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With rapid increase in numbers of connected Internet of Things (IoT) 

devices, huge amount of data is generated and sent to Cloud Computing 

nodes to be stored and analysed. Cloud computing is an effective paradigm 

for storage and data analysis since IoT devices are restricted machines in 

terms of energy, computation power and storage. Despite the advantages of 

cloud computing, it causes network congestion and latency due to generally 

located at long distances. Besides, security and privacy issues are also 

drawbacks of the cloud. Edge Computing is a promising system to eliminate 

the flaws of cloud computing by getting computational power closer to data 

sources. Edge Computing has more computation power than IoTD but lower 

than cloud computing. Although the deficiencies of cloud computing 

decrease with edge computing, they are not completely eliminated because 

computation intensive tasks still should be sent from edge to cloud resources. 

Since Autoencoder is an unsupervised neural network technique that learns to 

efficiently encode/compress input data and learns to efficiently decode it as 

closer to the original input, it is an ideal candidate for reducing data traffic 

and latency in edge computing and cloud computing. The main purpose of 

this paper is to investigate the studies using AE in edge computing and their 

performance implications with respect to network traffic, security, and delay. 

The performance results of the proposals that have used autoencoder between 

edge and cloud layer are evaluated in terms of eliminating big data, network 

traffic and accuracy. 
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 İnternete bağlı IoT cihazların sayısındaki hızlı artış ile çok büyük miktarda 

üretilen veri depolanmak ve analiz edilmek üzere Bulut Bilişim düğümlerine 

gönderilir. IoT cihazlar enerji, hesaplama gücü ve depolama açısından kısıtlı 

makineler olduğundan, Bulut Bilişim depolama ve veri analizi için etkili bir 

paradigmadır. Bulut Bilişimin avantajlarına rağmen, genellikle uzun 

mesafelerde konumlandığı için trafik sıkışıklığı ve gecikmelere neden olur. 

Bunun yanında, güvenlik ve gizlilik meseleleri de Bulut Bilişimin 

dezavantajlarındandır. Uç bilişim hesaplama gücünü veri kaynağına 

yaklaştırarak Bulut Bilişimin kusurlarını bertaraf edecek umut verici bir 

sistemdir. Uç Bilişim, IoT cihazdan daha fazla; Bulut Bilişimden ise daha az 

hesaplama gücüne sahip. Uç Bilişim ile birlikte Bulut Bilişimin 

olumsuzluklarının azalmasına rağmen, tamamen ortadan kalkmaz. Çünkü, 

yoğun hesaplamalı görevlerin hala uçtan bulut kaynaklarına gönderilmesi 

gerekir. Otokodlayıcı, girdi verisini etkili bir şekilde kodlayan/sıkıştıran ve 

orijinal girdi verisine daha yakın olacak şekilde kodu çözmeyi öğrenen 

Anahtar Kelimeler: 
Nesnelerin interneti 

Uç bilişim 

Bulut bilişim 

Otokodlayıcı 

Yapay sinir ağları 
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denetimsiz sinir ağı tekniğidir. Uç bilişim ve Bulut Bilişimdeki veri trafiği ve 

gecikmeyi azaltmak için ideal bir adaydır. Bu çalışmanın amacı, ağ trafiği, 

güvenlik ve gecikme açısından Otokodlayıcı yönteminin uç bilişimde 

kullanılan çalışmaları ve performans etkilerini araştırmaktır. Uç ve bulut 

katman arasında Otokodlayıcı kullanan çalışmaların performans sonuçları 

büyük veri, ağ trafiği ve doğruluk açısından değerlendirilmiştir. 
To Cite: Kakız AT., Kakız MT., Çoban R. An Evaluation of Autoencoder Neural Network Role in IoT Edge Computing.  
Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2022; 5(3): 1383-1392.  

 

1. Introduction 

Internet of Things (IoT) envisions to enable physical objects of everyday life to be able to see, hear, 

think, and talk by sensing, analyzing, and communicating with their environments (Al-Fuqaha et al., 

2015). These objects can see and hear by means of sensors integrated (i.e., camera, temperature, 

gyroscope), can think and analyze the sensed data with a processing unit and finally can talk and 

interact with other objects with a communication interface. Since the objects can communicate with 

each other in the IoT concept, an unprecedented amount of data is generated by a wide variety of 

devices such as home appliances, vehicles, surveillance cameras, transportation, and manufacturing 

systems (Zanella et al., 2014).  

