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Abstract

The aim of this paper is to deal with the dynanebdviour and vibration characteristics of thin fdiooally
graded circular cylindrical shells. Material propies in the shell thickness direction are gradeatordance
with the exponential law. Expressions for the strdisplacement and curvature-displacement relatigps are
taken from Love’s thin shell theory. The Rayleigtz-Rpproach is used to derive the shell eigenfesqy
equation. Axial modal dependence is assumed irthheacteristic beam functions. Natural frequenaéghe
shells are observed to be dependent on the coastittolume fractions. The results are compared witse
available in the literature for the validity of thesent methodology.
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1. Introduction

Functionally graded materials (FGMs) have gainedevapplication in a variety of industries
due to their distinctive material properties thary continuously and smoothly through
certain dimensions. Compared with common compqdi@éd/s avoid the inter-laminar stress
gaps that are caused by mismatches in the propatiavo different materials, and can be
adjusted appropriately according to practical rezaents.

In the last years, some researchers have analyaedus characteristics of functionally
graded structures (Ng et al., [1]; Yang et al., [Rglla Croce and Venini, [3]; Liewet al.,
[4];Wu and Tsali, [5]; Elishakoff et al., [6-7]; Rhtet al., [8]; Pelletier and Vel, [9]; Zenkour,
[10]; Arciniega and Reddy, [11]; Nie and Zhong, [[IRoque et al., [13]; Najafizadeh and
Isvandzibaei[14]. Yang and Shen, [15]).In addition FGPs, functionally graded material
shells have attracted research attention. Heetté]. groposed a finite element model for a
doubly curved FGM shell with piezoelectric sensarsl actuators, and demonstrated that
effective static and dynamic control of FGM shetlsuld be achieved b yappropriately
varying the displacement and velocity feedback gainewetal. [17] examined the thermal
stress behavior of functionally graded hollow clacucylinders, and Jabbari et al. [18]
analyzed the mechanical and thermal stresses undaidnally graded hollow thick cylinder
subjected to a non-axisymmetric steady-state ldacbb and Vel [19] investigated the steady-
state thermoelastic response of functionally gradettopic and orthotropic cylindrical shells
subjected to thermal and mechanical load susingFHbgge and Donnell shell theories.
Hosseini Kord kheili and Naghdabadi [20] develomedinite element formulation for a



geometrically non-linear thermo elastic FGM shealing an updated Lagrangian approach,
and Arciniega and Reddy [21] derived a tensor-baBeile element model for large
deformation analysis of FGM shells. Other studiesehinvestigated the thermomechanical
postbuckling, generalized coupled thermoelastieityd vibration of FGM shells [22—-24].

In this paper, a wave propagation approach is egpb study the vibration characteristics of
FGM circular cylindrical shells. The axial modalpgedence is approximated by exponential
functions. This approach has been developed byd@haal. [25]. This avoids a large amount
of algebraic manipulations. Employing this apprqaitte vibration characteristics of FGM

cylindrical shells are studied for simply supporsaehply supported, clamped-simply

supported and clamped—clamped boundary conditidabkdity and accuracy of the present

method are verified by comparing the present reswith those available in the literature. A
good agreement is observed between the two séte oésults.

2. Functionally gradient materials

FGMs are basically composite materials, which aeglenby mixing two or more different
materials. Most of the FGMs are being used in d hemperature environment and their
material properties are temperature dependentpigalymaterial property Pi is expressed as a
function of environment temperature T.K. by Toul@uk [27]. If Pi represents a material
property of thdath constituent material of an FGM consistingkafonstituent materials, then
the effective material properfyof the FGM is written as

P= i RV (1)

i=1

whereVi is the volume fraction of thé&h constituent material. Also, the sum of volume
fractions of the constituent materials is equadl toe.,

SV, =1. )
i=1 l
The volume fraction depends on the thickness vigriabd is defined as
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for a cylindrical shellRi andRo denote inner and outer radii of the shell, respely, andzis
the thickness variable in the radial directipns known as the power law exponent. It is a
non-negative real number and lies between zeroimfmity. For a cylindrical shell, the
volumefraction is assumed as

z+05h
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where h is the shell uniform thickness. When the shell awssdered to consist of two
materials, the effective Young's modulls the Poisson ratio, and the mass densipyare
given by
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From these relationships, the following facts amded: at the inner surface, the FGM
properties are those of the constituent materiatZhe outer surface, they are those of the
material 1. Thus, the FGM properties change contisly from the material 2 at the inner
surface to the material 1 at the outer surfaceh@aset al.[26] amended the volume fraction
law (4) and assumed it in the exponential form,

V, =1-expf ¢ /h+ 0.5)§ (6)

This law depends only on one base e (L& - - -). Now, this law is further modified and
extended to a general bavex0) written as

