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Abstract

On recent paper, the paranormed space |C ym | (p) which is defined as the domain of Cesdro matrix in the Maddox’s space
I(p) has been introduced and studied in (G6kge and Sarigél, 2019). In this study, some characterizations of matrix
operators from the Absolute Cesdro series space |C ,W|(p) to the classical sequence spaces c, ¢y, l, are given. Also, it
is shown that the matrix operators between the absolute Cesdro series space and the spaces c, ¢, L, are bounded operators.
Finally, certain results are obtained as a special case.
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Mutlak Cesaro Seri Uzay1 Ve Bazi Matris Doniisiimleri

Oz

Son zamanlarda, Cesdro matrisinin, [(p) Maddox uzayi i¢inde toplama alani olarak tanimlanan |C,1,M|(p) paranormlu
uzay1 tanitilmig ve c¢alisilmistir, (Gokge ve Sarigdl, 2019). Bu caligmada, |C,1,H|(p) mutlak Cesdro seri uzayindan
¢, Cy, Lo klasik dizi uzaylarina tanimlanan matris operatdrlerin karakterizasyonlar1 verilmistir. Ayrica mutlak Cesdro seri

uzaylari ve ¢, ¢y, l, uzaylar arasindaki matris operatorlerin sinirlt lineer operator oldugu gosterilmistir. Son olarak,
0zel se¢imlerle bazi sonuglar elde edilmistir.
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1. Introduction

The summability theory is one of the most important fields of mathematics, which has various
applications in analysis, applied mathematics, engineering sciences, specially quantum mechanics,
probability theory, Fourier analysis, approximation theory and fixed point theory, etc. It deals with
the generalization of the concept of convergence of sequences and series, and aims to assign a limit
for non-convergent sequences and series using an operator described by an infinite matrix. The reason
why matrices are used for a general linear operator is that a linear operator from a sequence space to
another can generally be given with an infinite matrix. This reveals the importance of sequence spaces
and matrix operators in summability theory. In recent times, the literature has grown up concerned
with characterizing all matrix operators which transform one given sequence space into another. For
example, the absolute Cesdro series space |C A |(p) has been introduced and some matrix
characterizations of the matrix classes related to the space have been examined in (Gokge and Sar1gol,
2019), (see also (Gokge, 2021; Gokce and Sarigdl, 2020; Gokce and Sarigdl, 2018; Gokce and
Sarig6l, 2019a; Giileg, 2020; Sarigdl, 2016; Zengin and flkhan, 2019)). In this paper, we investigate

the matrix class (|C A |(p), F) where I' = {c, ¢y, l»}, and then we present some results.
2. Materials and Methods

Let w stands for the set of all complex (or real) valued sequences. Any vector subspace of w
is called as a sequence space. We represent the set of all convergent, null and bounded sequences
and the set of all convergent and bounded series spaces by c, ¢, L, Cs, bs, respectively. Let X, Y be
arbitrary sequence spaces and U = (u,,,) be any infinite matrix of complex numbers. By U(x) =

(Un (x)), we denote the U-transform of the sequence x = (x,,) if the series

Un (x) = Z UnyXy

v=0
is convergent for any integer n. If U(x) € Y, whenever x € X, then it is said that U defines a matrix
transformation from X into Y, and the class of all infinite matrices U such that U: X > Y 1is
represented by (X,Y). Besides, the concept of matrix domain of an infinite matrix U in a sequence
space X is defined by the set

Xy = {x ew:U(x) € X}
which is also a sequence space.

The Maddox’s space defined by
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I(p) = {x = Gt ) blPr < oo}

has an important role in summability theory. Note that [(p) is an FK space which is a complete
metrizable locally convex space with continuous coordinates 7;,;: X - C defined by n,(x) = x,, for

all n € N, according to its paranorm given by

oo 1\M
9(0) = (me)
k=0

where M = max {1; supy pr}. Also, this space has AK property that is every sequence xel(p) has
a unique representation x = Y.p—, x,,e ) where e® is the sequence whose only non-zero term is 1
in the kth place for each keN (Maddox, 1969; Maddox, 1968; Maddox,1967).

Let ), a, be an infinite series with the sequence of its partial sum s = (s,,), 8 = (6,) be any
sequence of positive real numbers and p = (p,) be any bounded sequence of positive real numbers.

