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ABSTRACT
Anomaly detection has been researched in different areas and application domains. The main difficulty is to 
identify the outliers from the normals in case of encountering an input that has unique features and new values. In 
order to accomplish this task, the research focusses on using Machine Learning and Deep Learning techniques. 
In the world of the Internet, we are facing a similar problem to identify whether a website request contains 
malicious activity or just a normal request. Web Application Firewall (WAF) systems provide such protection 
against malicious requests using a rule based approach. In recent years, anomaly based solutions have been 
integrated in addition to rule based systems. Still, such solutions can only provide security up to a point and such 
techniques can generate false-positive results that leave the backend systems vulnerable and most of the time rules 
based protection can be bypassed with simple tricks (eg. encoding, obfuscation). The main focus of the research 
is WAF systems that employ single and stacked LSTM layers which are based on character sequences of user 
supplied data and revealing hyper-parameter values for optimal results. A semi-supervised approach is used and 
trained with PayloadAllTheThings dataset containing real attack payloads and only normal payloads of HTTP 
Dataset CSIC 2010 are used. The success rate of the technique - whether the user input is identified as malicious 
or normal - is measured using F1 scores. The proposed model demonstrated high F1 scores and success in terms 
of detection and classification of the attacks.
Keywords: Deep learning, LSTM, web application firewall, machine learning, neural networks, web 
attacks, anomaly detection, HTTP protocol

ÖZ
Anomali tespiti, farklı sektörlerde ve uygulama alanlarında araştırılmaya devam etmektedir. Anomali tespitindeki 
temel zorluk, benzersiz özelliklere ve yeni değerlere sahip bir girdi ile karşılaşılması durumunda normallerden 
aykırı değerleri belirlemektir. Araştırmalar, bu görevi yerine getirmek için Makine Öğrenmesi ve Derin Öğrenme 
tekniklerini kullanmaya odaklanmaktadır. Internet dünyasında, bir web sitesi isteğinin kötü niyetli veya sadece 
normal bir istek olup olmadığını belirlemek istediğimizde yine benzer bir sınıflandırma problemiyle karşı karşıya 
kalmaktayız. Web Uygulama Güvenlik Duvarı (WAF) sistemleri kötü niyetli faaliyetlere ve isteklere karşı, kural 
tabanlı ve son yıllarda kullanılan anomali tabanlı çözüm kullanarak koruma sağlar. Bu tür çözümler bir noktaya 
kadar güvenlik sağlar ve kullanılan teknikler, arka uç sistemlerini savunmasız bırakan hatalı sonuçlar 
üretmektedirler. Bu çalışmanın odak noktası, karakter sıralaması tabanlı bir LSTM (tekli ve yığılmış olmak 
üzere) yapısı kullanılarak bir WAF sistemi oluşturmak ve derin öğrenme modelinin optimum sonuç üretmesi için 
hiper parametrelerin hangi değerleri alması gerektiğini ortaya koymaktır. Semi-supervised öğrenme yaklaşımı 
için PayloadAllTheThings verisetinde yer alan gerçek saldırı verilerinin yanı sıra HTTP CSIC 2010 verisetinde 
yer alan ve normal olarak etiketlenen veriler hem modelin öğrenmesi sırasında hem de test edilmesi adımında 
kullanılmıştır. Önerilen tekniğin başarı oranının analizini için F1 skor değeri baz alınmıştır. Yapılan analizler ve 
deneyler sonucunda elde edilen derin öğrenme modelinin F1 başarı oranının yüksek olduğu ve saldırıları tespit 
etme ve sınıflandırma noktasında da başarı elde edildiği gösterilmiştir.
Anahtar Kelimeler: Derin öğrenme, LSTM, web uygulama güvenlik duvarı, makine öğrenmesi, sinir 
ağları, web saldırıları, anomali tespiti, HTTP protokolü
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1. INTRODUCTION

In the era of the Internet, cyber security has become the most important due to huge data leakages of both private and 
confidential data belonging to users and companies. In particular, there has been a growth in the last 5 years in terms of data 
breaches and exposed records (Statista, 2021). The sensitive data in corporate networks are mainly not accessible from the 
Internet. The main point of contact of the criminals is the web servers that serve corporate applications to the end users 
within the corporate network. The web servers that contain vulnerable components in the application or the server itself can 
allow the criminals to get into the corporate network (Fortinet attack vector, 2021). The protection of web servers and a 
corporate network is provided by a Demilitarized Zone (DMZ) (S. Young, 2021) which exposes an organization’s external-
facing resources to an untrusted network such as the Internet by implementing firewalls in front of the corporate network 
and the Internet facing web servers.

According to a survey (Computer Fraud & Security, 2020), near half (43%) of the breaches (confirmed disclosure of information 
to an unauthorized party) involved web applications. The survey categorizes bad actors responsible for breaches as 70% by 
external actors and 55% of which are organized criminals. The remaining 30% are internal actors within the organizations. 
Considering the 108,069 breaches, the industries with the most data breaches are Healthcare (521 breaches), Finance (448 
breaches), Manufacturing (381 breaches), Information (360 breaches), Professional services (326 breaches) and Public 
organizations (346 breaches).

The web application attacks cover everything from code-based vulnerabilities (Hacking-Exploit Vulnerability) to authentication-
related attacks (Hacking-Use of Stolen Credentials). The most widely abused vulnerabilities are SQL injection (SQLi) (OWASP 
Sql injection, 2021) and PHP injection (OWASP Php code injection, 2021) vulnerabilities. These attacks are a fast and simple 
way for an attacker to transform an exposed vulnerable application into a profit. The most commonly detected vulnerability 
is however, cross-site scripting (XSS) (OWASP Cross site scripting, 2021), the infamous ding pop-up vulnerability. SQLi 
attacks are half as common as XSS.

Security of a web application consists of secure architecture, data management, safe deployment and the securing of libraries 
and external systems such as external databases and third-party components. It becomes difficult to manage multi-objective 
tasks in organizations and generally Web Application Firewall (WAF) (OWASP Web application firewall, 2021) is preferred 
to limit the risk of exploiting vulnerabilities existing in a web application. Even though it has benefits, there are difficulties 
in configuration due to the covering of every aspect of the application and the constant adjustment of the rules (rule based) 
in the case of scaling up the application or deploying multiple applications. One approach is to implement adaptive WAF 
that can learn from legitimate web traffic (D. Pałka & M. Zachara, 2011).

Effectiveness assessments for WAFs were made using 49 field experts involved in online surveys on 16 operational scenarios. 
These experts’ judgments were combined with the conventional methods of R.M Cooke (1991). The results as seen in Table 
1.1 indicate that if all the measures are taken, the median prevention rate of a WAF is up to 80%. If no measure is used, its 
median prevention rate is 25% (M. E. Hannes Holm, 2013).

Table 1.1
Various WAF operational scenarios and the estimated possibility of preventing attacks with a certain degree of certainty (M. E. Hannes Holm, 2013)

Scenario Operator 
monitoring

Black box tool 
for tuning

Professional 
tuning

Significant 
effort on tuning Low (5%) Median (50%) High (95%)

1 Yes Yes Yes Yes 50 80 95
2 Yes Yes Yes No 30 60 70
3 Yes Yes No Yes 15 60 85
4 Yes Yes No No 10 50 70
5 Yes No Yes Yes 15 70 80
6 Yes No Yes No 5 50 60
7 Yes No No Yes 5 50 70
8 Yes No No No 5 30 60
9 No Yes Yes Yes 50 75 90
10 No Yes Yes No 35 60 75
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11 No Yes No Yes 15 50 80
12 No Yes No No 5 50 60
13 No No Yes Yes 15 60 80
14 No No Yes No 5 50 60
15 No No No Yes 5 50 75
16 No No No No 5 25 50

To make a WAF efficient, it is important to have the skill of individuals who tune a WAF, use an automated black box tuning 
tool or make a manual effort. The presence of a monitoring operator has a minor positive impact on its efficiency.