V, =1-b @My, (7)

In this case, the effective Young’s modukighe Poisson ratio, and the mass densjtyare
expressed as

E =(E, - E,)1- b“/™% )+ E,
V= (1, =v,)A-b "0 )1y, ®)

p=(p,=p)A-b"*" )+ p,

In these expressions, it is noted that, waen—0.5h, E = E2, v = v2, andp = p2; whenz =
0.5h, E = (E1—E2)(1-b™ H+Ep, v = (vi—v2)(1-b Y +v,, andp = (p1—p2)(1-b ™ H+p,.This shows
that, at the inner surface of the shell, the malgnioperties of the constituent material 2 are
dominant, whereas, at its outer surface, the natproperties are the resultant ones of the
constituent materials 1 and 2.

3. Analytical model and formulation

The structure is an isotropic thin elastic cylidfishell with Young’s modulus E, Poisson’s
ratio v, radius of the middle surface R, thickness h, &mgth L. The foundation is
represented by continuous elastic (axial, circuerfgal, radial, and rotational) springs and
distributed on a limited arc. The axial, circumfaial, radial, and rotational spring
coefficients are denoted by Ku, Kv, Kw, and Kb,pestively. In the analysis, all the spring
coefficients are assumed to be constant alongriblsed arc and the angles that define the
enclosed arc are denoted by 41 and 42. The geomedrgeneralized model of the structure
are shown in Fig. 1.
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Fig. 1. Geometry and model of a circular cylindrisiaell.

Constitutive relation for a thin cylindrical shethder plane stress condition is given by

{d}=[Ql{¢ 9)

where{c} and{e} represent stress and strain vectors [@s the reduced stiffness matrix.
The stress vector is defined as

{0} ={o, o, 04 (10)

where g, and g, are the normal stresses in x &tirections ando,, is the shear stress in the
x@ plane. Similarly, the strain vector is defined,

{¢'={e ¢ ¢ (12)

where e, and e are the normal strains in x afidirections ande,is the shear strain in the

x6 plane. The reduced sti€ness maf@®{ is defined as

Qll Q12 0
[Q]=|Q, Q, O (12)
0 0 Q,

For isotropic materials the reduced stiffness @j@efined as

(13)
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Qu =172 (14)
_ VE

Qu=1- (15)
_E

s = 5379 (16)

where E and/ represent Young's modulus and Poisson ratio, céspy.Using Love's shell
theory [28], the strain components are defined as

e =6-zk
e9:%_2|§ (17)
€y =y—27

where g, & and are the reference surface strains ankbland r are the surface curvatures.

These surface strains and curvatures are defined as

ou 1 ov ov 1du

==, Sotw, —+=— 18
e & 4 {ax re ™" ox Rae} (18)

o°w 1 0°w adv, 1,0°w 0V
=1, SEtm-—) — -— 19
tk ko 7} {c’)x2 R "06? 68) R(axw ax)} (19)

For a thin cylindrical shell the force and momesgultants are defined as
h/2

{N, N, Nj}=[{o o, o,}d (20)
(M, M, M,}= j{ax g, Jﬁ}zdz (21)

-h/2

Substituting Egs. (17) and (9) into Egs. (20) ab) following constitutive equation is
obtained

{N}=[s|{¢} (22)

where{ N}, { £} and[S] are defined as

(N ={N, N, N, M, M, M} (23)
{d={e & v kK k 7} (24)
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Aij, Bij and Dij are the extensional, coupling abdnding stiffnesses, respectively. These
matrices are defined as

{n B q}:hfq{l z 2} d (26)

-h/2
For a vibrating thin cylindrical shell the expressifor the strain energyl is given by

1 ¢l por 5
U=2[ I TAE+ Ag+2 Ager Ay'+2 Bek2 B ek o) o
+2822e2k2+2866yr+ D11i€1+ D22|€2+ 2 D12k1k2+ Derez] R& dx

After substituting the expressions for the surfsttainsell, €22 andel2 and the curvatures
k11, K22 andkl12 from the relations (4) and (5), the expressarttie shell strain energy is
transformed to the following form:

2
R R e R A e
” [A“( j RZ(GH Wj 5 %l o x roa
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B“( j{a%j B”{ (axj[aez aej R( j M}
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+—22 —_+w _— [ = -— [+Dy| —
R* \ 06 06> 96 R (dx Rd#)\ 0¥E8 0Xx 0 X
2
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(682 69) R {6)@}(602 60} F?(a Bo GJ]
Without the rotatory inertia the kinetic enerdy for a thin-walled cylindrical shell is given
by
1cLpon ou ov ow (29)
T== — + Rd dx
2ol p{(atj [at) (atj:l

wheret denotes the time ang is the mass density per unit length and is defased

h/2

pr= | pdz (30)

