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Abstract 
 
This study investigated an approach for incorporating statistics with fuzzy sets in the flowshop sequencing 
problem. It considers a flow shop problem with imprecise processing times with the objective to minimize the 
makespan. This work is based on the assumption that the precise value for the processing time of each job is 
unknown, but that some sample data are available. A combination of statistics and fuzzy sets provides a powerful 
tool for modeling and solving this problem. The processing times are described by triangular fuzzy numbers. The 
issue that arises is how to rank the constructed job sequences with respect to their obtained makespans, which 
are fuzzy numbers. A new distance measure between fuzzy makespans is introduced which includes an 
optimism/pessimism indicator and a function related to λ-levels of fuzzy sets, enabling the decision maker to 
express his/her preference. Our work intends to extend the crisp flowshop sequencing problem into a generalized 
fuzzy model that would be useful in practical situations. In this study, we constructed a fuzzy flow shop 
sequencing model based on statistical data, which uses level (1-α, 1-β) interval-valued fuzzy numbers to 
represent the unknown job processing time. 
 
Keywords: Flowshop Sequencing Problem, Fuzzy Flowshop Model, Interval-Valued Fuzzy Number. 
 
 
1. Introduction 
 
The selection of an appropriate order for a series of jobs to be done on a finite number of 
service facilities is called sequencing. If work centers are lightly loaded and if jobs all require 
the same amount of processing time, sequencing presents no particular difficulties. However, 
for heavily loaded work centers especially in situations where relatively lengthy jobs are 
involved, the order of processing can be very important in terms of cost associated with jobs 
waiting for processing and in terms of idle time at work centers. High volume systems are 
often referred to as flow system. Flow shop problem concerns the sequencing of a given 
number of jobs through a series of machines in the exact same order on all machines with the 
aim to satisfy a set of constraints as much as possible, and optimize a set of objectives. The 
commonly studied objectives include: makespan, mean flow time, tardiness etc. Among those 
objectives, the makespan, defined as the time when the last job completes on the last machine, 
the total time needed to complete a group of jobs from the beginning of the first job to the 
completion of the last job, is the most frequently studied one. A large number of deterministic 
scheduling algorithms have been proposed by Pinedo [11] in last decades to deal with flow 
shop scheduling problems with various objectives and constraints. However, it is often 
difficult to apply those algorithms to real-life flow shop problems. The processing times of 
jobs could be uncertain due to incomplete knowledge or uncertain environment which implies 
that there exist various external sources and types of uncertainty. Fuzzy sets and logic can be 

International Journal of Engineering & Applied Sciences (IJEAS) 
Vol.3, Issue 3(2011)1-14  

  

 
 

 

 

 
    

 
   

 

  

 

 

 

 
 



 

2 

used to tackle uncertainties inherent in actual flow shop scheduling problems as in Slowinski 
and Hapke [13]. Majority of approaches consider fuzzy processing time and/or fuzzy due 
dates as in McCahon and Lee [8], Petrovic and Song [10], Sakawa and Kubota [12]. The 
fuzzy processing times are described by triangular membership functions. The objective 
considered is the minimization of makespan. Because of the fuzziness of processing times, the 
obtained makespans are also fuzzy numbers. In order to select the job sequence with the 
“minimum” makespan, sophisticated fuzzy ranking techniques which are capable of 
describing all the possible relationships between fuzzy numbers and allow the modeling of 
preferences of the decision maker (DM) are required. 
 