Rule based web application firewalls provide security up to a point which might generate false negatives and needs an 
adoption of the new rules bypass techniques that emerge for the attack techniques presented. Employing a deep learning 
technique in detection and classification of such web application attacks is expected to provide more protection when new 
attack techniques are applied. Achieving the adoption of deep learning will provide anomaly based novelty detection (M. 
Markou & S. Singh, 2003a) (M. Markou & S. Singh, 2003b) which aims to detect previously unobserved patterns rather than 
being rules based by using a model generated by benign and malicious web requests, employing a semi-supervised method.

Anomaly detection refers to the difficulty of identifying patterns in data that do not conform to expected behavior. These 
patterns are known as anomalies, outliers, discordant data, exceptions or contaminants in various application fields. The 
most common techniques are based on machine learning approaches, which use a training phase to investigate anomalies 
in web traffic in order to model a system’s normal behavior. For example, an anomalous web traffic pattern may indicate an 
attack or exploitation of vulnerability in an application (F. Valeur, at al., 2004).

Anomalies can be classified into three categories (R. Chalapathy & S. Chawla, 2019):

• Point Anomalies: A point is labeled an anomaly when the data point is significantly different from other data 
points. This category includes extreme values in a data-set.

• Collective Anomalies: A group of linked items that are normal but when the items are combined it becomes 
anomalous. Collective anomalies occur in time series sequences that depart from the conventional trend.

• Contextual Anomalies: An anomaly is contextual when the instance is considered in a particular context and 
otherwise it is normal. Context is often included as a supplementary variable and if there is a contextual attribute, 
a point anomaly or a collective anomaly can be considered as a contextual anomaly.

Anomaly is defined as a divergence from the normal. However, developing a definition of normalcy that explains every 
variant of a typical pattern is difficult. It is much more difficult to define anomalies. They rarely occur, and it is impossible 
to anticipate every form of anomaly. Furthermore, the definition of anomalies changes depending on the application. Although 
it is usually considered that anomalies and normal points are produced by different mechanisms (A. Singh, 2017).

Anomalies in many real-life applications signify major crashes that are both expensive and difficult to capture. Tolerance 
levels are sufficient in some domains, and any value outside the threshold values might be flagged as an anomaly. Labeling 
anomalies is a time-consuming operation in many circumstances, and human specialists who understand the fundamental 
mechanism are necessary in pointing out anomalies (A. Singh, 2017).

The detection of anomalies in web applications using different techniques has difficulties depending on the high dimensional 
data-set, the lack of a rich data-set pool for training, and complex user behaviors.

As an objective of the research, it is essential in the cyber security domain to detect anomalies that are unknown and not 
presented within the dataset during the learning phase. In order to reduce the effort for updating rules and providing better 
protection against web application attacks, a deep learning method is going to be implemented and evaluated. A semi-
supervised method will be adapted in order to identify if it is possible to detect unknown attack payloads using only a 
restricted amount of training data. The training and testing data will include real attack payloads (Payloads all the things, 
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2021) used by the attackers in addition to HTTP Dataset CSIC (C. Torrano-Gimnez at al, 2010). Also, the hyper-parameters’ 
impact will be measured in addition to finding optimized hyper-parameter values to have a higher success detection rate.

2. BACKGROUND

A specific formula is applied to a problem using most of the available techniques of anomaly detection. Different factors 
such as the nature of the data, the available labeling data and the type of anomalies to be detected lead to the formulation. 
Often the application domain, in which abnormalities are to be detected, determines these factors. In this case, the nature of 
the injection attacks are basically a composition of character sequences that are interpreted as valid input by the web application.

2.1 Web Application Injection Attacks

Mainly, the aim is to detect and classify the main web application attacks (Owasp TOP10 web application security risk, 2021) 
as:

SQL Injection (SQLi): The attack consists of an insertion of an SQL query to the application that can result in the reading, 
updating or insertion of data into the database. SQL injection attacks allow an attacker to impersonate someone else, alter 
data or render it unusable in any way, and get administrative access to the database server (WASC, 2010). There are different 
types of SQL injections:

• Error-based: The database server’s error messages are used to gather database structure information.

• Time-based Blind: It is based on submitting an SQL query to the database, which compels the database to wait 
for a given period of time (in seconds) before answering. The attacker can tell from the time it takes for a response 
whether or not the query’s result is true. HTTP responses can either be delayed or instantly returned based on the 
outcome.

• Boolean-based Blind: It’s based on submitting an SQL query to the database, and depending on whether the query 
produces a true or false result; the application must provide a different response. The content of the HTTP response 
may change or remain the same based on the outcome.

The different types of SQL injection attacks make use of different payloads (Portswigger Sql injection cheat sheet, 2021) 
while testing/exploiting the vulnerability because the database vendors have different syntax for the same actions as seen in 
Table 1.2. A well prepared attacker includes all different kind of payloads for the same action in a word-list while testing/
exploiting.

Table 1.2
SQL Syntax for Different Vendors

Database Vendor String 
Concatenation Comments Version Time delays

Oracle ’foo’||’bar’ –comment SELECT version FROM 
v$instance dbms_pipe.receive_message((’a’),10)

Microsoft ’foo’+’bar’ –comment 
/*comment*/ SELECT @@version WAITFOR DELAY ’0:0:10’

PostgreSQL ’foo’||’bar’ –comment 
/*comment*/ SELECT version() SELECT pg_sleep(10)

MySQL ’foo’ #comment 
– comment SELECT @@version SELECT sleep(10)

Attackers make use of a malicious input list to the applications such as “ OR 1 = 1−−” to return all the users’ data by bypassing 
username restrictions. The Java code example below presents a vulnerable SQL statement usage by allowing the concatenation 
of user provided malicious input to the query string, leading to a retrieval of the all users’ data by the attacker. 
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String query = “SELECT account_balance FROM user_data 

WHERE user_name = “ + request.getParameter(“customerName”);

try {

  Statement statement = connection.createStatement(...);

  ResultSet results = statement.executeQuery(query);

}

LDAP Injection: The acronym LDAP (M.Wahl at al., 1997) (J.Hodges at al., 2002) stands for Lightweight Directory Access 
Protocol. X.500-based directory services are accessible via this lightweight protocol, as the name suggests. TCP/IP or other 
connection-oriented transfer services are used to execute LDAP across the network. Entries provide the foundation of the 
LDAP information model. An entry is a set of attributes with a globally unique Distinguished Name (DN). The DN is used 
to refer to the entry in a clear and unambiguous manner. A type and one or more values accompany each attribute on the 
entry. The kinds are usually mnemonic strings, such as “cn” for common name or “mail” for email address. The syntax of 
values is determined on the kind of attribute.

The injection of LDAP is a technique used to take advantage of web-based applications that generate LDAP statements based 
on input from the user. When an application fails to properly sanitize user input, it is possible to change the LDAP search 
filter. Standard boolean logic can be used in a search filter to acquire a list of persons who match a certain criteria. There is 
a prefix notation used to describe search filters (OWASP Ldap injection, 2021).

(&(USER=Uname)(Password=Pwd))

Making “Uname=sezer)(&))” and putting any string value as the “Pwd” value, the following query is generated and sent to 
the server-side.

(&(USER=sezer)(&))(Password=Pwd))

The LDAP server processes the query including the user supplied additional special characters. The query will always be 
correct, allowing the attacker to gain access to the system without the password of the user (C. Alonso at al., 2009).

Cross-Site Scripting (XSS): Cross-site scripting is a kind of injection that places malicious scripts into trusted websites. 
XSS attacks occur when an assailant utilizes a web application to communicate malicious code to another end user, usually 
through browser-side scripts. Defects allow such attacks to happen frequently and arise where the web app takes user input 
without verifying or encoding it inside the output it generates (OWASP Cross site scripting, 2021). There are different types 
of XSS Attacks (Portswigger Cross site scripting, 2021): 

• DOM Based: It commonly comes with JavaScript taking data from an attacker-controllable source, such as the 
URL, and passing it over to a sink supporting the execution of dynamic code, like eval() and innerHTML. This 
allows attackers to run JavaScript that is harmful and normally captures the accounts of other users. 

