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ABSTRACT

In this paper (q2 + q + 1)–sets of points in PG(3, q) of type (m,n, r) with respect to planes are
studied, and as a by–product for q odd a characterization of quadratic cones is obtained.
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1. Introduction

Let P = PG(r, q) be the r–dimensional (desarguesian) finite projective space of order q, let 1 ≤ h ≤ r − 1 and
0 ≤ m1 ≤ · · · ≤ ms be s+ 1 integers with ms ≤ θr−1 = qr−1

q−1 = qr−1 + · · ·+ q + 1, and let Ph be the collection of
all the h–dimensional subspaces of P. A setK of points of P is of type (m1, . . . ,ms)h with respect to the h–subspaces
of P if |π ∩ K| ∈ {m1, . . . ,ms} for every π ∈ Ph and each of the non–negative integers mi (called intersection
numbers) occurs as the size of the intersection of K with at least one member of Ph. If h = 1, 2 or r − 1, one
says that K is of line–type (m1, . . . ,ms)1, of plane–plane type (m1, . . . ,ms)2 or of hyperplane–type (m1, . . . ,ms)r−1,
respectively [6]. As usual, if the size of K is k, K is called a k–set, and a line (plane) intersecting K in exactly j
points is called a j–line (j–plane). Also, if j = 0 the line (plane) is also called external line (plane) and if j = 1 the
line (plane) is also called tangent line (plane), and if 2 ≤ j ≤ q a j–line is called a secant line.

The interest in the study of k–sets of P with respect to the intersections with the members of one (or more than
one) family of subspaces is motivated not only by the fact that most of the classical and beautiful geometric
object of P have few intersection numbers with respect to the lines and/or to the hyperplanes of P but also
because they are related with other combinatorial objects such as for example graphs, some classes of difference
sets and linear codes with few weights (cf e.g. [2]). The study of such sets goes back to the famous B. Segre
theorem characterizing the (non–degenerate) conics of PG(2, q), q odd, as sets of points of the plane of line–
type (0, 1, 2)1 [9]. Since then there has been a wide literature devoted to the study of sets of points of P with
respect to their intersection numbers with all the members of one (or more than one) prescribed family of
subspaces of P. Most of the papers devoted to these sets considers the following issues
• the determination of the admissible s+ 1 tuples (k,m1, . . . ,ms)h with respect to the family of all the h–
subspaces of P , and so the corresponding existence problem of sets of points of P associated with an admissible
s+ 1 tuple;
• reconstruct a classical subset of points of P (such as for example a quadric or a subgeometry) starting from its
intersection numbers with respect to a prescribed subspace dimension h, possibly with some extra arithmetic
and/or geometric condition.

In [3] the authors call quasi–quadric a set of points of P having the same intersction numbers as a quadric
with respect to the hyperplanes, and give examples of quasi–quadrics which are not quadrics. Thus, as already
B. Segre theorem suggested, the knownledge of the intersection numbers is not enough to recognize a quadric.
Other examples of quasi–quadrics, for r = 3, may be found in [5, 8]. After the publication of [3] it became
customary to precede the name of a classical subset of points of P by quasi in characterizing it with respect
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to its intersection numbers. Thus, one may find papers whose title contains quasi–hermitian varieties (cf e.g.
[1, 4, 7]). Note that in general, having the intersection numbers does not give the size of the set, for example in
PG(3, q) there are (q2 + q + 1)–sets of points of plane–type (1, q + 1, 2q + 1)2 which are not cones projecting an
oval of plane π from a point outside π (cf e.g. [8] examples 1 and 2).

In addition, in the literature devoted to the characterization problem of such sets, there are also results
assuming weaker conditions on the intersection numbers of the set, that is for example only some of the s(≥ 2)
intersection numbers are known, or the size of the set is given and it has the same number of intersection
numbers such as a classical object, or the distribution of the intersection numbers "resembles" those of a classical
object, that is for example the differences between any pair of the intersection numbers are the same as those
of a classical subset of P.

Let s ≥ 2 be an integer and X be a subset of q + 1 points of PG(3, q) contained in a plane π such that X is of
line–type (0, 1, s)1 with respect to the lines of π and with (s− 1)|q. So, for s = 2 X is a (q + 1)–arc of π and if
q odd it is a conic. Let V be a point of PG(3, q) not in π and let K be the set consisting of all the points of the
q + 1 lines passing through V and a point of X . K is a (q2 + q + 1)–set, and for s = 2 and q odd it is a quadratic
quasi–cone. The set K is of plane–type (1, q + 1, 2q + 1)2 and of line–type (0, 1, s, q + 1)1 and any external line
belongs to exactly one tangent plane.

The punctured* 3–dimensional affine space of order 2 has 23 − 1 = 22 + 2 + 1 points, and when embedded in
its projective closure it is intersected by the planes of PG(3, 2) in 0, 3 or 4 points, and any external line belongs
to exactly one external plane.

Note that a (q2 + q + 1)–set of plane–type (m,n, r)2 admits at least one external line. Indeed, if there would
be no external line, then all the lines passing through a point outside of K are tangent ones. Thus, any line
connecting two points of K is contained in K and so K is a (q2 + q + 1)–set of line–type (1, q + 1)1, that is a
plane, which is a contradiction.

In [10] the author gives a characterization of a quadratic cone of PG(3, q), q odd, as a (q2 + q + 1)–set of
plane–type (m,m+ q,m+ 2q)2 with an extra arithmetic condition and the extra (geometric) assumption on the
external lines: any external line belong to exactly one m–plane. This result, has been recently improved by Zuanni
[11] which showhs that the extra arithmetic condiction may be dropped.