 
2. Preliminaries 
 
Interval valued fuzzy set: The fundamental reason of introducing an extension of the concept 
of a fuzzy set e.g.  a  probabilistic  set as in Hirota [6], Czogala [2], Czogala and Pedrycz [3], 
or a  fuzzy set of type n as in Zadeh [18] is connected with  the fact that  the formal, fuzzy set-
representation  of  verbal  expressions  occurring  in  a  verbal  model  of  a phenomenon,  
object  or  process  (in  a  verbal  decisional  procedure)  is  not  often sufficiently  adequate 
Hirota [6]. As  a  rule,  the  membership  functions  of  fuzzy  sets representing particular 
verbal expressions cannot be defined unequivocally on  the basis  of  available  information.  
Therefore,  it  is  not  always  possible  for  a membership  function of the  type µ : ]1,0[X →   
to  assign precisely one  point  from the  interval  [0,1]  to  each  element  Xx∈  without  the  
loss  of  at  least  a  part  of information. The  definitions of a  fuzzy set of type 2  Zadeh [18]  
and of a probabilistic  set Hirota [6] suggest  at  this  point  assigning  a  fuzzy  set  from  a  
family f([0, 1])1* or  a probability  distribution  respectively,  instead  of  a  point  from  [0, 1].  
It  should  be emphasized, however,  that  from  the point of view of practice,  this  type of 
formal representation  of  a  generalized  membership  function  is  characterized  by  some 
'redundancy' in  relation  to  reality. We  do not have,  as a  rule,  such extensive and precise  
information  that  it  could  be  possible  to  define precisely a  group  of fuzzy sets  from f ([0, 
1])  being  the  generalized membership  function  of a  fuzzy set  of type  2,  or  a  probability  
distribution for  a  probabilistic  set.  On  the  other  hand (which  is  very  important),  the  
introduction  of  the  above  generalizations  of  the concept  of  a  fuzzy  set  may  
considerably  complicate  the  formal  apparatus  of approximate  inference by Dubois and 
Prade [4]. This fact has a decisively negative influence on the effectiveness of its application. 
In  the  light of the  above considerations,  a  proposal  is put  forward  to  apply  the extension  
of  the  concept  of  fuzzy  set  represented  by  a  generalized membership function having  
the  form of  ‘band’.  
Some definitions of fuzzy numbers and an interval-valued fuzzy set are provided with some 
relevant operations found in Gorzalezang [5], Kaufmann and Gupta [7]. 
Definition 1: A fuzzy set λb

~ defined on R= (-∞, ∞), which has the following membership 
function, is called a level λ fuzzy point, 0 < A < 1: 
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When a = b and [aα, bα] = [bα, bα] = λb
~ , the level a fuzzy interval becomes a level a fuzzy 

point. 
Definition 3: The level λ triangular fuzzy number ,~A ,10 << λ is a fuzzy set defined on R with a 
membership function as follows: 
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For convenience, the fuzzy num in Definition 3 is denoted by ,A~ = (a, b, c; λ). 
Definition 4: A fuzzy set B~ defined on R= (-∞, ∞) which has the following property is called 
an interval-valued fuzzy set, ,Rx )])},x(),x([,x{(B~ UL B~B~ ∈= µµ Where 1)x()x(0 UL B~B~ ≤≤≤ µµ .  
Symbolically B~ is denoted by ].B~ ,B~[ UL  
Let ) c; b, ,a(A~ L λ= and 10 ), r; b, ,p(A~U ≤≤<= ρλρ . We have )], r; b, ,p(), c; b, ,a[(]A~,A~[A~ UL ρλ==  

,rcbap <<<< where A is the level (λ, ρ) interval–valued fuzzy number from Fig.1. The 
membership function of A~ can be expressed as 
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Let the family of all level (λ, ρ) interval-valued fuzzy numbers denoted by FIV = {[(a, b, c; λ), 
(p, b, r; ρ)] ∀ p<b<c<r, a, b, c, p, r∈R}, .10 ≤≤< ρλ  Before defining the ranking of level (λ, 
ρ) interval-valued fuzzy numbers on FIV (λ, ρ), we provide a definition of the signed distance, 
which is similar to that in Yao and Wu [17], on R. 
Definition 5: Let ,R0,b,b)0,b(d ∈= denote the signed distance of b measured from the origin 0. 
Remark 1: Geometrically, 0<b represents that b goes to the right-hand side of the origin 0, 
and that the distance between b and 0 is denoted by )0,b(db = . Similarly, b<0 represents that b 
goes to the left-hand side of 0 and the distance between b and 0 is denoted by )0,b(db −=− . 
 