• Reflected: It occurs when an application receives data on an HTTP application and contains these data in an unsafe 
manner. If another user asks URL of the attacker, the script that the attacker supplies will be executed in the 
browser of a victim user in the context of the application’s session. 

• Persistent (Second-order or Stored XSS): It arises when a request obtains data from a non-trusted source and it 
stores that information in an unsafe manner in its subsequent HTTP answers.

A simple example of XSS vulnerability is given here:

https://insecure.com/form?name=Sezer

<p>Name : Sezer</p>



224Acta Infologica

Web Application Firewall Based on Anomaly Detection using Deep Learning

The application does not process the data any other way, so that an attacker can easily build such an attack:

https://insecure.com/form?name=<script>/+inject+code...+/</script>

<p>Name:<script>/+inject+code...+/</script></p>

The XSS vulnerabilities can easily be prevented by combining the following measures: filtering input when supplied, encoding 
data on output, implementing Content Security Policy (CSP) in response headers.

OS Command Injection: It is a method of attack used to initiate the illegal execution of commands in the operating system. 
This is the direct outcome of mixing reliable code with unreliable data. An attack is feasible if an application accepts untrusted 
input to create commands in the operating system in an unsafe manner that involves poor data sanitization and/or an incorrect 
calling of external programs. When an attacker executes instructions in the OS command injection, it will execute with the 
same privileges as the component executing it (e.g. wrapper, application, database server, web server, web application server) 
(WASC Os command injection, 2009). There are two or more subtypes of injection of OS commands (CWE, 2006):

1. The application aims to run a single, fixed, controlled program. The inputs received from outside will be used 
as arguments for only this program.

2. The app accepts an input to completely pick the program you are running and what commands you are using. 
This whole command is simply transferred to the operating system by the application.

As an example to the program that allows to run other applications via user supplied input is given below.

public string cmdExecution (String id){

try {

Runtime rt = Runtime.getRuntime();

rt.exec(“cmd.exe /C_LicenseChecker.exe”+” −ID “ + id);

}

catch (Exceptione){//...}

}

According to the given code snippet above, cmd.exe is an application which parses and analyzes the arguments and also calls 
other external apps allowing an attacker to call external programs. If an attacker supplies the value of an ID as ID121412 & 
hostname, then a hostname command may also be executed on the target computer with the privileges of a susceptible user.

XML External Entities (XXE): XXE attacks occur if an XML-based parser unsuccessfully processes user input that 
comprises a statement of an external entity in an XML payload type. This external entity may include additional information 
that enables an attacker to view sensitive information on the system or to carry out other more severe operations (SANS 
Exploiting XXE vulnerabilities, 2017).

<?xml version=”1.0” encoding=”ISO−8859−1”?>

<!DOCTYPE test[

<!ELEMENT test ANY >

<!ENTITY fieldname SYSTEM “ file:///etc /shadow”>]>

<test>&fieldname;</test>

Simply put, the input above is provided to a misconfigured XML-based parser. The execution steps of the attack can be 
followed as:
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1. Place the XML payload, pointing the system to load DTD files from the server.

2. To retrieve DTD contents, the XML parser accesses to the designated URI.

3. The DTD is loaded into the pre-processing of the original XML payload by the XML parser.

4. The Server loads the file.

5. The loaded file is sent to the attacker

The suggested mitigation method is used to disable external entity processes from the relevant XML-parser library. Since 
there are dozens of different XML-parser libraries, a corresponding solution should be applied.

Server Side Template Injection: Server-side template technologies (Jinja2, Twig, FreeMaker) are extensively used in web 
applications to generate dynamic HTML responses. SSTI happens when user input is inserted in a template in an unsafe 
manner, resulting in a remote code execution in the server. Template injection can occur as a result of both developer error 
and the intentional disclosure of templates in an attempt to provide rich functionality, as wikis, blogs, marketing apps, and 
content management systems frequently do.

The Flask and Jinja2 template engines are used in the following example. The profile function accepts a ’city’ parameter 
from an HTTP GET request and returns an HTML response with the following name variable content: 

@app.route («/profile»)

def page ():

city=request.values.get(‘city’)

output=Jinja2.from_string(‘Welcome’+city+’!’).render()

return output

This code snippet above is vulnerable to SSTI by supplying a payload in the city parameter. When a user visits the “http://
test-site.com/profile?city={{11*11}}”, the application will return as “Welcome 121!”, meaning that the provided values are 
calculated and returned to the user. When the vulnerability is inspected further, it is also possible to attack directly web 
servers’ internals and subsequently execute arbitrary commands on the server (OWASP Server-side template injection, 2021).

Path Traversal: Path traversal (also known as file directory traversal) is a type of HTTP attack that allows attackers to gain 
access to restricted directories outside of the web server’s root directory. In some situations, an attacker may be able to write 
to arbitrary files in the server, allowing them to change application data or behavior and eventually gain complete control 
of the server (Acunetix Path traversal, 2021).

As an example for the attack, the “loadImage” URL accepts a “filename” as an input and returns the contents of that file. 
The image files are saved on disk in the directory “/var/www/images/.” When an attacker visits “https://test.com/
loadImage?filename=../../../etc/passwd”, the web server will treat the input as “/var/www/images/../../../etc/passwd”.

The sequence ../ is a valid file path, and means to look one level up in the directory structure. The three consecutive ../ 
sequences step up from /var/www/images/ to the filesystem root, and so the file that is actually read is “/etc/passwd” 
(Portswigger Path traversal, 2021).

All the attacks explained are examples of injection attacks and they follow a specific input pattern and special characters. 
Since the sequence of the characters is important and it defines the problem as a sequential data problem (A. Graves, 2012), 
the identification of sequence which cause anomalies is mainly categorized and implemented based on the following learning 
techniques.

2.2 Supervised Anomaly Detection

Supervised anomaly detection learns the distinct boundary of a set of labeled data instances (training) and classifies a test 
in either normal or abnormal classes according to the learned model (testing). Mainly, a feature extraction network followed 
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by a classifier network is adopted within multi-class anomaly detection in order to classify the anomalous class from the rest 
of the classes (A. Shilton, at al., 2013) (V. Jumutc & J. A. Suykens, 2014) (S. Erfani at al., 2017). Multi-class deep learning 
models need a significant number (thousands or millions) of training samples to learn the features that distinguish different 
classes effectively.

Similarly, the training phase of the Locate-Then-Detect (LTD) approach (T. Liu, at al, 2019) is time consuming and requires 
a large amount of labeled data. It employs two modules to find payloads within the requests/posts and classify the payload 
in the request to recognize the web attack. The Hidden Markov Model for anomaly detection is proposed to detect only SQLi 
and XSS attack types. The LTD method has the same perfect 100% precision as the Libinjection (N. Galbreath, 2012), while 
the LTD has a much higher recall than the Libinjection. In term of the F1-score, the LTD method outperforms the libinjection 
and RWAF (a rule based commercial WAF).

An autoencoder LSTM (S. Hochreiter & J. Schmidhuber, 1997) model with sequence to sequence architecture is used to 
detect and classify malicious web requests such as OS Command, Path Traversal, SQLi, X-Path Injection, LDAP Injection, 
SSI, and XSS. The approach covers most of the injection attacks as opposed to LTD research. The test results show that the 
proposed model can detect attacks with a low false positive rate with a true positive rate of 1 by web applications. The 
proposed classification engine is not 100% accurate due to a lower volume of labeled categorized anomalous dataset (T. 
Alma, M. L. Das, 2020). As an alternative approach, I. Kotenko et al. (2021) employed 2 LSTM encoder layer and 2 LSTM 
decoder layer with one hidden LSTM layer for their approach. However, it is not clear which kind of web attack types are 
tested or how many different WAF bypass payloads are detected and are not given as result.