There is no (q2 + q + 1)–set K of plane–type (0, q, 2q)2 such that on any external line there is exactly one
external plane. Indeed, if ` is an external line and x` and y` are the numbers of q–planes and 2q–planes
on `, respectively, then counting the number of points of K trough the planes on an external line gives
q2 + q + 1 = x` · q + y` · 2q, which is not possible since q ≥ 2. Thus, the sets studied in [10] fulfils the condition
m ≥ 1, and so the second intersection number is at least q + 1.

In this paper, we show that this result may be generalized by weakening the assumptions on the intersection
numbers, that is not assuming that they are in arithmetic progression. We will prove the following result.

Theorem 1.1. Let K be a (q2 + q + 1)–set of plane type (m,n, r)2, with n ≥ q + 1 and such that each external line is
on exactly one m–plane. Then either m = 0 and K is AG(3, 2) less a point or m = 1, n = q + 1 and r = sq + 1 for some
integer s ≥ 2 with (s− 1)|q and K is a cone with base a (q + 1)–set Ω of a plane π intersected by any line of π in 0, 1 or s
points and vertex a point V not in π. In particular, if s = 2 and q is odd K is a quadratic cone.

2. The proof

Let 0 ≤ m < n < n ≤ q2 + q + 1 be three integers and K be a (q2 + q + 1)–set of points of PG(3, q) of plane–
type (m,n, r)2 fulfilling the assumptions of Theorem 1.1.

Since by assumptions, any external line lies in exactly one m–plane, counting the number of points of K via
the planes through an external line gives

q2 + q + 1 ≥ m+ qn ≥ m+ q2 + q

and so n = q + 1 and m ≤ 1.

Proposition 2.1. Either m = 1 or K is AG(3, 2) less a point.

Proof. Assume to the contrary that m = 0. So, the m–planes are external to K and by assumptions it follows
that there is a single 0–plane, say π0, and all the external lines to K are in π0. If p is a point not in K ∪ π0 then

∗That is, AG(3, 2) less one of its points.
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there is no external line containing p and so all the lines passing through p are tangent lines. Thus, through p
there is no r–plane. If π is an r-plane, all its points not in K are in π0 and so r = q2. Let π be a q2–plane and `0
be the line that π shares with π0. Counting the number of points via the planes through `0 one has:

q2 + q + 1 ≥ q2 + (q − 1)(q + 1) = 2q2 − 1

and so q = 2. So, K is a 7–cap of PG(3, 2), that is AG(3, 2) less a point.

From now on, assume that m = 1. It follows that K is a (q2 + q + 1)–set of plane–type (1, q + 1, r)2 and that
any external line belongs to exactly one tangent plane and to q (q + 1)–planes.

Let π be a tangent plane and V = π ∩ K. Since an external line lies in exactly one tangent plane, it follows
that all the tangent planes pass through V .

Proposition 2.2. If π is a (q + 1)–plane through V , then π ∩ K is a line.

Proof. Let π be a (q + 1)–plane containing V . Since any tangent plane contains V one has that π does not contain
an external line to K. So, π intersects K in a line.

Proposition 2.3. Any (q + 1)–plane not passing through V contains an external line.

Proof. Let π be a (q + 1)–plane not containing V . If π has no external line, then it intersects K in a line and so
there is no tangent plane through V , which is not possible.

If ` is a tangent line not through V , then all the planes containing ` are (q + 1)–planes.
Since an r–plane has no external line, it has to contain V . So, on any line not passing through V there is at

most one r–plane.

Proposition 2.4. Any line intersecting K in at least two points belongs to at least one r–plane.

Proof. Let ` be a line with at least two points in K on which there is no r–plane, and let (2 ≤)s = |` ∩ K| ≤ q + 1.
Then

q2 + q + 1 = s+ (q + 1)(q + 1− s) = (q + 1)2 − sq,

which is a contradiction.

Proposition 2.5. Any line intersecting K in at least two points and not containing V is not contained in K.

Proof. Let p and q be two distinct points of K and different from V , such that the line ` connecting them does
not contain V . If ` is contained in K, then by Proposition 2.4 and the statement preceding that proposition it
follows that on ` there is exactly one r–plane, so

q2 + q + 1 = r

which is not possible, since a plane has non–tangent ones. So, ` meets K in at most q points.

Note that, from the proof of the previous proposition it follows that if L is a line contained in K, then L
contains V .

Proposition 2.6. The secant lines not containing V intersect K in the same number of points.

Proof. Let ` be a secant line not passing through V , counting the number of points ofK via the planes on ` gives

q2 + q + 1 = r + q(q + 1− |` ∩ K|)

and so

|` ∩ K| = r − 1

q
.

It follows that all lines not containing V and intersecting K in at least two points intersect K in a constant

number of points, s :=
r − 1

q
.
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The next step completes the proof of Theorem 1.1.
Let L be a line through V with at least two points in K, π be an r–plane through L existing by Proposition

2.4, and let y be a point of L different from V . Since the lines of π not containing V cannot be tangent lines,
counting the number of points of π via the lines on y gives

r = |L ∩ K|+ q(s− 1)

and so q divides |L ∩ K| − 1. Thus, |L ∩ K| = q + 1 and r = sq + 1. It follows that V belongs to exactly q + 1 lines
contained in K, that is the lines connecting V with the points of K in a (q + 1)–plane not through V . Thus, K is
the cone projecting from V a (q + 1)–set of line–type (0, 1, s)1 of a plane not through V . So, if s = 2 K is an oval
cone, and so if q is odd a quadratic cone. Finally, if L is a (q + 1)–line, then the usual counting argument gives
q2 + q + 1 = x(sq + 1− q − 1) + q + 1 and so (s− 1)|q.
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