 
 

Fig. 1. An α–cut of level (λ, ρ) interval-valued fuzzy number .A~  
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Consider the ordering of level (λ, ρ) interval-valued fuzzy numbers on FIV(λ, ρ). Let =A~  
),(F)] r; b, ,p(), c; b, ,a[(]A~,A~[ IV

UL ρλρλ ∈= . Fig.1 shows a α-cut of level (λ, ρ) interval-valued 
fuzzy number A~ . From Fig. 1, we can see that a α-cut of A~ , ,0 λα ≤≤  

is )].(A),(A[)](A),(A[ L
r

U
r

L
1

U
1 αααα   From Eq.(4) and (5), we have 

γ
αα )ab(a)(AL

1 −+=  

, ,)bc(c)(AL
r λ

αα −−=  
ρ
αα )pb(p)(AU

1 −+= and .)br(r)(AU
r ρ

αα −+=  

Definition 6: Let =A~ 1.0 ),,(F)] r; b, ,p(), c; b, ,a[(]A~,A~[ IV
UL ≤<<∈= ρλρλρλ  The signed 

distance from A~ to 0~1 is defined by .)rpb2(3r4p4cab6(
8
1)0~ ,A~(d 11 ρ

λ
−−+++++=  

Definition 7: Let =A~ [(a1, b1, c1; λ), (p1, b1, r1; ρ)] and =B~ [(a2, b2, c2; λ), (p2, b2, r2; 
ρ)]∈FIV(λ, ρ), 1.0 ≤≤< ρλ  The rankings of interval-valued fuzzy numbers on FIV(λ, ρ) are 
defined by 
 

),0~ ,A~d()0~ ,B~d( iff A~B~ 11 <  
).0~ ,A~d()0~ ,B~d( iff A~B~ 11 =≈  

 
Definition 8:  Let == ]A~,A~[A~ UL [(a1, b1, c1; λ), (p1, b1, r1; ρ)] and == ]B~,B~[B~ UL [(a2, b2, c2; 
λ), (p2, b2, r2; ρ)]∈FIV(λ, ρ) be interval-valued fuzzy numbers. The binary operator⊕ is 
defined by ].B~A~,B~A~[B~A~ UULL +⊕=⊕  
Remark 2: According to Definition 6 if )];b,b,b(),;b,b,b[(I~ ρλ=  is a member of FIV(λ, ρ). Then 
we have .b2)0~ ,I~(d 1 =  
Finally, consider the problem for estimating the mean of a population by sampling in 
inferential statistics. It is clear that the sample mean x is just a point estimate for the 
population mean µ. Because of sampling error, we cannot expect x to be precisely equal to µ. 
This leads to the use of confidence interval estimation instead. The %100)1( ×−α confidence 
interval estimate for the population mean is expressed as follows: 
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Where 0<αj<1, j = 1, 2, α1+α2=α, and 0<α<1. The sample mean is ( )∑ == n
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sample variance is [ ]∑ = −−= n

1j
2

j
2 ,)xx()1n(1s where x1, x2, ..., xn are sample data. Let T be a t–

distribution with n-1 degree of freedom, and also let tn-1(αj), j=1, 2, be the constant that 
satisfies .j))j(1ntT(P αα =−>  

Since the t–distribution with n-1 degree of freedom is symmetrical on the y-axis, we have 
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3. Construction a Fuzzy Flowshop Sequencing Model 
 
3.1 Flowshop Problem   
 
Let us consider a simple flow shop problem with n jobs and m machines as found in Song and 
Petrovic [14]. An n-dimensional permutation of integers (1,...,k,...,n) is used to represent a job 
sequence (x1,...,xk,...,xn) which is the same on all machines, where xk denotes the k-th job, 
k=1,...,n. Let j,xk

P~ and j,xk
C~  be the fuzzy processing time and the fuzzy completion time of job 

xk on machine j, respectively. The task is to find such a sequence of jobs which has minimum 
makespan. The makespan namely the completion time of job xn on machine m can be 
calculated using formulae (7) to (10), where +~ and xa~m represent fuzzy addition and fuzzy max 
operation, respectively. 
 

,P~C~ 1,x1,x 11
=                                                                   (7) 

n ,.... 2,k for ,P~C~C~ 1,x1,x1,x k1kk
=+=

−
                                                   (8) 

m ,.... 2,j for ,P~C~C~ j,x1j,xj,x 111
=+= −                                                   (9) 

m ...., 2,j n, ,.... 2,k for ,P~)C~,C~x(a~mC~ j,x1j,xj,xj,x kk1kk
==+= −−

                         (10) 
 
In the calculation of fuzzy makespan two basic operations are applied: fuzzy addition +~ and 
fuzzy maximum .xa~m  Given two triangular fuzzy numbers )c,b,a(P~ 1111 = and ),c,b,a(P~ 2222 =  
where a1(a2) and c1(c2) are lower and upper bounds, while b1 (b2) is the modal value of the 
triangle. We employ the following fuzzy addition and fuzzy maximum in order to preserve the 
triangular form of the obtained result: 
 

)cc,bb,aa(P~P~ 21212121 +++=+  
))ccmax(),b,bmax(),a,a(max()P~,P~x(a~m 21212121 +=  

 
Let us suppose that a number of job sequences are constructed. The question is how to 
evaluate their fuzzy makespans. 
 
