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Abstract 

The aim of this paper is to deal with the dynamic behaviour and vibration characteristics of thin functionally 
graded circular cylindrical shells. Material properties in the shell thickness direction are graded in accordance 
with the exponential law. Expressions for the strain-displacement and curvature-displacement relationships are 
taken from Love’s thin shell theory. The Rayleigh-Ritz approach is used to derive the shell eigenfrequency 
equation. Axial modal dependence is assumed in the characteristic beam functions. Natural frequencies of the 
shells are observed to be dependent on the constituent volume fractions. The results are compared with those 
available in the literature for the validity of the present methodology. 

Keywords: Elastic Shell, functionally gradient material, exponential law. 

 

1. Introduction 

Functionally graded materials (FGMs) have gained wide application in a variety of industries 
due to their distinctive material properties that vary continuously and smoothly through 
certain dimensions. Compared with common composites, FGMs avoid the inter-laminar stress 
gaps that are caused by mismatches in the properties of two different materials, and can be 
adjusted appropriately according to practical requirements. 

In the last years, some researchers have analyzed various characteristics of functionally 
graded structures (Ng et al., [1]; Yang et al., [2]; Della Croce and Venini, [3]; Liewet al., 
[4];Wu and Tsai, [5]; Elishakoff et al., [6-7]; Patel et al., [8]; Pelletier and Vel, [9]; Zenkour, 
[10]; Arciniega and Reddy, [11]; Nie and Zhong, [12]; Roque et al., [13]; Najafizadeh and 
Isvandzibaei[14]. Yang and Shen, [15]).In addition to FGPs, functionally graded material 
shells have attracted research attention. Heetal. [16] proposed a finite element model for a 
doubly curved FGM shell with piezoelectric sensors and actuators, and demonstrated that 
effective static and dynamic control of FGM shells could be achieved b yappropriately 
varying the displacement and velocity feedback gains. Liewetal. [17] examined the thermal 
stress behavior of functionally graded hollow circular cylinders, and Jabbari et al. [18] 
analyzed the mechanical and thermal stresses in a functionally graded hollow thick cylinder 
subjected to a non-axisymmetric steady-state load. Jacob and Vel [19] investigated the steady-
state thermoelastic response of functionally graded isotropic and orthotropic cylindrical shells 
subjected to thermal and mechanical load susing the Flugge and Donnell shell theories. 
Hosseini Kord kheili and Naghdabadi [20] developed a finite element formulation for a 
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geometrically non-linear thermo elastic FGM shell using an updated Lagrangian approach, 
and Arciniega and Reddy [21] derived a tensor-based finite element model for large 
deformation analysis of FGM shells. Other studies have investigated the thermomechanical 
postbuckling, generalized coupled thermoelasticity, and vibration of FGM shells [22–24]. 

In this paper, a wave propagation approach is applied to study the vibration characteristics of 
FGM circular cylindrical shells. The axial modal dependence is approximated by exponential 
functions. This approach has been developed by Zhang et al. [25]. This avoids a large amount 
of algebraic manipulations. Employing this approach, the vibration characteristics of FGM 
cylindrical shells are studied for simply supported-simply supported, clamped-simply 
supported and clamped–clamped boundary conditions. Validity and accuracy of the present 
method are verified by comparing the present results with those available in the literature. A 
good agreement is observed between the two sets of the results. 
 

2. Functionally gradient materials 
 

FGMs are basically composite materials, which are made by mixing two or more different 
materials. Most of the FGMs are being used in a high temperature environment and their 
material properties are temperature dependent. A typical material property Pi is expressed as a 
function of environment temperature T.K. by Touloukian [27]. If Pi represents a material 
property of the ith constituent material of an FGM consisting of k constituent materials, then 
the effective material property P of the FGM is written as 
 

1

k

i i
i

P PV
=

=∑  (1) 

  
where Vi is the volume fraction of the ith constituent material. Also, the sum of volume 
fractions of the constituent materials is equal to 1, i.e., 
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The volume fraction depends on the thickness variable and is defined as 
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for a cylindrical shell. Ri and Ro denote inner and outer radii of the shell, respectively, and z is 
the thickness variable in the radial direction. p is known as the power law exponent. It is a 
non-negative real number and lies between zero and infinity. For a cylindrical shell, the 
volume fraction is assumed as 
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where h is the shell uniform thickness. When the shell is considered to consist of two 
materials, the effective Young’s modulus E, the Poisson ratio ν, and the mass density ρ are 
given by 
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From these relationships, the following facts are noted: at the inner surface, the FGM 
properties are those of the constituent material 2; at the outer surface, they are those of the 
material 1. Thus, the FGM properties change continuously from the material 2 at the inner 
surface to the material 1 at the outer surface. Arshad et al.[26] amended the volume fraction 
law (4) and assumed it in the exponential form, 
 