The data collected from the real-world environment should be analyzed to extract useful information 

about the objects and their situations. With the relevant extracted information, possible future events 

can be predicted, or right decisions can be made about what the devices should perform if necessary. 

Thus, IoT turns into a paradigm that improves the quality of our daily life (Ge et al., 2018). However, 

processing large volumes of sensor data on IoT is relatively challenging because of restricted 

computational power and energy constraints of IoT devices as in Wireless Sensor Networks (WSN) 

(Akyildiz and Vuran, 2010). Therefore, Cloud Computing services have been proposed for data 

processing and analysis. 

The main objective of this paper is to evaluate Autoencoder (AE) Neural Network role in IoT Edge 

Computing. To achieve this aim, we focus on the studies developed to be executed on edge devices 

and using AE between IoT and edge nodes or between edge and cloud nodes. 

The rest of the paper is organized as follows. Section 2 explains CC and Edge Computing paradigms 

and why they are needed. Section 3 gives background information of autoencoder neural network. 

Section 4 evaluates autoencoder roles in EC with comparative examples. Finally, Section 5 concludes 

the paper and gives future research directions.   

 

2. Material and Method 

Cloud and Edge Computing 

Cloud Computing (CC) is a promising way to perform computationally intensive IoT tasks because 

CC systems have more computational power and storage capacity (Shi and Dustdar, 2016). IoT 

devices collect data and send their data to distributed powerful CC nodes to be analyzed and stored, 

and then the IoT nodes or another device may be notified of predictions and decisions for 

optimization. For example, surveillance camera systems capture image data at the edge but cannot 
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process it for face recognition because image processing requires more computational power. 

However, they can send captured image data to CC machines thousands of miles away to be analyzed 

for face recognition; then, after data analysis, CC nodes share the information of who the detected face 

belongs to with relevant devices. 

While CC has many benefits that meet the computational inadequacy of IoT, it also has several 

shortcomings: i) Long physical distances between CC nodes and IoT devices can cause major delays, 

which is not acceptable for delay sensitive applications (e.g., autonomous driving, highly interactive 

application) (Wang et al., 2020); ii) Sending large amount of data generated by IoT devices to the 

remote data centers will not work because 500 billion devices, according to Cisco, going to connect to 

the internet in 2030 (Cisco, 2016; Pan and McElhannon, 2017); iii) Very large volume of data 

transmission increases the pressure, density and traffic in the backbone network (Wang et al., 2020); 

iv) Sending data to CC also carries risks in terms of security and privacy (Shi and Dustdar, 2016). 

 

 
Figure 1. CC and EC system model architecture 

 
To address aforementioned deficiencies and challenges of CC, Edge Computing (EC) has been 

proposed (Satyanarayanan et al., 2009). The main idea of EC is to bring computational resources 

closer to the edge IoT devices, which provides better services especially for delay-sensitive 

applications (Khan et al., 2019). Instead of sending generated data to central cloud devices which are 

far away from the edge of the network, IoT nodes can send data to nearby edge devices for data 

analysis. The data received from IoT devices is sent to the edge node, and after certain tasks are 

completed, the reduced data is sent to the cloud for integration. Edge servers connect via a private 

network or the Internet and are located at the edge of the network. They can be used for storage, data 

compression-decompression and computation as well as providing multimedia content (Ghosh and 

Grolinger, 2019). As a result, EC is a key enabler to tackle the problems of CC (i.e., latency, 

computational density of cloud devices and network congestion). The comparison between CC and ED 

is represented in Table 1 with different parameters.  

EC reduces latency and traffic, improves user experience, and reduces dependency on the cloud. 

Therefore, industry and academia place emphasis on EC (Mach and Becvar, 2017; Ghosh and 

Grolinger, 2019). Edge servers are like a bridge between cloud and IoT devices. Note that it does not 
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mean that all data generated must be sent to the EC nodes. When needed, IoT nodes can directly send 

the data to the CC devices, or it is sent from EC to CC because EC machines have more computational 

power and storage capacity than IoT devices but less than CC machines. Therefore, computation 

intensive tasks cannot be handled by EC nodes, and they can be directly sent to CC, as represented in 

Figure 1. 