3.2 A Flowshop Sequencing Model 
 
Obviously, point estimates have the limitation that they do not provide information about the 
precision of an estimate as Yao and Lin [17]. Therefore, when we use sample data to estimate 
the unknown time parameter, it is unreasonable to expect that a sample mean jkt will be 
exactly equal to the population mean tjk. In other words, some sampling error is to be 
anticipated. Because of this sampling error, it is essential for us to provide information about 
the accuracy of an estimate. This thus leads to the use of a confidence interval estimation of 
the population mean. 
With a confidence interval estimate for the unknown ,t jk the %100)1( ×−α confidence interval 
estimate of jkt is obtained from Eg.(6) as 
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+− −− αα                                                     (11) 

 
where 0<α<1, 0<αj<1, j=1, 2, and α1+α2=α. 
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Note that the interval estimation in Eq.(11) is not a value but an interval. However, the 
confidence level of the confidence interval estimation signifies the confidence of the estimate, 
which has the same property as that of a membership grade for fuzzy numbers in a fuzzy set. 
We propose an approach for incorporating statistics with fuzzy sets for the unknown time 
parameter problem. Our approach is described as follows. 
First, we choose an estimate of jkt in Eq.(11) based on the fuzzy viewpoint. Then the 
evaluation for the accuracy of that estimate is conducted. When the estimate is exactly equal 
to jkt in Eq.(11), the error rate is zero and the confidence level is 1-α (the maximum value). In 
contrast, when the estimate approaches one of the two ends of the interval, 

n

s
)(tt jk

11njk α−− or ,
n

s
)(tt jk

21njk α−+ the error rate becomes larger and the confidence level 

decreases to zero. Since the membership grade of fuzzy numbers is equivalent to the 
confidence level of the confidence interval estimate, it is reasonable for 
the %100)1( ×−α confidence interval to be transformed to the following fuzzy number, 
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Note that the membership grade of jkt would not always be 1-α during the job j process 
operation on machine k. Since the membership grade of jkt also has an accuracy problem, we 
introduce another %100)1( ×− β confidence interval estimate for tjk, 
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where 0<β<1, 0<βj<1, j=1, 2, and β1+β2=β. Similarly, the %100)1( ×− β confidence interval 
can be transformed to the level (1-β) fuzzy number as follows: 
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Where 0<β<α<1, 0<βj<αj<1, j=1, 2, tn-1(α1) ( ) jkjk tn/s < and  tn-1(β1) ( ) .tn/s jkjk <  Then we 
have 
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Finally, according to Eqs.(12) and (13), the (1-α, 1-β) interval-valued fuzzy number is 
obtained as follows: 
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According to definition 6, the signed distance of level (1-α, 1-β) interval-valued fuzzy jkt~ is 
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Let, ( )1jk
*
jk 0~,t~d

2
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Fig. 2. The level (1-α, 1-β) interval-valued fuzzy number jkt  
 
Note that *

jkt represents an estimate of the job processing time in the fuzzy sense, which is 
derived from the level (1-α,1-β) interval-valued fuzzy number ,t~jk using the signed distance 
ranking method in Definitions 6 and 7. The Decision Maker (DM) then can use ,t*

jk  as an 
estimate of tjk for solving the known flow-shop sequencing problem. 
Remark 3: When 2

1
21 ==αα  we have α=1. From equation (14) it clear that += jk

*
jk tt  

[ ] .
n

s
)(t)(t

4
1 jk

11n21n ββ −− − Model uses the level (1-β) fuzzy numbers that corresponds to 

the %100)1( ×− β  confidence interval, ,
n

s
)(tt,t,

n

s
)(tt jk

21njkjk
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11njk 







+− −− ββ to represent the 

unknown job processing times. 
 