-h/2
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wherep is the mass density of the shell material. The &agian energy functiondt is
defined by thedifference between the two energnvsngoy the expressions (8) and (9) and is
given by

F=K-S (32)
Substituting the expressions for strain and kinetiergies of the shell from Egs. (8) and (9),
respectively,into the expression (11) and then egupy Hamilton’s principle [29], the

governing equations for the shell dynamical behaa@ obtained in the following partial
differential equation forms:

3
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R R)e \ R R)ig? R R R)o RO 0%
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G represents the shear modulus of the material usdtié elastic foundation ardfor the
Winkler foundation

modulus, and the expression for the differentiarapor 0° is

2 2
02 :%+%% (33)
The Winkler model is a special case of the Paskemmadel wherG=0.

4 .Solution procedure

The wave propagation approach is employed to aeatiie vibration characteristics of

functionally graded cylindrical shells with Pastgkrtype foundations. This approach is very
simple and easily applicable to determine the shetjuencies. This has been successfully
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applied by a number of researchers, see Zhang £58B0]. For separating the spatial and
temporal variables, the following forms of modamlacement deformations are assumed:

u(x, 6, t) = Adneramd
V(% 6,t) = Ber et (34)
W(X 8, 1) = Canoratm)

in the axial, circumferential and radial directipmsspectively. The coefficiens, BandC
denote the waveamplitudes, respectively, inxhé and z directions, respectivelyy is the
number of circumferential waves aknhis the axial wave number that has been specified in
[25] for a number of boundary conditions. Theseabwiave numberkmare chosen to satisfy
the required boundary conditions at the two endshefcylindrical shellw is the natural
circular frequency for the cylindrical shell. Orbstituting the expressions far vandw from

Eqg. (12) into Eq. (10) and simplifying the algelorakpressions and rearranging the terms, the
frequency equation is written in the following eigelue form:

C, C, C,) A 1 0 0)A
C, C, Cul| Bl=p&f|0 1 0| B (35)
Cs C, CyjlC 0 0 -1{C

whereCij (i, ] = 1, 2, 3) are some matrix coefficients depending on the grethmeters and
the type of boundary conditions specified at thdseof a cylindrical shell and are given in
Appendix B. Equation (13) is solved for shell frequies and mode shapes using some
computer software. The three frequencies are dadaicorresponding to the axial,
circumferential and radial displacements. The sesalirequency is associated with the radial
direction and dominant.

5. Results and discussion

A number of comparisons of numerical results fdinclyical shells are presented to verify the
validity of the present approach and accuracy ef tbsults. In Table 1, the frequency
parameters for an isotropic cylindrical shell are comparedhmihose evaluated by Pradhan
et al. [5] for clamped—clamped edge conditionsthia case the shell parameters are taken to
be L/R = 20, h/R= 0002 m = 1. Table 2 represents the frequency paramet@fr a
clamped— simply supported cylindrical shell, andaaparison is made with those values
evaluated in Loy et al. [24]. The shell parametgeschosen to b= 1, L/R= 20 h/R= 0.01

and v=0.3. Tables 3 give the comparisons of natural frequeng¢Hz) of two types of
functionally graded cylindrical shells. In Table tBe shell is assumed to be composed of
stainless steel at the outer surface and nickéleainner surface of the shell.

5.1. Vibration frequency analysis based on elastic foundations

A vibration frequency analysis for functionally ged cylindrical shells based on elastic
foundations is performed where the material comfigans are composed of two constituent
materials viz. stainless steel and nickel. An FGMndrical shell may be classified into two

types.
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Table 1 Comparison of frequency parameters «ry/ p1-v')/ € for a cylindrical shellwith the
clamped—clamped boundary conditigns= 1, v = 0.3, L/R= 20, h/R= 0.002

n

abrhwWwN -

Ref. Present
[5]

0.0342 0.0348
0.0119 0.0119
0.0072 0.0072
0.0089 0.0091
0.0136 0.0137

Table 2 Comparison of frequency parameters wRy/ p(1-v°)/ E for a cylindrical shell with
the clamped—-simply supported boundary conditioms 1, L/R= 20 h/R= 0.01, v=0.3)

O~ WNPEFS

Ref. [8] Present
0.023974 0.024718
0.011225 0.011265
0.022310 0.022319
0.042139 0.042132
0.068024 0.068044

Table 3 Comparison of natural frequencies (Hz) for a cylica shell with the clamped—
simply supported boundary conditiofms= 1, L/R= 20, h/R=0.01, v = 0.3)

n p=0.7 p=0.7 p=0.7
Ref. [4] Present Ref. [4] Present Ref. [4] Present

1 13269 13270 13103 13104 12914 12915
2 44994 44986 44435 44430 43765 43761
3 41749 41741 41235 41230 40576 40570
4 70691 70687 69820 69818 68726 68723
5 11290 11291 11151 11152 10978 10979
6 16527 16528 16323 16324 16071 16072
7 22735 22736 22454 22455 22108 22109
8 29903 29903 29533 29534 29078 29079
9 38028 38029 37559 37560 36981 36981
10 47111 47112 46529 46530 45813 45814