The series Y; a, is said to be summable |U, 6,|(p) if

D OF Uy (5) = Uy ()P <o,
n=1

(Gokee and Sarigél, 2018).

Let aj’” be the n-th Cesdro mean (C,A,u ) of order (A, 1) with A + u # —1,—2, ... of the

sequence (Sy), i.e.,

n

Au _ 1 A—1 gH
On = WZ AR=y A, sy,
n v=0

where

DA+ . A1)
B n! ’

Al=1,4%,=0n>0.

Ay

If we consider the concept of absolute summability and Cesdro matrix with 8, = n for all n € N,

then, we get immediately the absolute Cesaro summability method. Let us give more clear definition

of the method: if

co

Pn-1 g ’
Zn " |0n Opn—1 <,
n=1

then, the series ), a, is said to be summable |C, A, u|(p).
The space consisting all series summable by the absolute Cesdaro summability method can be

expressed as
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o) n A%_}/ A/‘l_l ) Pn
— - n—-v-—
|C)L,M |(P) =X E nPn=t E A““_ QA Ays,| <o 1.
n=1

v=0 n n-—1
Note that according to notation of domain, the absolute Cesaro space may be redefined as

|Cil,u () = (l(p))TM ) where the matrix T*#(p) is given by

1, nv=0
vALTLAE
iy @) = {17 1S V<N
n /'PnAy
0, v >n.

Moreover, it is known that every triangle matrix has a unique inverse which is also a triangle,

so T**(p) has the inverse matrix S*#(p) such that

1, nv=20
—A—1 gA+u
A, 1, AL, A
st (p) = v/pv—n;A”v ,(1<v<n
n
0, v>n

where A + u, u # —-1,-2, ....

Throughout the whole paper, we suppose that p = (p,,) is any bounded sequence of positive

real numbers with 0 < infp, < oo and p,, is the conjugate of p,, such that 1/Pn + 1/p7*1 =1 for
1/,  — —
pn > 0, /p:l—Ofor pn = 1.

Before the main theorems, we remind certain lemmas which have important role in their proofs :
Lemma 2.1. (Grosse — Erdmann, 1993) Let p = (p,) be any bounded sequence of strictly positive
numbers.

(1) If p, < 1, for all v, then,

U € (I(p),c) & (a) limu,,, existsforeachv, (b) suplup,|Pv < o
nv

n—-oo

U € (I(p),cy) © (c¢) limu,, = 0 for each v, (b) holds

n—->0oo

and
U € (I(p),ls) © (b) holds.
(i1) If p, > 1 for all v, then,
U € (I(p),c) & (a') limu,, exists for each v, (b") there isanumber M > 1 such that

n—>oo
oo
Sup2|unvM_1|pv < 0o,
" Y=o

Ue€ (I(p),cy)  (c') limu,, = 0 for each v, (b") holds

n—-oo
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and

U € (I(p),le) < (b) holds.

Lemma 2.2. (Malkowsky and Rakocevic, 2007) Let X be an FK space with AK property, T be
triangle, S be its inverse and Y be an arbitrary subset of . Then, we have U € (X7,Y) if and only if
U e (X,Y)and V™ € (X, c) for all n, where

oo
Upy = UpjSjy, M,V =0,1, ...
j=v
m
(n)_ ZunJS]yposvSm
Umv - .
j=v

0, v>m.

Lemma 2.3. (Malkowsky and Rakocevic, 2000) Let T be a triangle. Then, for X,Y € w,U €
(X, Yp)ifandonly if B = TU € (X,Y).

Lemma 2.4. (Wilansky, 1984) Matrix transformations between FK-spaces are continuous.

Theorem 2.5 (Gokge and Sarigol, 2018) Let A + p, u # —1,—2, ... and (p,,) be a bounded sequence
of non-negative numbers. The space |C A | (p) is a linear space with the coordinate-wise addition and

scalar multiplication, and also the space is an FK-spaces with respect to the paranorm

) 1\M
90 = <Z|Tf’“(p)(x>|”")
v=0

where M = max {1; sup, p,}-
On the other hand, |C A | (p) is linearly isomorphic to the Maddox’s space L(p).

