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Abstract

Water Hammer problems are complex and time-consuming even with very simple calculation method and usual
boundary conditions. One of the important procedures for solving the governing equations (PDE) of unsteady
flows is finite difference method. One procedure for simplifying the governing equations is neglecting the

nonlinear terms such as Vﬂﬂ,v'l%—H without considering the amount of errors that are created with this
X X

process. Therefore in this paper, the phenomenon of water Hammer in the tank, pipe and val ve system has been
investigated in two manners, one with full equations and other with neglecting the nonlinear terms. For doing
this, an FDM code has been written in MATLAB and the amounts of head along the pipe in sequential times and
the differences between two manners have been given in diagrams. The obtained results indicate that for iron
pipe with different friction coefficient (smooth, perennial and worn) by decreasing Chezy coefficient, wave
damping increases and the effect of nonlinear terms decreases.
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1. Introduction

Water Hammer is caused by an abrupt change of flow velocity in a pipe. When it is created,
water Hammer is propagated in the form of a wave through all parts of the system connected
to it, and is a function of flow geometry and pipe characteristics. Water Hammer is assumed
to be an elastic phenomenon and is expressed by continuity and momentum equations[1,2].
Finite difference method is among techniques commonly used for solving partial differential
equations and plenty of its applications exist in. The effect of nonlinear terms on process of
solving partial differential equations is an issue which has not been studied much in
hydraulics engineering. Therefore in the present research water Hammer phenomenon has
been studied for hyperbolic differential equations with similar initial and boundary conditions
and different friction coefficients, and the results obtained from finite difference method have
been compared in two cases.

2. Governing equations and formulation

Mathematical model of this phenomenon includes the two principles of continuity and
momentum, and the respective nonlinear partial differential equations are as follows:
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where H and V are values of pressure head and vel ocity as unknown parameters, respectively;
g isearth’s gravity constant; C is wave velocity; and f isfriction coefficient which depends on
pipe diameter and pipe smoothness [4].

An appropriate approach for simplifying the above mentioned nonlinear equations is to
neglect the nonlinear termsg?/ﬂﬂ, va—HQ. If water Hammer phenomenon occurs in a short

X X @

time period, frictional damping will be small and the equations (1) and (2) are summarized as
follows considering small amount of flow velocity compared to wave propagation velocity:
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Equations (1) and (2) are nonlinear differential equations, while equations (3) and (4) are
linear differential equations which become complete by defining initial and boundary
conditions. The mentioned equations can be solved by numerical computation of finite
differences on nodes at time and position intervals. To solve them, the pipe is assumed to be
broken down into several discrete segments with defined lengths, and for each segment the
values of pressure head (H) on nodes and velocity (V) in middle of the segment are
caculated. Fig. 1 schematically demonstrates integration procedurein (x, t) plane [3, 4].

Fig. 1. Integration procedure in (X, t) plane using FDM method

Making use of the algorithm shown in Fig. 1 and finite difference approximation, the
equations (1) to (4) are expanded as follows:
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where indices i and n denote position and time, respectively. To expand V' in mentioned
equations, Lax formulation has been used as follows:

v o=Yin® Via 9)

Also, for solution's stability, Courant condition has been used as integration criterion as
follows:

| :E<l (10)

3. Experimental/Applied example

A pipe is assumed to possess following properties: length, 6000 m; diameter, 50 cm;
thickness, 4 mm,; output head, 5 m; wave velocity, 2980 m/s; output flow velocity, 9.9 nv/s.
Discharge is stopped in 2 seconds by a valve at the end of the pipe. Flow cross-section
changes linearly by the valve. At beginning of the pipe, pressure head is equal to water depth
in tank and is assumed to be constant. At the end of the pipe, boundary conditions depend on
flow velocity and flow cross-section, and are calculated from the following equation:

v =%@ (1)

4. Analysisof resultsand discussion

Numerical solutions by FDM method were yielded from program written in MATLAB
environment for smooth iron pipes with Chezy coefficient equa to 130, for perennial iron
pipes with Chezy coefficient of 100, and for worn iron pipes with Chezy coefficient of 80 [5],
and the following graphs were obtai ned.

Figs. 2 and 4 demonstrate changes in water head versus time at end part and middle of the
pipe considering its material in two cases, i.e. with and without nonlinear terms, respectively.
Furthermore, differences in water head values at the two mentioned cases for end and middle
nods are presented in Figs. 4 and 5, respectively. For instance in Figs. 2 and 4 the water head
values at the two cases with and without considering nonlinear terms are provided for smooth
iron pipes; the difference is not however much obvious due to high level of water head
existing in the pipe. Therefore, these difference values are shown in Figs. 3 and 5 and are in
therange of 10 and -6 m water depth. Changes of water head along the pipe at times of 10 and
20 s considering the pipe material in the two mentioned cases, as well as differences between
water head values along the pipe at times of 10 and 20 s are illustrated in Figs. 6 to 9,
respectively.
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Fig. 2. Changes of water head versus time at end of the pipe considering the pipe material in
the two cases, i.e. with and without considering nonlinear terms
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Fig. 3. Differences between water head values obtained in the two mentioned cases versus
time at end of the pipe considering the pipe material
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Fig. 4. Changes of water head versus time in middle of the pipe considering the pipe material
in the two cases, i.e. with and without considering nonlinear terms
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Fig. 5. Differences between water head values obtained in the two mentioned cases versus
time in middle of the pipe considering the pipe material
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Fig. 6. Changes of water head along the pipe at t = 20 s considering the pipe material in the
two cases, i.e. with and without considering nonlinear terms
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Fig. 7. Changes of water head along the pipe at t = 10 s considering the pipe material in the
two cases, i.e. with and without considering nonlinear terms
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Figs. 9. Changes in water head values obtained in the two mentioned cases
aongthepipeatt=20s

With numerical considering of mentioned figs, it has concluded that increasing of Chezy
coefficient will result in increase of pure mean differences between two methods. Relations
between them in pipe length and continued times respectively screened in figs 10, 11.

But the point that is mandatory is that the maximum differences resulted from removing non-
linear sentences in pipe length in continued times, were not constant and were in resonance.
This pointed in Fig. 12.
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Fig. 11. Mean absolute value of the difference at end part and middle of the pipe

versus Chezy coefficient

21



|—l
|—l.
| 1
"
=

Place of maximum error (Node no.)
|—l
R MNWRLONW®WO
’-
-—

0 2 4 6 8 10 12 14 16 18 20
Tiime (Second)

Fig. 12. Position of maximum error caused by removal of nonlinear terms

5. Concluson

In the present paper, partial differential equations of water Hammer were solved in two cases,
i.e. by considering and neglecting nonlinear terms, using FDM method for Chezy coefficients
mentioned in the text, and numerous results were yielded. The most significant results are as
follows:

1. Increasing Chezy coefficient has led to increase in mean absolute value of the difference
between the two mentioned cases (see Figs. 10 and 11).

2. According to Figs. 2to 5, behavior of wave isin good agreement at nonlinear and linear
cases, thus by removing nonlinear terms the solution can be generalized to complete equation
with an acceptable error.

3. Difference between the two mentioned cases is not constant along the pipe, and it changes
according to Fig. 12.
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