 
4. Ranking of Schedules with Uncertain Makespan 
 
To rank makespan for the flow shop problem, the approach is based on the concept of 
distance measure which is an adaption of Tran’s [15]. The fuzzy makespan of job 
sequencing are ranked by their distances to the fuzzy reference. To allow for more 
subjectivity of the DM, a parameter ρ introduced to enable expressing the subjective attitude 
of the DM and a function ( )λf to consider the impact of different λ -levels of makespan on the 
DM.  
 
4.1 A Distance Measure between Intervals 
 
Given two intervals, I1= [a1, b1], I2=[a2, b2], and let a1≤a2, b1≤b2 we define the distance 
between I1 and I2 as: 
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( ) ( )( ) ( )( )[ ]dxxabaxabaI,Id
1

0
11122221 ∫ −+−−+=  

           ( )1212 bb
2
1)aa(

2
1

−+−=  

 
Inspired by Campos & Munoz’s [1] work, we modify (7) by including the parameter ñ to 
allow the decision maker to introduce his/her subjectivity into distance measure: 
 

( ) 10           ),bb)(1()aa(I,Id 121221 <<−−+−= ρρρ  
 
The higher ρ means that more importance is put on the low bound of the interval, and less 
importance is given on the upper bound of the interval at the same time. In ranking of 
makespans, the higher value of ñ will give more importance on the low bound of the 
makespan and its distance from the reference. Thus, ρ can be used to reflect the optimism-
pessimism attitude of the decision maker by putting different importance on the low bound 
and upper bound of the makespan. We call ρ optimism-pessimism indicator. 
 
4.2 A Distance Measure between Fuzzy Numbers 
 
Suppose the triangular fuzzy reference R~ is represented as )z,y,x(R~ sss= and that fuzzy 
makespan iM~ of schedule i is represented by a triangular membership function, 
i.e., ).z,y,x(M~ iiii = It can be proved that .zz,yy,xx isisis ≤≤≤  At anyλ -level sets R~ and ,M~ i  
 

[ ] [ ].)yz(z),xy(xM~        ,)yz(z),xy(xR~ iiiiiiissssss −−−+=−−−+= λλλλ λλ  
 
Since )xy(x)xy(x iiisss −+≤−+ λλ and )yz(z)yz(z iiisss −+≤−+ λλ always hold, we can use the 
interval distance measure discussed in section 4.1 to define a new distance measure between 
two fuzzy numbers. Hence, the distance measure between two fuzzy numbers R~ and iM~ can be 
define as: 

( ) ( ) ( ) λλλλ dfM~,R~dM~,R~D
1

0
ii ∫=  

Where f(λ) is continuous positive function defined on [0,1], which serves to subjectively 
express the importance of λ-levels. For example, when f(λ)=1, it means that all λ-levels have 
the same importance of λ-level increases with higher values of λ.  
Suppose we want to rank two fuzzy makespan, )z,y,x(M~ iiii = and )z,y,x(M~ jjjj = assume that 
the fuzzy reference is ).z,y,x(R~ sss=  
To obtain the rank, we calculate:  
 

( ) ( )ji M~,R~DM~,R~D −=∆                                                       (15) 
 
If < 0, then we consider that ,M~M~ ji < which means that sequence i is better than j; 
If = 0, then we consider that ,M~M~ ji =  which means that sequence i and j are the same with 
respect to makespan; 
If > 0, then we consider that ,M~M~ ji > which means that sequence i is worse than sequence j; 
 
From formula (15) the following is derived: 
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( ) ( ) ( ) ( ) ( ) 







−−++−= ∫∫∫ λλλρλλλλλλρ∆ df1z)1(dfydf1x

1

0
i

1

0
i

1

0
i  

      ( ) ( ) ( ) ( ) ( ) 







−−++−− ∫∫∫ λλλρλλλλλλρ df1z)1(dfydf1x

1

0
j

1

0
j

1

0
j                        (16) 

 
Let Mi be the crisp value that approximates fuzzy set iM~ (we will denote it as proxy value). 
 