N. Montes at al. (2018) employed two approaches; firstly a multi-class approach for the scenario when valid data and attack 
data is available; and secondly a one-class solution when only valid data is at hand. Random forest, KNN-3, and SVM models 
are used as classifiers, and their success is assessed. The fact that the multi-class paradigm produced high performance scores 
suggests that if valid examples of valid requests and attacks are provided, the classification problem is not overly difficult. 
However, in the second case, using only attack traffic collected from attacks to other applications requires an attack training 
dataset that covers all possible attacks to the given application and results in a poor performance compared to the former 
case. The third approach, one class classification, which constructs a detection model using only valid requests, is quite 
promising. The outcomes outperform those achieved with the traditional rule-based ModSecurity system. If only valid 
requests are at hand, the results of this scenario show that a one-class solution provides many operational points that outperform 
ModSecurity rule based detection using a one-class classifier that aggregates target class samples into clusters and then 
utilizes the distance to these clusters as a measure of anomaly; samples distant from the clusters are categorized as abnormalities. 
However, N. Montes at al. (2021) treated the problem as a one-class supervised case and built a feature extractor using deep 
learning techniques. A deep pre-trained Robustly Optimization Bidirectional Encoder Representations from Transformers 
architecture (RoBERTa) (Y. Liu, 2019) allows the modeling of sequential data which is an alternative to recurrent neural 
networks (RNN) and is capable of capturing long range dependencies in sequential data using only normal HTTP requests 
to the web application. Once the feature vector containing numeric values of tokens are produced using RoBERTa, One-Class 
Support Vector Machine (OCSVM) is applied to discriminate a normal trace from attacks. The model outperforms ModSecurity 
using the most widely adopted rules with the advantage of not requiring the participation of a security expert to define the 
features.

Anomaly detection for finding vulnerabilities in applications also investigated at source code level (white box approach). 
Code gadgets that semantically relate program statements in terms of data dependency using the BLSTM approach (Z. Li et 
al., 2018) show a success rate of more than 85% for a score of F1, and up to 95% for finding buffer errors and resource 
management vulnerabilities. Analysis of AST and binary trees using RtNN and RvNN methods give different precision 
results for different systems in the detection of clone code within the software. File-level precision for AST-based analysis 
variates from 47% up to 100% for different systems (M. White, at al., 2016).
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2.3 Semi-Supervised Anomaly Detection

Semi-supervised anomaly detection methods assume that the training instances contain only a small amount of unlabeled 
instances while training models, which is easily applied to a one-class classification problems.. The test instance which is 
not in the majority class is considered to be anomalous in this approach. Employing this approach, byte frequencies (A. Oza, 
at al., 2014) of HTTP requests with n-grams of bytes in HTTP packets captured on the network level is compared to the 
model by computing a χ2 statistic. The statistic is calculated between the observed n-gram distribution of unknown packets 
and the predicted benign traffic frequency distribution using multiple data sets for training. The technique claims that it 
works much better with smaller n-grams than the HMM-method (D. Ariu, at al., 2011). Two-gram and 1-gram based methods 
for feature extraction from HTTP requests provide a robust construction of features. Then they are fed into the SAE which 
consists of multiple layers of auto-encoders and DPN (S. S. Kashi, 2019), and is used to determine if a new observation 
belongs to the same distribution as existing observations (normal) or should be treated as distinct (abnormal). The detection 
rate is around 80% for 4 different datasets. The real-time detection may not be possible since it is slow and might cause a 
bottleneck. However, G. Betarte et al. (2018) states that 1-gram and 2-grams are vulnerable to mimicry attacks in which the 
attacker carefully adds characters in order to get closer to the expected n-gram distribution. Three-gram is suggested as 
optimal where several n-gram analyses and a fine grain parsing of the HTTP request prevents mimicry attacks and keeps a 
relative low value for optimal n.

The combination of neural networks and iterative DBN (ladder network) (M. Nadeem, at al., 2016) achieves similar results 
compared to supervised methods and only requires a limited number of examples in the detection of network intrusions. It 
does not work well in real-time, but it can still be practical for forensic investigation. More specifically, web intrusion detection 
with an adaptive learning technique to find anomalies in query strings appended to URL provides an up-to-date detection 
model. SVM HYBRID (Y. Dong et al., 2018) uses the most prominent (suspicion) queries as well as the most representative 
(sample) malicious queries from unknown queries. The method tested in a real-world web application environment uses a 
ten-day query data set and leads current web attack detection methods to the maximum F-value of 94.79% and the lower 
FP-rate of 0.09%. However, the method is only valid if the web application accepts user supplied data as a string query in 
the application URL. The performance of detecting malicious payloads within JSON or XML data remains unknown.

However, N. Görnitz, at al. (2013) proposed a way of incorporating labeled data using an active learning strategy in 
generalization of support data description by including domain experts into the labeling process. Even with a small amount 
of labeled data, it performs a highly accurate level  of detection using test data sets and real-world implementation. Providing 
detailed feedback to the system (N. Ben-Asher & C. Gonzalez, 2015) by the domain experts during the training phase 
increases the detection rate of day-zero attacks and decreases the rate of false alarms. However, later in the paper, the survey 
shows that the presence of a monitoring operator has a minor positive impact on overall WAF efficiency in large time intervals.

J. Liang et al. (2017) use normal requests to train LSTM using CSIC and manually gathered WAF logs that contain SQLi, 
XSS and several types of attacks and classify the output with a supervised trained Multi Layer Perceptron. The payloads are 
decomposed into word embeddings and fed into a LSTM model and then the MLP classifies whether it is a normal request 
or not. The model has its limitations. The model cannot handle some kinds of long URLs very well and misclassifies them. 
The LSTM approach achieves 0.984 accuracy on CSIC dataset, and outperforms ModSecurity with CRS, X-means, Naive 
bayes, SOM and C4.5 methods.

Semi supervised Generative Adversarial Networks (GANs), have proven to be quite successful, with relatively few data with 
labels. Using labeled data (typically in one class), a significant improvement in performance over unsupervised methods can 
occur. Even in a deep learning environment, the same limitations of semi-supervised approaches apply. In addition, the 
hierarchical features recovered in hidden layers may not represent fewer anomalous events and are therefore prone to the 
problem of over-fitting (R. Chalapathy & S. Chawla, 2019).
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2.4 Unsupervised Anomaly Detection

Unsupervised anomaly detection methods assume that the training instances do not contain labeled instances in training 
models. The method identifies hidden patterns or determines how data is dispersed in space known as density estimation 
(D. Durstewitz, 2017).

Unsupervised Learning is subdivided into two types (B. Mirkin, 2005):

• Parametric Unsupervised Learning: It is assumed that the sample data originates from a population with a defined 
set of parameters and a probability distribution.

• Non-parametric Unsupervised Learning: The data is organized into clusters, with each cluster indicating something 
about the data’s categories and classes. This technique is frequently used to model and interpret data with tiny 
sample sizes.

One of the implementations (A. Juvonen, at al., 2015) of unsupervised learning into real-time anomaly detection using 
collected logs from different web servers as training data uses PCA (S Wold, at al., 1987) and diffusion map methods (A. 
Singer & H. Wu, 2011) with n-gram feature extraction. Even though the techniques provide a successful categorization and 
anomaly detection, it the performance for large amount of data and the scaling performance are unknown.

Variational Auto-Encoder (VAE) which is a Bayesian network employed to accurately detect KPIs (e.g., Page Views, number 
of online users, and number of orders) in web application (H. Xu et al., 2018). In contrast to conventional understanding, it 
requires training of both regular and abnormal data. For the analyzed KPIs from a leading global internet corporation, the 
F-scores of the unsupervised technique vary from 0.75 to 0.9. However, the detection threshold is not defined clearly. This 
is also a somewhat hard challenge, particularly in the unsupervised case.