Table 4 Variation of natural frequencies (Hz) against anderential wave numbaer Type |
(FG cylindrical shell on elastic foundatiofm = 1, h/R= 0.002, L/R= 20)

n

p’=0  p'=0 p=0.5

p=0.7 p=1 p=2 p=5

p=15

p=30

1
2
3
4
5
6
7
8
9
1

193.91
414.72
634.75
853.21

185.70 191.06
397.20 408.63
607.97 625.45
817.21 840.69

1,070.71 1,025.6 1,055.0
1,287.71 1,233.4 1,268.8
1,504.42 1,441.0 1,482.3
1,720.91 1,648.4 1,695.7
1,937.32 1,855.6 1,908.8

0 2,153.62 2,062.8 2,121.9

190.41 189.67
407.21 405.67
623.32 620.94
837.83 834.63
1,051.4 1,047.4
1,264.5 1,259.7
1,477.3 1,471.7
1,689.9 1,683.5
1,902.4 1,895.1
2,114.8 2,106.7

188.32
402.79
616.53
828.7
1,039.9
1,250.8
1,461.2
1,671.5
1,881.7
2,091.8

186.986.18

399.968.23

612.809.56

822.9 9.381
1,032.7 2810
1,242.0 36162
1,451.044174
1,659.8 52166
1,868.560148
2,077.1682]0

185.95
397.73
608.79
818.31

1,026.9
1,235.1
1,442.9
1,650.6
1,858.5
2,065.6
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Table5 Variation of natural frequencies (Hz) against andéerential wave number Type |l
(FG cylindrical shell on elastic foundatiofm = 1, h/R= 0.002, L/R= 20)

n p=0 p'=0 p=05 p=0.7 p-=1 p=2 p=5 p=15 p=30
1 1940 1857 188.32 18895 189.67 191.05 192.463.359 193.62
2 41473 397.2  402.79 404.14 405.67 408.62 411.633.55 414.11
3 634.77 607.98 616.53 618.59 620.94 62544 630.632.98 633.84
4 85321 817.22 828.71 831.48 834.63 840.68 846.830.81 851.96
5 1,070.7 1,025.6 1,040.0 1,043.5 1,047.4 1,05506218 1,067.7 1,069.2
6
7
8
9
1

1,287.7 1,233.4 1,250.7 1,254.9 1,259.7 1,268.27812 1,284.1 1,285.8
1,504.4 1,441.0 1,461.2 1,466.1 1,471.7 1,482.39313 1,500.2 1,502.2
1,720.9 1,6484 16715 1,677.1 16835 1,695,70811 1,716.1 1,718.4
19373 1,855.6 1,881.7 1,887.9 1,895.1 1,908.82219 1,931.8 1,934.1
0 2,153.6 20628 2,091.8 2,098.7 2106.7 2,12P437.6 2,147.5 2,150.4

In type | FG cylindrical shell material propertiesry continuously from those of nickel on its
inner surface to stainless steel on its outer sarfdhe second is termed as a type Il FG
cylindrical shell. It has properties that vary doobusly from stainless steel on its inner
surface to nickel on its outer surface. Tablesd mshow the variation of natural frequencies
(Hz) of a functionally graded cylindrical shell withe Winkler and Pasternak foundations.
The simply supported boundary conditions are sgecit the ends of the shell. In Table 4
values of natural frequencies (Hz) are given féuractionally graded cylindrical shell type 1.
The frequency increases with increasing the cirewenftial wave numbem, and the
vibration becomes the beam-type. But it decreasisincreasing the values of the power law
exponenfp. In Table 5 values of natural frequencies (Hz) @ated for a functionally graded
cylindrical shell type II. In this case they incseawith the power law exponents, but
increase with the circumferential wave number,Thus the influence of the constituent
volume fractions on the frequencies for type | apge Il functionally graded cylindrical
shells is different based on elastic foundatiohss bbserved that the natural frequency of a
functionally graded cylindrical shell on an elastaundation increases continuously with
increasing values of circumferentral

6. Concluding remarks

In this study the vibration characteristics of andtionally graded cylindrical shell are
analyzed based on the Winkler and Pasternak foiomgatThe shell dynamical equations are
solved by using the wave propagation approach.iffieence of these elastic foundations is
pronounced and this effect converts the shell vidmainto beam-type. This analysis can be
extended to study the influence of boundary cood#ion shell vibrations based on the
Winkler and Pasternak foundations.
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