s)wq.

To prove (iii), for (t,s) € [1,e] X [1,e], we get,

9-1
mm Hi(t,s) = mm [gl(t S)+Z/l(logt) gﬁ( T1,9)

te[e4 e4] te[e4 g4] ‘YT‘O9 +ﬁ)
1 ¥—1
% f Gi(t, s)g1<r>—]
1 -1 A"
()" i) + ). o, +ﬁ)gg( ‘s
1=l Lilogtyh1 =1 4 d
LG : — [(er s>+zT(rfjtlﬁ)f'w?,s))gmr){
1y, @M - A" 4 dt
2(4—‘)’91 'Ki(s) + 4T1 f(( )17 g1 e, S)+ngf(ﬂ'1ﬁ))gl(07

1 g 4 (1) dt
()" Ko+ K15 f1 a0
> Kimn.

The proofs of the parts (iv) and (v) can be shown similar to the proofs above (if) and (iii).
The proof is completed. o

We deal with the Banach space E = C[1,e] X C[1, e] with the norm ||(u, v)||g = |lull + |[vI| for (u,v) € E and ||u|| = max,e[1 ¢ [u(?)I-
‘We introduce the cone PC E,

= {(u,v) €eE :u(t)=0,v(t) 20,Yte[l,e], mm (u(®) +v(0) = Y||(u, v)II} (2.10)

te[e4 L4 |
where V¥ = min{(%)wl‘z, (‘1—‘)202‘2}. Define the operator F : P — E by

F(u,v)(t) = (F1(u,v)(®), F2(u,v)(?)),forall t € [1,e], (2.11)

with F1,Fy : P — C[1,e] are given by

¢ d
Fi(u,v)(1) = f] H(t, ) f1(s, M(S),V(S))?S, (2.12)

¢ d
Fa(u,v)(1) = j; Hy (1, 5) fo(s, u(s), V(S))TS-

Lemma 2.8. Consider that (u,v) is a positive solution of the system (1.1) if and only if (u,v) is a fixed point of the operator F.
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Proof. It is obvious that a positive solution of the system (1.1) is a fixed point of the operator F.
In fact, if u(t) = F1(u,v)(¢), by applying the operator H Dlzl on both sides of (2.12), after some arrangement, for x(s) =
f1(s,u(s),v(s), s € [1,e] in Lemma (2.5), we get

HDﬁl (1 gl‘)ﬂl 1 /lHD (IOg t)l‘)] 1 e d
H _ 1+ ot +i-1 45
DYLF10)(0) =— f w5+ Z RS f1 (loga)" i~ a(s)~

AHD”I(lo ph-!
DI 0 - Z :
T +f) i

HDﬂl(logt)ﬂ] 1
= fgl(nf G, s>x(s>——)
1

O_*
" log T yresigy &
S S

Applying Lemma (2.3), we have
DU Fy (. v)(1) = =x(2),

which implies that the system (1.1) is satisfied. Then by a direct computation, it follows that u satisfies the boundary conditions
of (1.1). Similarly, we obtain that v(f) = F>(u,v)(?) is a solution of the system (1.1). The proof is completed. m]

Lemma 2.9. F : P — P is a completely continuous operator.

Proof. Let us indicate that F(P) c P. The continuity of H{,H>, f1, f2, it follows that F is continuous. Lemma (2.7) and the
nonnegativity of f; and f; ensure that F(u,v)(t) > 0, F2(u,v)(¢) > 0 for € [1,e]. Also, for (u,v) e P

e d
IF1 )l < @y f] Ki(5)fi 1)) =,

e d
IIFz(u,V)IISW2f1 Kz(S)fz(s,u(S),V(S))Fs,

and

min Fi(un)() = ()2 ey f eKﬂs)ﬁ(sm(s)m(s))?
1

13
teled ,ed]

L o9,
2 (" F @ vl

Similary, we get mm3 Fr(u, v)(t)>( )2’92 2||F2(u v)|l. Hence,
t€fe4 e4]

1 1
min{F1(,)(0) + Fa(u, (0} 2 () I @+ ()21, v)l
t€le? e4]
2 WIIF1 vl + 120, )]l
= YIF V),

so F : P — P. Moreover, we can use the Arzela—Ascoli theorem, we obtain that F is a completely continuous operator. The
proof is completed. O

Let @, A, 6 be nonnegative continuous convex functionals on P and «, ¢ be nonnegative continuous concave functionals on P.
Then for nonnegative real numbers k, s,d,[ and h, we define the following convex sets:

P(®,h)={3e€P: D) <h},

P(@,k,5,h) = {3 € P:s<k(?),0) < h},
O(D,A,Lh)={9e€P: AW <L, D) < h},
P(®,0,k,s,d,h) ={3 € P:s<k(),0(3) <d, O < hj,
0@, A,k Lh)y={Fe€P:k<y(),AD) <,OF) < h}.