Y. Pan et al. (2019) generated unlabeled call graph data using Robust Software Modeling Tool (RMST) and the generated 
data given to stacked a denoising auto-encoder model to train unlabeled traces. The auto-encoder learns an embedded low-
dimensional subspace capable of representing regular requests with a low reconstruction error. Then optionally, a small 
amount of labeled normal instances can be fed into a semi-supervised learning step. Without half-supervised learning, the 
highest reconstruction error is recorded and the threshold value is established by an adjustable percentage that is higher than 
this number. The higher reconstructions error for unlabelled training data is recorded in the absence of semi-supervised 
learning and the threshold is set to a configurable percentage greater than that maximum value. The adjustment for optimal 
results while utilizing auto-encoders to choose the correct degree of compression is a hyper-parameter named duration 
reduction. Unsupervised procedures are highly vulnerable to noise and data corruption and are typically less precise than 
supervised or semi-supervised procedures (R. Chalapathy & S. Chawla, 2019).

The deep learning architectures advised to use for sequence problems are mainly RNN and LSTM based architectures (D. 
Jurafsky & J. H. Martin, 2020). RNNs are referred to as simple and more constrained networks within this research, although 
it means any network with recurrent properties by general. Mainly, RNNs must figure out which prior inputs must be saved 
in order to produce the required output at the moment. To build up a sufficient input store, gradient-based learning methods 
require the present error signal to “flow back in time” across the feedback links to previous inputs. When the gradient 
becomes less and smaller, the parameter changes become trivial, implying that no meaningful learning occurs (S. Hochreiter, 
1998). The vanishing gradient problem is resolved (Y. Hu, at al., 1998) in GRU and LSTM which are also RNN networks 
with additional features. GRU networks perform well if the data sequence is not complex and not very large. However, LSTM 
networks outperform them in complex data and long strings, therefore they are suitable for language modeling and complex 
sequence modeling (R. Cahuantzi, at al., 2021).

Similarly, A. Moradi Vartouni et al. (2019) make use of 2-gram with the AE-LSTM method and then detect attacks with an 
ensemble isolation forest. As an alternative, the extraction one-hot features with the AE-LSTM and reduction features with 
a stack auto-encoder and then detects attacks with the ensemble isolation forest. Two-gram with the AE-LSTM approach 
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performs a 69.88 F-1 score using ECML/ PKDD 2007 dataset where one-hot with the AE-LSTM-SAE produces a 33.15 F1 
score. The result using a CSIC 2010 dataset shows an exact opposite F1 score performance; 2-gram with AE-LSTM produces 
68.98 and one-hot with AE-LSTM-SAE produces an 81.96 F1 score. The results show that binary one-hot attributes are not 
suitable for extracting meaningful features which have non-linear relations between them.

The supervised methods have been more accurate than semi-supervised and unsupervised models. Also, the classification 
based testing phase is fast since every test case should be compared with the precomputed model. Multiple-class supervised 
approaches, however, require precise labeling, typically unavailable for multiple normal and anomalous classes. If the feature 
space is exceedingly complicated and non-linear, the deep supervised technologies do not differentiate normal from abnormal 
data (R. Chalapathy & S. Chawla, 2019).

However, unsupervised and semi-supervised approaches are appropriate for anomaly based detection, since the aim to detect 
anomalies which are dominant, will not be presented in the training data. In order to detect such anomalies in real life events, 
we should use a small amount of training data and capture all known malicious inputs as well as novel malicious character 
sequences. The key drawbacks of unsupervised deep anomaly detection algorithms are that it is difficult to uncover 
commonalities within data in a complex and wide area. Unsupervised techniques are more susceptible to noise and data 
corruption, and thus are usually less exact than supervised or semi-supervised procedures (R. Chalapathy & S. Chawla, 
2019).

The major findings presented outline the basis of the work and methodology which is going to include implementation details 
and architecture of the approach. A semi-supervised method is adopted using LSTM network architecture as a deep learning 
model to detect anomalies.

3. METHODOLOGY

This topic goes through the procedures involved in detecting malicious input in depth. As the main purpose is to detect an 
anomalous web request, the evaluation of the parameter values (Step 4 in Fig 3.1) is the target of the research. The incoming 
web request will be parsed and sent through the DL network for the decision whether the input values contain any anomalous 
input or not. Considering the output of the DL network, the request will be dropped with a proper message to the user or it 
will be transmitted to the web application.

Figure 3.1. The Flow of Web Request and Intercepting Anomalies Which Are Detected By DL Model

The detailed explanation for each step is given as:

1. User submits a HTTP web request (GET or POST)

2. The HTTP web request is parsed and all parameters are extracted including parameters in HTTP body.
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3. Each of the values given in the parameters is supplied into the DL network to analyze whether it is anomalous or not.

4. If all the parameters in the request are benign, then the WAF redirects the HTTP request to the web application as  
Step 5. However, if any of the values are detected and labeled as anomalous, the request is dropped and the flow 
jumps to Step 7. In that way, the anomalous request will never reach the web application.

5. The web application process the HTTP request as intended. 

6. The web application returns the HTTP response to the WAF. 

7. The WAF returns the HTTP response to the user.

The DL network that evaluates the input values contains character sequence based structure by elaborating a word embedding 
and an LSTM network.

3.1. CHARACTER EMBEDDING

Word embedding (M. Arora & V. Kansal, 2019) is a natural language processing concept in which words are mapped to 
real-number vectors. Words that appear in comparable contexts have similar vector representations and the geometric distances 
between them show the degree of their connection. Word2vec (T. Mikolov, at al., 2013), is a well-known word-based model 
and allows for indirect inference of situations in which a particular word appears. Word2vec does not handle subword 
information such as characters. Some subword embedding models have been created to highlight the uniqueness of this 
information. The user input is broken down into characters and converted to integer vector. Since the integer vector creates 
high dimensional data, it is better to use an embedding layer to convert lower dimensional vector space.

Plain-text Payload: ..\..\etc\ passwd;index.html

Integer Vector of the payload: [ 7, 7, 28, 7, 7, 28, 3, 14, 4, 28, 24, 6, 11, 11, 26, 16, 57, 12, 17, 16, 3, 31, 7, 36, 14, 29, 22]

Example of embedding of the payload (3 x 9 Matrix):

[ 7 ,  7 ,  28 ,  7 ,  7 ,  28 ,  3 ,  14 ,  4 ,

 28 , 24 , 6 , 11 , 11 , 26 , 16 , 57 , 12 ,

 17 , 16 , 3 , 31 , 7 , 36 , 14 , 29 , 22]

3.2 HYPER-PARAMETER

Hyper-parameters are parameters that cannot be changed while machine learning is being trained. They can be engaged in 
defining the model training’s accuracy and efficiency, such as the learning rate of stochastic gradient descent, the number 
of hidden layers, batch size, optimizers, and the activation function (T. Yu & H. Zhu, 2020).

• The number of Hidden Layers: The layers that exist between the input and output layers. This underlying deep 
learning network is not transparent and humans are unable to track the value changes happening throughout the 
layer.

• Dropouts: It helps to minimize over-fitting during the model training phase by bypassing randomly chosen neurons, 
lowering the sensitivity to particular weights of individual neurons. The layers can be utilized with input layers 
but not with output layers since they can mess up the model’s output and error computation.

• Activation Function: Activation functions determine whether a node’s output is used or not. These functions are 
used to add non-linearity into models so that deep learning models can learn non-linear predictions.

• Learning Rate: It specifies how frequently the network’s parameters are updated. Choosing a greater learning rate 
speeds up the learning process, but the model may fail to converge or even diverge. A smaller rate, on the other 
hand, will significantly slow down learning but will allow the model to gradually converge.
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• Number of Epoch: It specifies how many full repetitions of the dataset will be performed. The epoch number can 
potentially be adjusted to any integer in the interval of one and infinity. It is preferable to use the early stopping 
technique, which involves first specifying large epoch numbers and then halting training when the model performance 
stops improving by a previously set threshold.