In the continuation of the study, for simplicity, we take

Atp g —)—
ALu — Av HAn&vl
m nAl
3. Findings and Discussion
Theorem 3.1. Let A+ u, u # —1,—-2,...., U = (uy,) be an infinite matrix of complex numbers

and p = (p,) be any bounded sequence of positive real numbers with p, < 1 for all v. Then

(a U e(|C,1,H |(), ¢) if and only



Proof Assume that p, <1 forall v. Since |C/1,u |(p) = (l(p))
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[ee)
1 i
v /Pvﬂkfunk converges for all v,
k=v
Py

m
1 2
v /oy E U Q| < oo

k=v

sup
m,v

e

. . 1 A .
limu,,and lim v Ipv u,; Q#, for each v > 1, exists
n—->0oo n—>oo ] ]U
j=v
© Pv
1 Au
sup? |upolPe + |v /vauanjv < oo,

n,v
J=v

(b) Ue(|Ca, |(P), co) if and only if the conditions (1), (2), (4) hold and

limu,, = 0and lim v'/rv E unjﬂﬁ;“ =0 forallv=1.
n—>oo n—->oo .
j=v

(©) Ue(|Cyu|(P),1s) if and only if the conditions (1), (2), (4) hold.

T4 (p)’

that U e(|C,L# |(p), c) if and only if T € (I(p), c) and V™ € (I(p), c) where

and

Uno v=0,n=>0

o)

11 = 1
Uny v /PvZuanA‘” v>1n>0

jv
j=v
Uno» v=20
m
m _ ). 1Y Au
Upp =V P ) upi Q7 1<svs=m
j=v
0, v >m.

565

(1)

(2)

(3)

(4)

(5)

it follows from Lemma 2.2

It is obvious that by Lemma 2.1, U e (I(p), c) if and only if the conditions (3), (4) hold. Also,

V™ € (I(p), ¢) if and only if the conditions (1) and (2) hold which concludes the first part of the

proof.

The remaining part of the proof can be proved in similar way. So, it has been left to reader.

Theorem 3.2. Let A + pu, u # —1,—2, ..., U = (uyy) be an infinite matrix of complex numbers and

p = (p,) be any bounded sequence of positive real numbers with p, > 1 for all v. Then
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(a U e(|C A |(p), ¢) if and only if there exists an integer M > 1 such that

m
m v=1

*

12
<

m

1.1 A
M~y /ey Z unka#

k=v

Dy

o8] o8]

* 1
sup IM—luno|P°+§ M1y /po E U U < oo
n

v=1 j=v

and the conditions (1), (3) hold.

(b) Ue(|Cyu |(P), co) if and only if the conditions (1), (5), (6) and (7) hold.

(¢) Ue(|Cru |(P), ls) if and only if the conditions (1), (6), (7) hold.

566

(6)

(7

Proof Let p, > 1 for all v. Since |C/1.u |(p) = (l(p))TM(p), it follows from Lemma 2.2 that

completes the proof of (b).

The other part of the theorem can be proved in similar way.

ItfU e(|CA,M |(p), I'), then U defines a bounded linear operator.

2.5, the proof of Theorem can be immediately obtained.

4. Conclusions

In this section, we present some results obtained with special selections of our main theorems:

Take the matrix L = (I,,;) as

] _{1,0Sj£n
nTlo, j>n,

characterized as follows with Lemma 2.3 :

Ue(|Cp |(P),co) if and only if T € (I(p), o) and V™ e (I(p), ¢) where the matrices U and V™
are defined as in the above theorem. It follows from Lemma 2.1, U €(I(p), ¢,) if and only if the

conditions (5), (7) hold. Also, V™ e(l(p), c) if and only if the conditions (1) and (6) hold. So, it

Theorem 3.3. Let U = (u,,,) be an infnite matrix of complex numbers, 8 = (6,,) be any sequence

of positive real numbers, p = (p,) be any bounded sequence of positive numbers and I' = {c, ¢y, [, }.