1 exp( ( / 0.5)) .p
iV z h= − − +  (6) 

 
This law depends only on one base e (= 2.718 · · · ). Now, this law is further modified and 
extended to a general base (b > 0) written as 
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In this case, the effective Young’s modulus E, the Poisson ratio ν, and the mass density ρ are 
expressed as 
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In these expressions, it is noted that, when z = −0.5h, E = E2, ν = ν2, and ρ = ρ2; when z = 
0.5h, E = (E1−E2)(1−b−1)+E2, ν = (ν1−ν2)(1−b−1)+ν2, and ρ = (ρ1−ρ2)(1−b−1)+ρ2.This shows 
that, at the inner surface of the shell, the material properties of the constituent material 2 are 
dominant, whereas, at its outer surface, the material properties are the resultant ones of the 
constituent materials 1 and 2. 
 

3. Analytical model and formulation 
 
The structure is an isotropic thin elastic cylindrical shell with Young’s modulus E, Poisson’s 
ratio ν , radius of the middle surface R, thickness h, and length L. The foundation is 
represented by continuous elastic (axial, circumferential, radial, and rotational) springs and 
distributed on a limited arc. The axial, circumferential, radial, and rotational spring 
coefficients are denoted by Ku, Kv, Kw, and Kb, respectively. In the analysis, all the spring 
coefficients are assumed to be constant along the enclosed arc and the angles that define the 
enclosed arc are denoted by 41 and 42. The geometry and generalized model of the structure 
are shown in Fig. 1. 
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Fig. 1. Geometry and model of a circular cylindrical shell. 
 
Constitutive relation for a thin cylindrical shell under plane stress condition is given by 
 

{ } [ ]{ }Q eσ =  (9) 

 
where { }σ and { }e  represent stress and strain vectors and [ ]Q is the reduced stiffness matrix. 

The stress vector is defined as 

{ } { }T

x y xθσ σ σ σ=  (10) 

 
where xσ and θσ  are the normal stresses in x andθ directions and xθσ is the shear stress in the 

xθ  plane. Similarly, the strain vector is defined, 
 

{ } { }T

x y xe e e eθ=  (11) 

 
where xe  and ye are the normal strains in x andθ directions and xe θ is the shear strain in the 

xθ  plane. The reduced sti€ness matrix [ ]Q is defined as 
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For isotropic materials the reduced stiffness Qij are defined as 
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where E and ν  represent Young's modulus and Poisson ratio, respectively.Using Love's shell 
theory [28], the strain components are defined as 
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where e1, e2 and  are the reference surface strains and k1, k2 and τ are the surface curvatures. 
These surface strains and curvatures are defined as 
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For a thin cylindrical shell the force and moment resultants are defined as 
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Substituting Eqs. (17) and (9) into Eqs. (20) and (21) following constitutive equation is 
obtained 
 

{ } [ ]{ }N S ε=  (22) 

  
where { }N , { }ε and [ ]S are defined as 
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Aij, Bij and Dij are the extensional, coupling and bending stiffnesses, respectively. These 
matrices are defined as 
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For a vibrating thin cylindrical shell the expression for the strain energy, U is given by 
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After substituting the expressions for the surface strains e11, e22 and e12 and the curvatures 
k11, k22 and k12 from the relations (4) and (5), the expression for the shell strain energy is 
transformed to the following form: 
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 (28) 

 
Without the rotatory inertia the kinetic energy, T, for a thin-walled cylindrical shell is given 
by 
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where t denotes the time andTρ  is the mass density per unit length and is defined as 
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where ρ is the mass density of the shell material. The Lagrangian energy functional F is 
defined by thedifference between the two energies given by the expressions (8) and (9) and is 
given by 
 

F K S= −  (31) 
 
Substituting the expressions for strain and kinetic energies of the shell from Eqs. (8) and (9), 
respectively,into the expression (11) and then employing Hamilton’s principle [29], the 
governing equations for the shell dynamical behavior are obtained in the following partial 
differential equation forms: 
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(32) 

 
G represents the shear modulus of the material used for the elastic foundation and K for the 
Winkler foundation 
modulus, and the expression for the differential operator 2∇  is 
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x R θ
∂ ∂∇ = +
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 (33) 

 
The Winkler model is a special case of the Pasternak model when G=0. 
 