( ) ( ) ( ) ( ) ( ) λλλρλλλλλλρ df1z)1(dfydf1xM
1

0
i

1

0
i

1

0
ii ∫∫∫ −−++−=  

 
Similarly, Mj is proxy value of jM~  
 

( ) ( ) ( ) ( ) ( ) λλλρλλλλλλρ df1z)1(dfydf1xM
1

0
j

1

0
j

1

0
jj ∫∫∫ −−++−=  

Then  M-M ji=∆  
From formula (16), we notice that the ranking result of two makespans has no direct 
relationship with fuzzy reference, and it only requires the comparison of proxy values of two 
makespan. To rank more than two makespans, i.e., { },n,.....,1kM~ k = the proxy value Mk of 
each ,M~ k can be ordered to get the ranking of  
 

n.1,.....,k  ,M~ k =  
 
 

5.  m-Machine n-Job Flowshop Sequencing Algorithm 
 
Given  n jobs  to  be  processed  on m machines in  the  same  order,  the  process time  of  job 
i on  machine j  being tij (i = 1,2 ..... n;  j = 1, 2..... m),  find  the  sequence  of jobs  such  that 
the  total elapsed  time (makespan)  is minimized. 
The  flow-shop  sequencing  problem  as presented  above  is  a  combinational  search 
problem  with n! possible sequences.  If one could enumerate all n! sequences,  the  sequences 
with minimum  total  completion  time  could  be identified, but  this  procedure  is quite  
expensive and  impractical  for  large  n. The proposed  algorithm  is  based  on  the 
assumption  that  a  job  with  more  total  process time  on  all  the  machines  should  be  
given higher  priority  than  a  job  with  less  total  process  time.  An overview of the 
proposed algorithm can be stated as follows. The  two  jobs  with  the  highest  total  process 
times  are  selected  from  the  n-jobs.  The  best partial  sequence  for  these  two jobs  is  
found  by an  'exhaustive  search',  i.e. considering  the  two possible  partial  schedules.  The  
relative  positions  of  these  two  jobs  with  respect  to  each other  are  fixed  in  the  
remaining  steps  of  the algorithm.  Next,  the job  with  the  third  highest total  process  time  
is selected  and  the  three  partial  sequences  are  tested  in  which  this  job  is placed  at  the  
beginning, middle  and  end  of  the partial  sequence  found  in  the  first  step. The best  
partial  sequence  will  fix  the  relative  positions  of  these  three  jobs  for  the  remaining 
steps. This process  is  repeated  until  all jobs  are fixed  and  a  complete  sequence  is  
found.   

The number of enumerations in the algorithm is ,1
2

)1n(n
−

+ of which n enumerations are 

complete sequences and the rest are partial sequences. 
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The  following  is  the  step  by  step  procedure for  the curtailed-enumeration  algorithm: 

1) For  each  job  i calculated as: ,tT m
0j j,ii ∑ == where ti,j is the process  time of  job  i on 

machine  j. 
2) Arrange the jobs in descending order of Ti. 
3) Pick  the  two  jobs  from  the  first  and second  position  of  the  list  of  Step  2, and  

find  the  best  sequence  for  these two  jobs  by  calculating  makespan  for the  two  
possible  sequences. Do  not change  the  relative  positions  of  these two jobs  with  
respect  to  each  other  in the  remaining  steps  of  the  algorithm. Set i = 3. 

4) Pick  the  job  in  the  ith  position  of  the list  generated  in  Step  2  and  find  the best  
sequence  by placing  it  at  all  possible  i  positions  in  the  partial  sequence found  in  
the  previous  step,  without changing  the  relative  positions  to  each other  of the  
already assigned jobs.  The number of enumerations at this step equals i. 

5) If n = i, STOP,  otherwise  set  i = i+1 and  go  to  Step  4. 
 

5.1  Numerical Illustration 
 
The four jobs, five machines flow-shop problem given in Table 1 is solved. 
 

Table 1. Operation time matrix 
 Machines (m) 

1 2 3 4 5 

Jobs 
(n) 

1 5 9 8 10 1 
2 9 3 10 1 8 
3 9 4 5 8 6 
4 4 8 8 7 2 

 
Step 1:  T1 = 5+9+8+10+1 = 33. 

T2 = 9+3+10+1+8 = 31. 
T3 = 9+4+5+8+6 = 32. 
T4 = 4+8+8+7+2 = 29. 

Step 2: 1.3.2.4 
Step 3: Pick job 1 and job 3, and find the optimal partial sequence for these two jobs. 
 