• Batch Size: It specifies the amount of samples to be processed before updating the model’s internal parameters. 
For the same amount of samples processed, larger sizes result in larger gradient steps than smaller ones.

The hyper-parameter values are dependent on the deep learning models and architecture. There is no correct value that works 
for every model, each value should be optimized based on the needs and learning performance.

3.3 LONG TERM-SHORT TERM MEMORY (LSTM)

Recurrent back-propagation takes a very long time when learning by storing information over extended time periods, mainly 
because of decaying error back flow (S. Hochreiter, 1991). Long Short-Term Memory (LSTM), a gradient-based approach, 
can learn to bridge minimum time gaps by ensuring constant error flow within particular units to overcome the decaying 
problem. A conventional LSTM (S. Hochreiter & J. Schmidhuber, 1997) unit is composed of three main nodes connected in 
a special way as seen in Fig 3.2 and the nodes are:

· Constant error carousel (CEC): It is maintains internal activation (state) with a fixed weight 1.0. The state serves as a 
memory for previous information.

· Input Gate: It is a multiplicative gate that was created to safeguard the memory contents stored in an internal state from 
being affected by irrelative inputs.

· Output Gate: It is a multiplicative gate that was created to safeguard other units from being disrupted by a currently 
irrelative internal state held in the CEC.

Figure 3.2. The Conventional LSTM (Y. Yu, at al., 2019)

it = σ(Wihht−1 + Wix xt + bi) (3.1)
˜ct = tanh(W˜chht−1 + W˜cx xt + b˜c) (3.2)

ct = ct−1 + it · ˜ct (3.3)
ot = σ(Wohht−1 + Wox xt + bo) (3.4)

ht = ot · tanh(ct) (3.5)

Considering the given formulas (Y. Yu, at al., 2019), ct represents the LSTM cell state. The weights are Wi, Wc, and Wo, and 
the “∙” operator represents the point-wise multiplication of two vectors. Whenever the cell state (equation 3.3) is updated, the 
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input gate (equation 3.1) determines new information to be stored in the cell state, and the output gate (equation 3.10) determines 
information to be produced (Y. Yu, at al., 2019).

Access to the CEC (internal cell state) is regulated by the input and output gates. The input gate acquires knowledge of when 
to allow new information into the CEC during training. No information is permitted inside as long as the input gate is set to 
zero. Likewise, the output gate acquires knowledge to allow when the information will pass from the CEC. The cell state or 
activation is confined within the memory cell when both gates are closed (activation close to zero). The use of a recurrent 
edge with unit weight enables the error signals to pass through multiple steps without encountering the problem of vanishing 
gradients (A. Singh, 2017).

However, the LSTM state would expand indefinitely on lengthy continuous input streams, eventually causing the network 
to become unstable. After completing a sequence and before beginning a new sequence, The LSTM network should be taught 
how to reset the contents of memory cells. To address this issue, a novel LSTM design with forget gates is introduced.

The forget gates are intended to learn to reset cell states when their internal states are no longer relevant and thus worthless. 
The cell states can be reset to zero immediately, but also progressive resets gradually fade away the cell states (F. Gers, at 
al., 1999). The main components of the LSTM with forgot gates can be summarized as (A. Singh, 2017):

1. Input (Equation 3.8): It accepts the currently supplied input vector, represented by xt, and the output produced 
by the previous step, denoted by ht−1. The weighted inputs are added and then processed by tanh activation, 
yielding ˜ct.

2. Input Gate (Equation 3.7):  The gate takes xt and ht−1, calculates the weighted total, and then the sigmoid 
activation is applied. The result is multiplied by ˜ct to supply input to the memory cell.

3.  Forget Gate (Equation 3.6): The gate takes xt, ht−1 and calculates the weighted inputs using sigmoid activation. 
As a consequence, ft is multiplied by the cell state at the previous step ct−1, allowing the memory contents to 
be forgotten.

4. Memory cell (Equation 3.9): This consists of the value of CEC, which has a recurring edge with a weight of 
1.0 (unit weight). The current cell state ct is calculated by ignoring useless information from the previous step 
and having relevant information from the currently provided input.

5.  Output gate (Equation 3.10): The weighted total of xt and ht−1 is fed into the output gate, than it regulates the 
flow of information out of the LSTM cell by applying a sigmoid function.

6. Output (Equation 3.11): The output unit (ht) is calculated by putting the cell state ct through a tanh and 
multiplying it by the value of the output gate (ot).

Figure 3.3. The LSTM with Forget Gate (Y. Yu, at al., 2019)
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ft = σ(Wf hht−1 + Wf x xt + bf ) (3.6)
it = σ(Wihht−1 + Wix xt + bi) (3.7)
˜ct = tanh(W˜chht−1 + W˜cx xt + b˜c) (3.8)
ct = ft · ct−1 + it · ˜ct (3.9)
ot = σ(Wohht−1 + Wox xt + bo) (3.10)
ht = ot tanh(ct) (3.11)

When the forget gate, ft, is set to 1, it means the cell will keep the information; otherwise, setting the value to 0 means it 
discards all of its content. When the bias value of the forget gate, bf, is increased, the performance of the LSTM network 
improves (Y. Yu, at al., 2019).

3.4 ARCHITECTURE

The deep learning architecture evaluated within the work is composed of the following elements as seen in Fig 3.4:

• Embedding Layer: The input is broken down into characters and converted to an integer vector. Since the integer 
vector creates a high dimensional data, it is better to use an embedding layer to convert lower dimensional vector 
space.

• LSTM Layer: Long input sequences are going to be learned and evaluated. Multiple LSTM (stacked) is implemented 
using a different number of LSTM Layers to detect its contribution to the learning success.

• Flatten Layer: The characters’ calculated values are in a multi-dimensional LSTM layer and they are flattened 
into a vector.

• Dense Layer: The output layer is connected to the flatten layer to help evaluate the vector as an output of normal 
and anomalous labels.

The Softmax function is used to construct a probability distribution from a vector of real values. It returns a range of 
probabilities between 0 and 1, with the total of the probability equal to 1. The Softmax function provides probabilities for 
each class, with the target class having the highest likelihood (I. Goodfellow, at al., 2016). It is used to provide class labels 
of output in the dense layer by calculating the probability distribution.

Figure 3.4. The Architecture Overview

The loss function within the DL model is a categorical cross-entropy loss function. The loss function provides a method of 
distinguishing two discrete probability distributions from each other. The fundamental advantage of this loss function is 



234Acta Infologica

Web Application Firewall Based on Anomaly Detection using Deep Learning

that it may be used to compare two probability distributions. The Softmax activation rescales the model output to ensure 
that it has the desired attributes. Eventually, Softmax is the only activation function that is suggested for use with the 
categorical cross-entropy loss function (Q. Zhu, at al., 2020).

4. DATASET AND DATA PRE-PROCESSSING

Web application firewalls mainly focus on HTTP web requests containing headers, a URL, URL parameters and a request 
body. Even though certain fields of the requests contain default values for headers, the entire HTTP request fields can be 
assumed to be user supplied parameters to be sent to the web server. Ideally, the WAF expects to detect and block malicious 
inputs placed in any fields of a HTTP GET request as seen in Fig 4.1 and POST requests as seen in Fig 4.2.

Figure 4.1. An Example of GET Request

Figure 4.2. An Example of POST Request

The anatomy of a HTTP web requests contain the following fields, mainly:

• URL: It is a reference to a web resource that defines its location on a computer network as well as a means for 
obtaining it.

• URL Parameter (query parameter): It is a predefined collection of parameters that are appended to the end of a 
URL.

• Header: It is an HTTP header that can be included in an HTTP request to offer information about the request 
context so that the server can adapt the answer accordingly.
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• Host: For an inbound HTTP request, the host header defines which website or web application should be processed 
by the server.