In ensuring positive solutions of (1.1), the following theorem will be essential.
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Lemma 2.10. [see [34]] Let P be a cone in a real Banach space E. Assume there exist h > 0 and M > 0, nonnegative,
continuous, concave functionals k and  on P, and nonnegative, continuous, convex functionals ®, A, and 6 on P, satisfying

k() < AW and |19 < MO()

for all 9 € P(®,h). If o
S : P(®,h) — P(D,h)

is completely continuous and there exist nonnegative numbers k,l,d, s with 0 <[ < s such that:
@) {¢ € P(D,0,k,s,d,h) : k(F) > s} £ 0 and k(S ) > s for ¥ € P(®,0,k,s,d, h),

@) {9 € QM@, A, k,1h) : A(9) <1} # 0 and A(SD) < for ¢ € Q(D,A,¢,k,1,h),

(iii) k(S F) > s for € P(D,«, s, h) with 6(S3) > d,

i) ASP) < I for & € Q(@,A, L h) with y(S9) < k.

Then, S has at least three fixed points 91,1,,93 € m satisfying;

A() <l,s <k(12),

and

[ < A(3) with «k(93) < s.

For the readers convenience, let us denote

W:min{[zm fl‘eKl(s)d—:]_l,[zmjl‘eKz(S)%]_l},

EN[N)
ENIN)

e e

L N AR

1 1
e4 e4

Now, we introduce the nonnegative continuous concave functionals &, ¢ and the nonnegative continuous convex functionals (3,
6, o on P by

E,v) =yY(u,v) = rr}in% (u(t) +v(1)), 6(u,v) = mlax (u(t) +v(1)),

13 13
tefed e4] te[e# e%]

Bu,v) =o(u,v) = tnﬁlx](u(t) +v(1)).

3. Main result

Theorem 3.1. Assume that there exist constants 0 < { < k < g < h such that KV < hW.If f;, i = 1,2 satisfy the following
conditions:

(My) fi(t,u,v) < %}Vforte [L,e], (u+v)e[0,£],
(M>) fi(t,u,v) > %forte [e%,e%], (u+v) €[k gl

(M3) fi(t,u,v) < hTWforte [1,e], (u+v)e[0,hn].

Then the problem (1.1) has at least three positive solutions (u;,v;) (i = 1,2,3) such that B(uy,v1) < €, k < E(ua,v2), € < B(uz,v3)
with £(up,vy) < k.

Proof. We introduce P and F as above equations (2.10) and (2.11). For any (u,v) € P,

EQu,v) < Bu,v),

Gl < g min, Q)+ (0) < g max (ue) + (0) = o).

3
teled ,ed]

Next, we denote that the operator F ensures all conditions in Lemma (2.10). According to Lemma (2.9), F is completely
continuous. As a beginning, we prove that F : P(o,h) — P(o,h). If (u,v) € P(o,h), then o(u,v) < h, O < ||ul| + ||v|| < h. With
respect to (M3), we obtain that,
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¢ d ¢ d
o(Fuv) = max | fl H1(1,5) i (s.u(5).v(5) = + fl Ha(t,)fa(5,1(5).v(5)
¢ d ¢ d
<o [ KA + o [ K o060

hW ¢ d hw ¢ d
< —wlf KI(S)—S + —W2f Kz(S)—s
2 1 S 2 1 S

< =h.

l\)lk‘
l\)lk‘

Hence, we ensure F : P(o,h) — P(o,h).

To verify condition (i) of Lemma (2.10), by choosing, (K\fgk , K\f\;,r’( ), we get that (K\f\;’( , K‘f\;" ) € P(0,0,€,k, ., h) and f(u v) > K.
Thus, {(u,v) € P(0,60,£,K, &, h) : £u,v) > &} # 0. Let (u,v) € P(0,60,£,k, &, h), then (u(t) + v(1)) € [x, %] for any t € [eT,el]. By
(M?2), we obtain

arwm = min | [ AGu) T + [ a0

te[e4 e4

Hlw
NN

1 ¢ d 1 ¢ d
> (" 2w, f 1 Kl(S)f](s,u(S),V(S))TS+(Z)2ﬂ2_2m f 1 Kz(s)fz(s,u(sxv(s))f

e4 e4
3 3
«V 1 . ed ds «kV 1 ed ds
Vg, f | K0S+ f K™
2 4 ed S ed S
K K
>+ - =k
2 2

Then, the condition (i) of Lemma (2.10) is satisfied. Now, we demonstrate that the condition (if) of Lemma (2.10) is fulfilled.
Let (X4 TCH0) then (R4 2Ly € O(0n, 8,1, 'L, €, h) and B(u,v) < L. Hence, {(u,v) € Q(0",B,4, YL, L, h) : f(u,v) < £} # 0. Let
(u,v) € Q(o,B,¥, V¢, L, h), then (u(r) + v(¢)) € [0,£] for any ¢ € [1,e]. By (M1), we obtain