Table 2. Makespan for partial sequence 1-3 Table 3. Makespan for partial sequence 3-1 

 Machines (m) 
1 2 3 4 5 

Job
s 

1 5/5 9/14 8/22 10/32 1/33 
3 9/14 4/18 5/27 8/40 6/46 

 

  Machines (m) 
1 2 3 4 5 

Job
s 

3 9/9 4/13 5/18 8/26 6/32 
1 5/14 4/23 8/31 10/41 1/42 

 

 
This is done in Table 2 and 3, where it is clear that sequence 3-1 is the best with makespan = 
42. In the next steps, the relative position of job 1 and 3 should always be 3-1, i.e. job 1 and 3. 
Set i= 3. 
 
Step 4: Take the job in the third position of the list of step 2 ( job 2) and find the optimal 
sequence by placing job 2 at all three possible position in the partial sequence 3-1 obtain in 
the last step. The makespan of these partial sequences are given in table- 4, 5 and 6. 
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Table 4. Makespan for partial sequence 3-1-2 Table 5. Makespan for partial sequence 3-2-1 
 Machines (m) 

1 2 3 4 5 

Jobs 
3 9/9 4/13 5/18 8/26 6/32 
1 5/14 9/23 8/31 10/41 1/42 
2 9/23 3/26 10/41 1/42 8/50 

 

 Machines (m) 
1 2 3 4 5 

Jobs 
3 9/9 4/13 5/18 8/26 6/32 
2 9/18 3/31 10/31 1/32 8/40 
1 5/23 9/32 8/40 10/50 1/51 

 

 
Table 6. Makespan for partial sequence 2-3-1 

 Machines (m) 
1 2 3 4 5 

Jobs 
2 9/9 3/12 10/22 1/23 8/31 
3 9/18 4/22 5/27 8/35 6/41 
1 5/23 9/32 8/40 10/50 1/51 

 

 
There possible combinations tested above show that sequences 3-2-1 (Table 4) is the best with 
makespan = 50. 
 
Step 5: i not equal to n, hence i= 3+1 = 4, and go to step 4 
Step 4: Pick the job in the fourth position of the list of step 2 (job 4) and find the optimal 
sequence by placing job 4 in the last step 4. Calculations of the makespans are given in table 7 
to 10.  
 

Table 7. Makespan for complete sequence  
3-1-2-4 

Table 8 .Makespan for complete sequence  
3-1-4-2 

 Machines (m) 
1 2 3 4 5 

Jobs 

3 9/9       4/13        5/18        8/26      6/32 
1 5/14     9/23        8/31      10/41      1/42 
2 9/23     3/26      10/41       1/42       8/50 
4 4/27     8/35        8/49       7/56       2/58 

 

 Machines (m) 
1 2 3 4 5 

Jobs 

3 9/9       4/13        5/18        8/26      6/32 
1 5/14     9/23        8/31      10/41      1/42 
4 4/18     8/31       8/39         7/48      2/50 
2 9/27           3/34      10/49       1/50 8/58 

 

 
Table 9. Makespan for complete sequence  

3-4-1-2 

 
Table 10. Makespan for complete sequence  

4-3-1-2 
 Machines (m) 

1 2 3 4 5 

Jobs 

3 9/9 4/13 5/18 8/26 6/32 
4 4/13 8/21 8/29 7/36 2/38 
1 5/18 9/30 8/38 10/48 1/49 
2 9/27 3/33 10/48 1/49 8/57 

 

 Machines (m) 
1 2 3 4 5 

Jobs 

4 4/4       8/12        8/20        7/27      2/29 
3 9/13     4/17        5/25        8/35      6/41 
1 5/18     9/27       8/35        10/45     1/46 
2 9/27     3/30      10/45        1/46      8/54 

 

 
The sequence 4-3-1-2 yields the minimum makespan of 54 (Table 10). 
Step 5:  i = n, hence STOP. 
This  problem  was  solved  for  the  optimal  makespan  by  evaluating  all  n! = 24 sequences 
and the sequence 4-3-1-2 is optimal.  The  proposed  algorithm  made  nine  enumerations  of 
which  four  were  complete  sequences  and  five were  partial  sequences.  It  should  be  
noted  that the number  of enumerations  will  increase  if  ties exist  in  partial  sequences  and  
each  tied sequence  is  examined. 
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5.2  Triangular Fuzzy Number (Fuzzyfication) 
 
Triangular fuzzy number jkt~ is represented as: 
 

=jkt~ ;
n

s
)(tt,t,

n
s

)(tt jk
21njkjk

jk
11njk 








+− −− ββ  

 
Where, S2 is Variance and Sjk is Standard deviation.  
 