4 .Solution procedure 
 
The wave propagation approach is employed to analyze the vibration characteristics of 
functionally graded cylindrical shells with Pasternak-type foundations. This approach is very 
simple and easily applicable to determine the shell frequencies. This has been successfully 
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applied by a number of researchers, see Zhang et al. [25,30]. For separating the spatial and 
temporal variables, the following forms of modal displacement deformations are assumed: 
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 (34) 

 
in the axial, circumferential and radial directions, respectively. The coefficients A, B and C 
denote the waveamplitudes, respectively, in the x, θ and z directions, respectively, n is the 
number of circumferential waves and km is the axial wave number that has been specified in 
[25] for a number of boundary conditions. These axial wave numbers km are chosen to satisfy 
the required boundary conditions at the two ends of the cylindrical shell. ω is the natural 
circular frequency for the cylindrical shell. On substituting the expressions for u, v and w from 
Eq. (12) into Eq. (10) and simplifying the algebraic expressions and rearranging the terms, the 
frequency equation is written in the following eigenvalue form: 
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 (35) 

 
where Cij (i, j = 1, 2, 3) are some matrix coefficients depending on the shell parameters and 
the type of boundary conditions specified at the ends of a cylindrical shell and are given in 
Appendix B. Equation (13) is solved for shell frequencies and mode shapes using some 
computer software. The three frequencies are obtained corresponding to the axial, 
circumferential and radial displacements. The smallest frequency is associated with the radial 
direction and dominant. 
 
5. Results and discussion 
 
A number of comparisons of numerical results for cylindrical shells are presented to verify the 
validity of the present approach and accuracy of the results. In Table 1, the frequency 
parameters _ for an isotropic cylindrical shell are compared with those evaluated by Pradhan 
et al. [5] for clamped–clamped edge conditions. In this case the shell parameters are taken to 
be L/R = 20, h/R = 0.002, m = 1. Table 2 represents the frequency parameters, Ω for a 
clamped– simply supported cylindrical shell, and a comparison is made with those values 
evaluated in Loy et al. [24]. The shell parameters are chosen to be m = 1, L/R = 20, h/R = 0.01 
and ν=0.3. Tables 3 give the comparisons of natural frequencies (Hz) of two types of 
functionally graded cylindrical shells. In Table 3, the shell is assumed to be composed of 
stainless steel at the outer surface and nickel at the inner surface of the shell. 
 
5.1. Vibration frequency analysis based on elastic foundations 
 
A vibration frequency analysis for functionally graded cylindrical shells based on elastic 
foundations is performed where the material configurations are composed of two constituent 
materials viz. stainless steel and nickel. An FGM cylindrical shell may be classified into two 
types.  
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Table 1 Comparison of frequency parameters 2

(1 ) /R Eω ρ υΩ = −  for a cylindrical shellwith the 
clamped–clamped boundary conditions (m = 1, ν = 0.3, L/R = 20, h/R = 0.002) 
n  Ref. 

[5] 
Present 

1  0.0342 0.0348 
2  0.0119 0.0119 
3  0.0072 0.0072 
4  0.0089 0.0091 
5  0.0136 0.0137 
 
 

Table 2 Comparison of frequency parameters 2
(1 ) /R Eω ρ υΩ = − for a cylindrical shell with 

the clamped–simply supported boundary conditions (m = 1, L/R = 20, h/R = 0.01, ν = 0.3) 
n  Ref. [8] Present 
1  0.023974 0.024718 
2  0.011225 0.011265 
3  0.022310 0.022319 
4  0.042139 0.042132 
5  0.068024 0.068044 
 
Table 3 Comparison of natural frequencies (Hz) for a cylindrical shell with the clamped–
simply supported boundary conditions (m = 1, L/R = 20, h/R = 0.01, ν = 0.3) 
n  p=0.7   p=0.7   p=0.7  
  Ref. [4] Present  Ref. [4] Present  Ref. [4] Present 
1  13.269 13.270  13.103 13.104  12.914 12.915 
2  4.4994 4.4986  4.4435 4.4430  4.3765 4.3761 
3  4.1749 4.1741  4.1235 4.1230  4.0576 4.0570 
4  7.0691 7.0687  6.9820 6.9818  6.8726 6.8723 
5  11.290 11.291  11.151 11.152  10.978 10.979 
6  16.527 16.528  16.323 16.324  16.071 16.072 
7  22.735 22.736  22.454 22.455  22.108 22.109 
8  29.903 29.903  29.533 29.534  29.078 29.079 
9  38.028 38.029  37.559 37.560  36.981 36.981 
10  47.111 47.112  46.529 46.530  45.813 45.814 
 