¢ d ¢ d
B(F(u,v)) = max [f Hy (2,5) fi (5. u(5). v(s) = +f H(t,5) fo(s.u(s). v(s) = |
te[lelt Jq N 1 N

¢ d ¢ d
<o f Ki5)fi (5,9 () S + 3 f K2<s>fz(s,u<s),v<s>>§

<—w1f Kl(s)—+—w'2f Kz(s)

—+——£
<273

Now, we can show that the condition (iii) of Lemma (2.10) is satisfied. Let (u,v) € P(0,§,&,h) with 6(F(u,v)) > 5. Then, we
have,

§(F(u,v) = min_ f Hy(t,9)f1(s,u(s), V(S))— +f Hy (1, 5) f2(s, u(s), V(S))—]

te[e4 e4

d
> P 2o [ KOAGUET + (0 [ Koo
1 s 4 1 s
¢ d ¢ d
> 9wy f Ki(9)fi(5,(s). /() = + @2 f Ka(5)fa(5,(5).v(5) -

> ¥ max f Hi(t,5)f1(s,u(s), v(s))— +f H(t,5)f>(s,u(s), v(s))—]

te[le

>v max | [ i A6 + [ Hespeaomo ]

te[e4 e4]

=YOo(F(u,v)) =«.

Finally, we can verify that the condition (iv) of Lemma (2.10) ensures. Let (u,v) € O(0,, ¢, h) with Y(F(u,v)) < V¢,
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¢ d ¢ d
BF@.v) = max f H1(1,)fi(5,1(5).(5) - + f Ha(t,)f(5.1(5).(5)

‘me Ki(s)f1(s,u(s), V(S))— +‘1’sz Ka(5) f2 (s, u(s), V(S))—]

IA
| = ’-GI

n | f H1 651,00 = + f it 9) o5, W) % |
Z

te[e

@w(F(u,v)) <.

Because the conditions of Lemma (2.10) are satisfied, the system (1.1) has at least three positive solutions (u;,v;) (i = 1,2,3)
such that B(uy,vy) < €, k < é(uz,v2), € < B(uz,v3) with £&(uy,vy) < k. The proof is completed. O

Example 3.2. Consider the system of Hadamard fractional differential equations
5

”Di u(®) + filt,u®,v(0) =0, r€(l,e),

DIy + foltu(), ) =0, te(,e),

u()=u/(1)=0, HDlﬂu(e) = feu(t)d—t + = % u(e2) + I2 u(eZ) @.D

v(1)=v(1)=0, HD12+v(e) fv(t)—+§ H1+u(e3)+2HI  u(ed),

: : 9 5 _ _ _ 3 ! 1 _3 _3 _7
mwhtchﬁl—ﬂz—j,n—m—S,p—q—Z,/l]—i,/lz—l,m 2,0’2—20‘—620'2—63 Br=35.P=5a=35a=7,

g1 =g =1forte[l,e],

&+ refliel, (u+v)€[0,4],
filt,u,v) =345+ 170 +v) - 679, r€[lel, (u+v)€[4,6],
s W00s)4 270694 tellel, (u+v)e[6,00),
- (”ZV), te[l,e]l, (u+v)el0,4],

Htuy) =34+ 170 +v) - 679, te€[l,el, (u+v)e[4,6],
o 4 WIS tel,el, (u+v)el6,00).

By direct calculation, we get ¥ =0,015625,

W:min{[wl fleKl(s)d—Ss]_l,[wzflekz(s)d—;]_ } mm{o 8842, 10435} 0.8842,
3
iy

o

e

vemax{[ 2o [[ KD [ koS

e4

~ max{106.383,111.1111} =111.1111.

Choosing the constants as { = 4,k = 6,h =800, then 0 < £ <k < § < h such that kV < hW. Then, f;, i = 1,2 satisfy the following
conditions:

(My) fi(t,u,v) < %}V ~ 1.7684 fort € [1,e], (u+v) €[0,4],
1%
(My) fit,u,v) > "7 ~333.3333 fort € [eT,el], (u+v) € [6,384],

hW
(M3) fi(t,u,v) < BN ~ 353.63 fort€[1,e], (u +v) €[0,800].
Then, all the hypotheses of Theorem (3.1) are satisfied. Thus, the system of fractional differential equations (3.1) has at least
three positive solutions.

4. Conclusion

In our main result, it is obtained positive solutions for Hadamard differential systems. By using the five functionals fixed point
theorem, the conditions for the existence of positive solutions are derived. There are a little number of papers which are studied
on the systems of nonlinear Hadamard fractional differential equations. Here, unlike other papers, we attempt to study new
Hadamard differential systems which consist of both integral boundary conditions and m-point fractional integral boundary
conditions on an bounded domain.
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