( )

1n

xx
S

n

1k

2
k

2

−

−
=
∑
=  

 
Let, β1 = 0.005; β2 = 0.045; β = β1 + β2 =0.05; 
From students t-distribution chart: (for 9 degree of freedom) 

tn-1(β1) = 3.250, tn-1(β2) = 1.9188 ; n = 10 
 
5.3  Defuzzyfication 
 

( ) ( ) ( ) ( ) ( ) λλλρλλλλλλρ df1z)1(dfydf1xM
1

0
i

1

0
i

1

0
ii ∫∫∫ −−++−=  

 
Where f(λ) is a continuous positive function defined on [0,1], which serve to subjectively 
express the importance of  λ-levels, it means that all λ-levels have the same importance; when 
f(λ)=λ, the importance of λ-level increases with higher value of λ. 
Now putting f(λ)= 1. 

 
 [ ] [ ] [ ]102

i
1
0

2
i

1
0

2
ii 2z)1(2y2xM λλρλλλρ −−++−=  

= ρ xi (0.5) + yi (0.5) + (1- ρ) zi (0.5) 
 
Fuzzy makespan are calculated for the possible job sequences and represented by triangular 
fuzzy numbers. The job sequences S1= (3-2-1-4), S2= (4-3-2-1), S3= (3-4-2-1) and S4= (3-2-
4-1) have makespan =1M~ (115.05, 128.70, 139.59), =2M~ (125.88, 139.82, 151.06), =3M~  
(121.81, 139.32, 150.64), =4M~  (118.95, 135.32, 146.71) respectively and they are given in 
Fig. 3. 

 
Fig. 3. Fuzzy makespan of S1, S2, S3 and S4 

 
Suppose the decision maker sets ρ = 0.3 and f(λ)= 1 for this problem. The proxy values Mk of 
each kM~ are calculated as: M1 = 130.464, M2 = 141.663, M3 = 140.650, M4 = 136.851. Thus 
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1M~ has the makespan with respect to the decision maker’s preference for ρ, and S1 is the best 
job sequence. 
 
The value of ρ affects the result in the sequencing process. The value of M1 M2 M4 and M4 are 
calculated for ρ=0, ρ=0.7, and ρ=1are shown in Table 11. 
 

Table 11. Values of ,M k k = 1, 2, 3, 4 for ρ =0, 0.7, and 1. 
For ρ = 0 For ρ = 0.7 For ρ = 1 

M1 = 134.145 M1 = 125.556 M1 = 121.875 
M2 = 145.440 M2 = 136.627 M2 = 132.850 
M3 = 144.980 M3 = 134.889 M3 = 130.565 
M4 = 141.015 M4 = 131.299 M4 = 127.135 

 
The results are shown in Figure 4 shows how M1, M2, M4, and M4 change when ρ vary from 1 
to 0. No matter what value ρ takes, M2 is always the largest number. Through the analysis of 
what will happen with changing ρ, a clear knowledge can be obtained how to set ρ to achieve 
the desired result. 
  

 
 

Fig. 4. Change of M1, M2, M3 and M4 with varying ρ 
 
 

6.  Conclusion 
 
Fuzzy control is supposed to be a good and attractive method in the sense that it can imitate 
human reasoning and thinking. The control process can automatically be done by a computer 
to replace human beings if such a fuzzy controller can be designed with good performance. 
Besides, control knowledge can be accumulated and improved in the course of time.  
 
The fuzzy control structure looks very general and simple, consisting of four units. However, 
very concrete decisions should be taken in each unit by choosing one alternative from 
numerous choices. It is extremely difficult, if not impossible, to say which choice in each unit 
is absolutely better than the others because all units of a fuzzy controller are in one way or 
another interrelated. The choice preferences are obtained by empirical studies and analysis, 
which are helpful for designing a reasonable or workable fuzzy controller. But it cannot be 
said that an optimal control solution can be found even given a very concrete case because of 
the lack of systematic design guidelines. One who is involved in the application of fuzzy 
control concepts often feels frustrated by the current status of fuzzy control theory.  
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