Considering that EC devices may have difficulty in accomplishing Machine Learning (ML) tasks that 

require high computing power, there is a need for a system where EC and CC systems collaboratively 

work for data analysis. The mentioned system should aim to send the least amount of data to the cloud 

(e.g., integration and control data) in order to reduce latency and network congestion. Autoencoder 

(AE), an artificial neural network mostly used in ML and DL, is an effective way to achieve this goal.  

 

Table 1. CC and EC comparison (Ullah et al., 2018) 

Parameters CC EC 

Delay High Low 

Security and Privacy  Low High 

Computing Power High Limited 

Access Internet Edge Network 

Distance Far Close 

Noticing the Location No Yes 

Topology Centralized Distributed 

Mobility Support No Yes 

 

Autoencoder Neural Network 

AE, a neural network that learns to encode data in an unsupervised manner (Ghosh and Grolinger, 

2021), is a ML architecture in which the number of nodes at the input layer is equal to the number of 

output nodes, as shown in Figure 2, and the number of nodes in hidden layers is less than inputs and 

outputs. When the hidden nodes are less than inputs, the model is trained to learn the best coding of 

the inputs with hidden units for dimensionality reduction (Alpaydin, 2020). It is not only used for 

dimensionality reduction but also for many other reasons that will be explained in Section 4. 

 



1387 

 

 
Figure 2. Autoencoder neural network 

 

An AE consists of two parts, an encoder and a decoder and each of these parts may consist of one or 

more hidden layers. Since the encoder part of AE is responsible for reducing the data size, the number 

of neurons decreases from the input layer to the bottleneck of the model, as represented in Figure 3. 

On the other hand, the decoder side reconstructs the input values from the encoded data. Therefore, the 

decoder part consists of layers with an increasing number of neurons from the bottleneck of the model 

to the output layer. AE can be used for noise removal and anomaly detection, but it often serves as a 

preprocessing step for another ML task. This preprocess can be a dimensional reduction of input data 

(Ghosh and Grolinger, 2021). 

Encoding data and then trying to reconstruct it may seem meaningless, but it is used for many different 

aims in a variety of applications. For example, in terms of compressing data, other data compression 

algorithms may perform more efficient than AE, but they cannot learn anything from the compressed 

data. However, AE tries to learn and prioritize some aspects of the input that resembles training data 

(Goodfellow et al., 2016). 

 

3. Results and Discussion 

Even though there exist different types of AEs which are used for different purposes, there are three 

main use cases of AE in EC, which are anomaly detection, noise removal, dimensionality 

reduction/data compression. In these use cases, encoder and decoder parts of AE can be located in 

distinct nodes such as EC, CC and IoT. It only depends on the aim of the use case. A histogram of the 

type of proposals in IEEE Xplore is shown in Figure 3. Let us take a deeper look at the use cases.  
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Figure 3. The histogram of edge and autoencoder related proposals in IEEE xplore 

 

 

Anomaly Detection  

The most common use case of AE in EC is detecting anomaly of input data. Since IoT devices are 

restricted nodes in terms of memory and computation, they cannot execute complex security 

algorithms and they are vulnerable to malware attacks. The input data sent from IoTs to EC or CC 

may include anomalies caused by the malicious software. Therefore, detecting any anomaly is an 

essential task with regards to accuracy of data analysis. There are many studies in the literature that are 

proposed for anomaly detection in EC, and they use different types of AEs to detect anomalies.  

Tzagkarakis et al. have proposed a botnet attack detection method on EC node (Tzagkarakis et al., 

2019), which is a sparsity representation framework detecting error rate between original input and 

reconstructed data. If the error rate of a sample is greater than a threshold value, it is extracted as an 

abnormal data. A similar approach is proposed by (Li et al., 2021) in which anomaly detectors are 

constructed by using LSTM (Long Short-Term Memory) AE. Original and reconstructed sequences 

are compared, and if the error is more than a threshold, then it is abnormal. Otherwise, it is considered 

as a normal data. Besides, detecting anomalies in cellular networks is another proposal in which 

ADM-Edge integrated into an NB-IoT (Narrowband IoT) tries to detect anomalies over a single data 

point (Savic et al., 2021). If a larger amount of time series is generated, it is sent to more 

computationally powerful Fog devices for anomaly detection.  