Table 4 Variation of natural frequencies (Hz) against circumferential wave number n Type I 
(FG cylindrical shell on elastic foundation) (m = 1, h/R = 0.002, L/R = 20) 
n pss=0 pN=0 p=0.5 p=0.7 p=1 p=2 p=5 p=15 p=30 
1 193.91 185.70 191.06 190.41 189.67 188.32 186.99 186.18 185.95 
2 414.72 397.20 408.63 407.21 405.67 402.79 399.96 398.23 397.73 
3 634.75 607.97 625.45 623.32 620.94 616.53 612.21 609.56 608.79 
4 853.21 817.21 840.69 837.83 834.63 828.7 822.9 819.34 818.31 
5 1,070.71 1,025.6 1,055.0 1,051.4 1,047.4 1,039.9 1,032.7 1,028.2 1,026.9 
6 1,287.71 1,233.4 1,268.8 1,264.5 1,259.7 1,250.8 1,242.0 1,236.6 1,235.1 
7 1,504.42 1,441.0 1,482.3 1,477.3 1,471.7 1,461.2 1,451.0 1,444.7 1,442.9 
8 1,720.91 1,648.4 1,695.7 1,689.9 1,683.5 1,671.5 1,659.8 1,652.6 1,650.6 
9 1,937.32 1,855.6 1,908.8 1,902.4 1,895.1 1,881.7 1,868.5 1,860.4 1,858.5 
10 2,153.62 2,062.8 2,121.9 2,114.8 2,106.7 2,091.8 2,077.1 2,068.1 2,065.6 
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Table 5 Variation of natural frequencies (Hz) against circumferential wave number n Type II 
(FG cylindrical shell on elastic foundation) (m = 1, h/R = 0.002, L/R = 20) 
 
n pss=0 pN=0 p=0.5 p=0.7 p=1 p=2 p=5 p=15 p=30 
1 194.0 185.7 188.32 188.95 189.67 191.05 192.46 193.35 193.62 
2 414.73 397.2 402.79 404.14 405.67 408.62 411.63 413.55 414.11 
3 634.77 607.98 616.53 618.59 620.94 625.44 630.05 632.98 633.84 
4 853.21 817.22 828.71 831.48 834.63 840.68 846.87 850.81 851.96 
5 1,070.7 1,025.6 1,040.0 1,043.5 1,047.4 1,055.0 1,062.8 1,067.7 1,069.2 
6 1,287.7 1,233.4 1,250.7 1,254.9 1,259.7 1,268.8 1,278.2 1,284.1 1,285.8 
7 1,504.4 1,441.0 1,461.2 1,466.1 1,471.7 1,482.3 1,493.3 1,500.2 1,502.2 
8 1,720.9 1,648.4 1,671.5 1,677.1 1,683.5 1,695.7 1,708.1 1,716.1 1,718.4 
9 1,937.3 1,855.6 1,881.7 1,887.9 1,895.1 1,908.8 1,922.9 1,931.8 1,934.1 
10 2,153.6 2,062.8 2,091.8 2,098.7 2,106.7 2,121.9 2,137.6 2,147.5 2,150.4 
 
 
In type I FG cylindrical shell material properties vary continuously from those of nickel on its 
inner surface to stainless steel on its outer surface. The second is termed as a type II FG 
cylindrical shell. It has properties that vary continuously from stainless steel on its inner 
surface to nickel on its outer surface. Tables 4 and 5 show the variation of natural frequencies 
(Hz) of a functionally graded cylindrical shell with the Winkler and Pasternak foundations. 
The simply supported boundary conditions are specified at the ends of the shell. In Table 4 
values of natural frequencies (Hz) are given for a functionally graded cylindrical shell type I. 
The frequency increases with increasing the circumferential wave number, n, and the 
vibration becomes the beam-type. But it decreases with increasing the values of the power law 
exponent p. In Table 5 values of natural frequencies (Hz) are listed for a functionally graded 
cylindrical shell type II. In this case they increase with the power law exponents, p, but 
increase with the circumferential wave number, n. Thus the influence of the constituent 
volume fractions on the frequencies for type I and type II functionally graded cylindrical 
shells is different based on elastic foundations. It is observed that the natural frequency of a 
functionally graded cylindrical shell on an elastic foundation increases continuously with 
increasing values of circumferential n. 
 
6. Concluding remarks 
 
In this study the vibration characteristics of a functionally graded cylindrical shell are 
analyzed based on the Winkler and Pasternak foundations. The shell dynamical equations are 
solved by using the wave propagation approach. The influence of these elastic foundations is 
pronounced and this effect converts the shell vibration into beam-type. This analysis can be 
extended to study the influence of boundary conditions on shell vibrations based on the 
Winkler and Pasternak foundations. 
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