• Content-type: It is used to denote the resource’s original media type before any content encoding is performed for 
transmission.

• Accept: It is used by the client to notify the server of the content type that the client understands.

• Accept-Encoding: It denotes the content encoding (often a compression method) that the client understands.

• Cookie: It contains previously transmitted HTTP cookies by the server linked with the server.

• Referrer: It includes an absolute or partial address of the page that is making the request. The header tells a server 
where visitors are coming from when they visit a page.

• Content-length: It is used to identify the size of the entity-body in bytes and is transmitted to the server.

Body:

• Plaintext: The data is composed of plaintext string data and directly evaluated as the input by the server.

• www-url-encoded: The data is in the form of key-value peers and each peer is separated by a special character 
(&). Each peer is parsed and accepted as a different input value by the server.

• XML: The data is in the format of XML structure which has nested XML nodes and attributes at the beginning 
of each node. The data is parsed by the server and evaluates each node and attribute.

• JSON: The data is sent in the form of a special structure containing key-value peers. The data is parsed and the 
parameters are extracted by the server. Then each parameter value is evaluated as input.

The extraction of the values can be done by other software components or by the WAF itself. Eventually, the extracted field 
values are analyzed by the WAF and it is decided whether the request is anomalous or not. Since the HTTP injection attacks 
may occur in every field of the HTTP request, it is sufficient to analyze input values only.

The HTTP dataset CSIC 2010 contains generated traffic addressed to an e-Commerce online application, where visitors can 
buy things using a shopping cart and register by supplying certain personal information. The HTTP requests are classified 
as normal or abnormal, and the dataset contains attacks such as a SQL injection, buffer overflow, information collecting, 
file disclosure, XSS, server side inclusion, parameter manipulation, and so on. Only normal payloads in the CSIC 2010 dataset 
are used both in the training and testing phase. Since the dataset contains some attack types which are out of our scope 
because they require a response analysis to detect the attacks, we used attack payloads (Payloads all the things, 2021) that 
are used in real-life attack scenarios for each type of attack. Table 4.1 provides figures for the dataset used in the training 
phase of the deep network.

Table 4.1
Dispersion of the Values in the Dataset Used Training

Class/Attack XSS SQLi Path Traversal SSTI XXE LDAP Inj. OS Cmd Inj. Total

Normal Payload - - - - - - - 21417

Anomalous 910 1809 21647 48 64 60 448 25059

Total 46476

As the approach is a semi-supervised model, only the 20% of the labeled data (9285 labeled data) is used. The rest of the 
data (37191 unlabeled data) is treated as unlabeled and their labels are assigned based on the trained neural network as seen 
in Table 4.2.

In order to test the trained deep learning network, the test dataset that contains normal and anomalous inputs which are not 
presented during the learning phase is used.
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Table 4.2
Dispersion of the Values in the Dataset for Test
Class/Attack XSS SQLi Path Traversal SSTI XXE LDAP Inj. OS Cmd Inj. Total
Normal Payload - - - - - - - 546
Anomalous 905 248 37 21 41 9 154 1415
Total 1961

The anomalous requests contain different character sets for different attack types, since the attacks target a different scope 
of the web application. During the training phase, reading the dataset from file caused an interruption because of special 
characters within  the  payloads. In order to prevent  the  issue  and  read  all  the  characters  properly, all of the dataset is 
encoded with Base64 which is intended to transport binary-formatted data over networks that can only reliably accept text 
content.

As an example, the SSTI payload below contains the percentage symbol (%) which is a special character if is evaluated as 
the comment in LATEX.

Payload: <%= File.open(’/etc/passwd’).read %>

Payload in Base64: PCU9IEZpbGUub3BlbignL2V0Yy9wYXNzd2QnKS5yZWFkICU+

In order to mitigate such unintentional behavior, it is encoded to Base64 as shown above and while it is reading from the 
file, again it is decoded into a normal payload. It is seen that the Base64 encoded form hides the special characters and allows 
the transfer of the payload into the ASCII character string.

5. RESULTS

In this chapter, the key experimental results for two different LSTM architecture with different hyper-parameters are set out, 
examined and evaluated.

The following hyper-parameters values are chosen and run for single and stacked LSTM training and tests for each different 
value.

• Input character size values: 3, 5, 10, 15, 20, 25, 30, 40, 50, 60

• LSTM hidden size values: 1, 5, 10, 15, 20, 30, 40, 50

• Batch size values: 8, 16, 32, 64

• Dropout values: 0, 0.1, 0.3

The total run amount for training and test (Cartesian product for the given parameters) is 320 different results for a single 
LSTM configuration and 960 different results for stacked LSTM configuration. It is quite difficult to visualize more than 4 
variables’ effect on the test results, therefore only the most successful test results with its hyper-parameter values are given 
in the following topics.

5.1 Single LSTM Layer Architecture Results

The deep learning model with a single LSTM layer without dropout is evaluated as with M (number of LSTM layer) is equal 
to one (single layer LSTM) with the configuration given in Table 5

Table 5
Configuration of Single LSTM Model
Layer (type) Output Shape
embedding (Embedding) (None, 60, 60)
lstm (LSTM) (None, 10)
flatten (Flatten) (None, 10)
dense (Dense) (None, 2)
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The appropriate hyper-parameters are enumerated and determined according to the F1 scores. The dropout is not used, 
because all the LSTM output is calculated based on a sequence and it is not desired to drop any sequence elements from the 
output. In Figure 5.1 and Table 5.1, the F1 scores show a high success rate with the median value of 0.916 amongst the 320 
different evaluated hyper-parameter results. The most successful trained DL model shows 0.994 of the F1 score.

By interpreting the Table 5.4, we can conclude that the DL model performs relatively high F1 scores by detecting the anomalies 
and normal payloads, because the box plot gives different results in the given dataset, which is a 320 different run result for 
detection anomalies for different hyper-parameters.

Table 5.1
The Box Plot Values for the F1 Scores

Min 1st Quartile Median 3rd Quartile Max
F1 Score Values in Box Blot 0.658 0.820 0.916 0.968 0.994

Figure 5.1. Single LSTM Box Plot of F1 Scores for 960 different scores

Considering the hyper-parameters as seen in Table 5.2 and F1 score seen in Table 5.4 for the most successful model trained, 
the input character size is 60 and the hidden LSTM size is 10, which may indicate an over-fitting of the model. However, the 
learning is performed well in terms of low training error as well as low testing error, meaning that the model can be chosen 
as the main model for detection of the anomalies.

The hyper-parameters belong to maximum value of F1 score DL model is found as:

Table 5.2
Single LSTM hyper-parameters belong to maximum value of F1 score
Hyper-parameter Name Optimum Value
Input Length (Chars) 60
LSTM Hidden State Size 10
Batch Size 8
Dropout 0
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Table 5.3
The Confusion Matrix of maximum of F1 score out of 320 
other scores

Predicted
No Yes Total

Actual
No 545 1 546
Yes 15 1400 1415
Total 560 1401 1961

Table 5.4 
The Metrics belong to maximum of F1 score out of 320 other 
scores
Score Values
Accuracy 0.991
Specificity 0.998
Precision 0.999
Recall 0.989
F1 Score 0.994

The input character size has a direct effect on the success of the DL model as seen in Figure 5.2. As the input length gets 
larger, the success gets higher accordingly. The model success rate remains steady after the size is 20 or larger.

The LSTM hidden size has a relativity low impact on the success of the DL model. When all the possible success rates are 
analyzed, the DL model performs better results when the LSTM hidden size is less than the input character length size.

The batch size is important when the short sequences are also important to detect and learn. When we compared the results, 
the highest F1 score values belong to models trained with a batch size of 8.