Kim et al. proposed anomaly detection for industrial IoT (IIoT) by using AE model named Squeezed 

Convolutional Variational Autoencoder (Kim et al., 2018). The proposed method has been embedded 

in IIoT devices. Also, Park et al. embedded their proposed anomaly detection model in IoT devices to 
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identify electric motor failures. In this method, two AE structures have been used to obtain the best 

method (Park et al., 2021). Another anomaly detection method has been proposed to detect anomalies 

for Bridge Health Monitoring (Moallemi et al., 2022) with benchmarking Fully Connected AE and 

Convolutional AE. They also embedded the proposed method in IoT devices. Unlike previous studies, 

the proposal of anomaly detection in smart farming ecosystem (Adkisson et al., 2021) has not clearly 

indicated in which layer the method has been embedded. They have used unsupervised AE model.  

 

Removing Noise 

One of the most common uses of AEs is to remove noise from data. Thus, the data is transformed into 

a more suitable form for learning with ML models. This application usually takes place in the EC and 

the resulting representative compressed data is sent to the cloud for analysis. Since AEs represent data 

with smaller nodes by learning only useful information, noise is eliminated from the data by ignoring 

it. The type of AE that is mostly used for noise removal is Denoising AE.  

A smart parking with user activity has been proposed by Kim et al. (Kim et al., 2021) that tries to 

eliminate noise from data generated by smartphone sensors. The data used in the study is sensed in the 

car, out of the car but it has also noise. They use Denoising AE for noise removal in smartphone and 

the reconstructed data from which the noise is removed is sent to EC for parking location and user 

activity analysis. Also, a similar approach has been adopted in (Feng at al., 2021) for noise removal 

from space launch system data. Embedded edge nodes in a rocket tries to remove noise to make space 

launch mission more reliable and secure. Besides, Auto-Key trains denoising AE to remove noise and 

obtain the repaired signal from the initial noisy one. Therefore, it accelerates the key generation based 

on gait in body area networks (Wu et al., 2020).   

 Unlike previous methods, PrivStream method injects noise to make data stream away from adversary 

attacks and uses an AE to realize data minimization (Wang et al., 2019). The proposed method is 

distributed on IoT and Edge devices.   

 

Dimensionality Reduction/Data Compression 

Considering the traffic density in the network, dimensionality reduction/data compression is one of the 

most important uses of AE in EC devices. The purpose of this use is to send the bottleneck, where the 

data is represented by fewer nodes, instead of sending all of the generated data to the network. Thus, 

the data traffic in the network will be reduced. The performance of the studies developed for this use 

case depends on the ability to learn from the compressed data and reach an accuracy close to that 

obtained with the original data.  

To reduce network traffic, Ghosh et al. have developed an architecture by combining EC and CC 

(Ghosh and Grolinger, 2020). The encoder part of AE is located on EC and the decoder part is placed 

on CC. When sensor data is received from IoT devices, EC encodes the data and sends it to CC for 

data analysis. By this way, %80 data is reduced without significant loss in accuracy. Another method 

of dimensionality reduction with AE in EC has been proposed for online resource scheduling system 
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(Jiang et al., 2020). Stacked AE is used for compression and representation of high dimensional 

channel quality information in large scale mobile EC networks.  

Trilla et al. proposed to compress vibration monitoring data up to 10 times without affecting the 

performance of the process (Trilla et. al., 2020). They use AE to realize this improving with three 

configurations: denoising, sparse and contractive. Besides, Lv et al. also compare the performance of 

stacked noise, stacked, stacked contractive, stacked sparse and deep belief AEs in terms of dimension 

reduction (Lv et al., 2021). They perform the comparison with respect to accuracy rate, false negative 

rate and false positive rate. 

 

Preprocessing for another ML Task 

AE can also be used as a preprocessing step before entering another ML model (L’heureux et al., 

2017). This step can occur in two different ways; i) the bottleneck nodes of AE can be directly used by 

the ML model in EC or CC, ii) the compressed representation of data is reconstructed and then it is 

used as an input data of another ML model in EC or CC. Apart from these use cases, AE can also be 

used as a classification tool (AbdulsalamYa'u et al., 2019). 

 

4. Conclusions 

Autoencoder neural network model is used for many different applications with a variety of purposes. 

In this paper, we have briefly explained what autoencoder, edge computing and cloud computing are 

and why we need of autoencoder in edge and cloud. Also, we evaluated the role of autoencoder neural 

network model in IoT Edge Computing by giving the most common uses cases. In future studies, 

coding and decoding methods can be developed in studies using AE, and it can be tried to reach the 

ideal point of minimum energy and maximum accuracy. 
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