Proof Since the spaces c, ¢y, L, are BK- spaces, normed FK-spaces, using Lemma 2.4 and Theorem

Since by = (l);, and ¢ = (c),, the matrix classes (|C,1# |(p),bs) and (lC/l.u |(p), CS) can be
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Corollary 4.1. Putu(n,v) = ?:0 U, instead of Uy, in the Theorem 3.1 and Theorem 3.2. Then,

(@) if p, <1 forallv,
(16 | ), bs) & (1),(2),(4) hold,

(|G [@)rcs) & (1), (2),(3),(4) hold,
(b) ifp, > 1 forall v,

(|Csu |, bs) & (1),(6),(7) hold,

(ICau |®).c5) = (D, (3),(6),(7) hold.
If we take p, =1 and p, = p for all v in Theorem 3.1 and Theorem 3.2, respectively, then the

following results given in (Giileg, 2020) are easily obtained :

Corollary 4.2. Let A1 + u, u be non-negative integers, U = (u,,,) be an infinite matrix of complex

numbers. Then

(a) Ue(|Cyy |, c) if and only if

Ay
Z Wunk converges forallv > 1, (8)
k=v k
m A—l—l
sup vAﬁJr”Zunkﬁ < (9)
m,vz1 pram— k
T
sup [vA, Zuan < (10)
nw=1 - JA
j=v J
VAL AT A
lim ) uy; L. u]_ exists for each v > 1.
n—oo = ]A]

(b) Ue(|Cau |, co) if and only if the conditions (8), (9), (10) hold and

Atp g-2-1
. UAV Aj—v
lim unj _—

o
n-oo A"
j:v ] J

=0 forallv=>1.

(¢) Ue(|Cu | ls) if and only if the conditions (8), (9), (10) hold.

Corollary 4.3. Let A+ u, u# —1,-2,..., U = (u,,) be an infnite matrix of complex numbers
and p > 1. Then,

(a) Ue (|CM . c) if and only if
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k—Zunk converges for alln,v > 1, (11)
kA,
k=v
m m A_A_l p*
supz vl/PAﬁJr”Z Unk k_Z < oo,n>1, (12)
m kA,
v=1 k=v
1 ® A'—l—l
lim v /PAﬁJ'“Zunj% exists for eachn,v > 1, (13)
n = i
%) ) A-_A_l p*
supz v o AN Uyl <o (14)
"= Af

hold.
) Ue(|Cay ¥ o) if and only if the conditions (1), (12), (14) hold and

o At g-2-1
VA, " A
lim vl/PZunj% =0 forallnv=>1.

) Ue (|CM . lm) if and only if the conditions (11), (12), (14) hold.

Note that if we take 4 > —1,u = 0 and p,, = p, for all n in the definition of the space |C,1,M |(p),

it is reduced to the space

co n 14
[ |p={a=(av)-z T 4iva,| <o }
n=1 n /pAﬁl v=0

studied in (Sarigol, 2016) and so the following new results are immediately obtained from our main
theorems:
Corollary 4.4. Let A be non-negative integers, U = (u,,,) be an infnite matrix of complex numbers.
Then

(a) Ue(|Cy],c) if and only if

S Ay
. Unk converges for all v, (15)
k=v
m AsA-1
sup vAﬁZunk kl;v < o (16)
mv k=v
o ATA-1
sup vAﬁ"L”Zunj e (17)
n,v ]
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® A'—ﬂ.—l

. -V

lim Up;j /—

n—-oo ]
j=v

exists for each v.

(b) Ue(|Cyl, co) if and only if the conditions (15), (16), (17) hold and

o -A-1
. Aj—v
lim

n—-oo

Up;j =0 forallv.

j=v

(¢c) Ue(]Cyl, 1) if and only if the conditions (15), (16), (17) hold.

Corollary 4.5. Let 1 # —1,—2, ..., U = (upy) be an infnite matrix of complex numbers. Then,
() Ue(|Cyl,, c) if and only if

® A—l—l
Z kl;v U, converges for all v, (18)
k=v
o m _a-1|?
supz v /PAﬁz Uy ——~ < oo, (19)
m v=1 k=v
© —1-1,Pv
242y
supz v Puy Ay —— < o (20)
"y
© -1-1
lim Y u,;——— exists for each v,
j=v

hold.

(b) U e(|Cy |, o) if and only if the conditions (18), (19), (20) hold and

® -A-1
j—v

lim

n—oo

Up =0 foreachv.

j=v

() U€(IC; | L) if and only if the conditions (18), (19), (20) hold.
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