Figure 5.2. The effect of the input character length over the success rate for Single LSTM model

The trained model having the highest F1 score is used to predict and classify the data set containing malicious and benign 
data. The example result is given in Figure 5.3.
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Figure 5.3. The Single LSTM Model Prediction Example Output

5.2 Stacked LSTM Layer Architecture Results

The deep learning model with stacked an LSTM layer with dropout is evaluated with M (number of LSTM layer) is equal to 
two (two layer LSTM) with the configuration given in Table 5.5

Table 5.5 
Configuration of Stacked LSTM Model
Layer (type) Output Shape
embedding (Embedding) (None, 40, 40)
lstm (LSTM) (None, 40, 20)
lstm_2 (LSTM) (None, 20)
flatten (Flatten) (None, 20)
dense (Dense) (None, 2)

The appropriate hyper-parameters are enumerated and determined according to the F1 scores. In Figure 5.4 and Table 5.6, 
the F1 scores show a high success rate with the median value of 0.909 amongst the 960 differently evaluated hyper-parameter 
results. The trained most successful DL model shows 0.993 of the F1 score.

Table 5.6 
The Blox Plot Values for the F1 Scores for Stacked Model

Min 1st Quartile Median 3rd Quartile Max
F1 Score Values in Box Blot 0.642 0.827 0.909 0.956 0.993

Figure 5.4. Stacked LSTM Box Plot of F1 Scores for 960 different scores
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Considering the hyper-parameters and the F1 score for the most successful trained model, the input character size is 40 and 
the hidden LSTM size is 20 with a 0.2 dropout rate seen in Table 5.7. The dropout is applied to the output of the first layer 
of the LSTM, enabling the model to drop some characters from the sequence and to add noise to the neurons in order not to 
be dependent on any specific neuron. The learning is performed well in terms of low training error as well as low testing 
error as seen in Table 5.8, meaning that the model can be chosen as the main model for detection of the anomalies.

The hyper-parameters belong to maximum value of F1 score DL model is found as:

Table 5.7 
Stacked LSTM hyper-parameters belong to maximum value of F1 score
Hyper-parameter Name Optimum Value
Input Length (Chars)  40
LSTM Hidden State Size  20
Batch Size  8
Dropout  0.2

Table 5.8 
The Confusion Matrix of maximum of F1 score out of 960 
other scores with Stacked Model

Predicted
No Yes Total

Actual
No 542 4 546
Yes 15 1400 1415
Total 557 1404 1961

Table 5.9 
The Metrics belong to maximum of F1 score out of 960 
other scores with Stacked Model
Score Values
Accuracy 0.990
Specificity 0.992
Precision 0.997
Recall 0.989
F1 Score 0.993

The maximum F1 score is achieved with a lower input character length in presence of an additional LSTM layer with dropout, 
compared to single LSTM architecture. The given confusion matrix in Table 5.9 depicts a high classification rate with testing 
data.

The input character size has a direct effect on the success of the DL model as seen in Figure 5.5. As the input length gets 
larger, the success gets higher accordingly. The model success rate remains steady when the size is 25 or larger.

Figure 5.5. The effect of the input character length over the success rate for Stacked LSTM model

Similar with the single LSTM layer model’s results, the LSTM hidden size has a relativity low impact on the success of the 
DL model. When all the possible success rates are analyzed, the DL model generates better results in case the LSTM hidden 
size is less than the input character length size.

Similar with the single LSTM layer model’s results, when we compared the results, the highest F1 score values belong to 
models trained with a batch size of 8.
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The trained model having the highest F1 score is used to predict and classify the dataset containing malicious and benign 
data. The example result is given in Figure 5.6.

Figure 5.6. The Stacked LSTM Model Prediction Example Output

The research mainly employs multiple stacked LSTM models as hidden layers. It is challenging to compare different approaches 
due to using different data sets and different hyper-parameter configurations.

Table 5.10 
Comparison of different stacked LSTM researches

Method Dataset Accuracy Sensitivity  
(Recall) Specificity

Stacked LSTM (J. Liang et al. (2017)) CSIC2010 0.9842 0.9756 0.9921
AE-LSTM (A. Moradi Vartouni et al. (2019) CSIC2010 0.8726 0.8273 0.8970
LSTM-70 (N. Oliveira et al., 2021) CIDDS-001 0.9994 0.8971 0.9600
Bidirectional LSTM (BLSTM) (Li et al., 2018) BE-SEL 0.8994 0.9300 0.4292
AE-LSTM (Alma & M. L. Das, 2020) ECML-KDD 0.9979 1.00 0.4292

Our Stacked LSTM CSIC2010 
PlayloadAllTheThings 0.9903 0.9894 0.992

The given comparison is mainly approaches that are interested in the detection of malicious HTTP attacks using the LSTM 
model. According to Table 5.10, one may conclude that the LSTM model can be useful in the detection of different attacks 
with different datasets, because the metrics show high success rates.

6. DISCUSSION

The years of works on anomaly detection show that deep learning methods can effectively be used to detect outliers from 
the benign. Specific contexts require special attention to determine the correct classification approach to be implemented. 
As in detecting web application injection attacks, considering a sequence of characters to be classified is a milestone in 
deciding the use of the LSTM model in this research. On top of that, anomalies are most of the time not presented in our 
wordlists, datasets and test cases. Therefore, it is important to employ a semi-supervised approach so that we can test the 
detection performance of anomalies which are not part of the used dataset. However, most of the research does not specifically 
focus on attack types but only the attacks which are presented in the datasets and there is no such dataset that has labeled 
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data for each attack type. Therefore their results become only specific to those attacks presented in the dataset they used. In 
this research, the specific realistic attack payloads for each corresponding attack are used during the training and testing 
phase.

Another key finding is the hyper-parameters which have a direct impact on the detection performance. Implementing different 
models to find an ideal LSTM structure for detection yields solid decisions in terms of the number of LSTM layers, input 
character sizes, the LSTM hidden state size and batch size. To define proper hyper-parameters, different values are tested 
for each hyper-parameter and as a result of this exhausted search, the essential deductions are made.

The implementation of a-model with only one LSTM layer is able to provide a similar F1 score which is gained for different 
LSTM layers but using stacked LSTM layers with fewer input character sizes may be a reasonable choice in case there are 
short input sequences for training data. The LSTM hidden state size enables the holding of many data as the size get larger. 
Storing many features does not mean it will produce better results, since the model may memorize unnecessary values as 
well. Different hidden state sizes are tested to find out the optimal values to get the maximum F1 scores. It has been concluded 
that there is no exact value for the LSTM hidden state size. Usually, the model generates better results in the case that the 
LSTM hidden size is less than the input character length size. Also it is crucial when the short sequences are, and also 
crucially important to detect and learn. Considering both the single and stacked LSTM models, the highest F1 score values 
belong to models trained with a batch size of 8. The lower batch sizes increase the processing time when training the model, 
but the result becomes more accurate. On the contrary, using a higher batch size lower the steps and processing time but 
mostly produces lower success values.

One overlooked perspective which needs to be analyzed and included as well while training the model is HTTP web response 
values for the corresponding HTTP web request, because only analyzing the input values may result in false positives in real 
life. There are cases where it is also necessary to take the HTTP response into consideration. However, the lack of a dataset 
that provides sample payloads for the corresponding web attacks and web responses is a real issue. This is also a challenging 
task, since different web application technologies, SQL servers and frameworks behave differently for each attack.

7. CONCLUSION

The deep learning model with an LSTM layer(s) is analyzed and implemented throughout the work. The aim is to analyze 
character sequences of malicious web application payloads by implementing different models with different hyper-parameters 
to find an ideal deep learning structure for detection and to evaluate whether the supplied input words are benign or malicious.

Based on the extensive experiments and analysis of different models with different hyper-parameters, one may conclude that 
the resulting models are promising for the detection of malicious HTTP web requests for specific attack types using 
corresponding attack payloads with a relatively small attack payload dataset employing a semi-supervised learning method.

For the future work, the HTTP web response values for the corresponding HTTP web request can also be considered while 
training the model. Since the different errors are generated by the applications implemented with different software technology 
as a result of malicious activities.
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