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Abstract 

During the past decades, inherent complexity of practical structural optimization problems motivated the researchers to 

develop efficient and robust optimization techniques. Undoubtedly, most of the recently developed optimization 

algorithms for optimum design of skeletal structures belong to the class of stochastic search algorithms or 

metaheuristics. This study is an attempt to outline the state-of-the-art in optimum design of skeletal structures as well as 

today’s main concerns in this field. Some of the most recent applications of metaheuristics are summarized, and a brief 

conclusion of today’s trend towards the computationally enhanced techniques is provided. 
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1. Introduction 

Typically, an optimal design problem is composed of three basic elements: (i) objective function, (ii) 
design variables, and (iii) constraints. In structural design optimization usually weight or cost of the 
structure is taken as the objective function of the problem. Here, the fundamental aim is to minimize 
the final weight or cost of the structure which is a function of the design variables. The design 
variables are those parameters which are to be determined by the designer in order to generate an 
optimal solution. Furthermore, in practical applications achieving an optimum design should be 
carried out with respect to a set of strength and serviceability limitations i.e. design constraints.  

In the literature, classifying the structural optimization problems is basically carried out regarding the 
type of design variables involved. It is worth mentioning that since optimum design of continuum 
structures is out of the scope of this study, the followings explicitly cover optimum design of skeletal 
structures (either truss or frame structures). Generally, optimum design of skeletal structures is 
divided into three main categories as sizing, shape, and topology optimization. In sizing optimization 
the cross sectional areas of structural members are considered as design variables. This can further be 
divided into two subcategories in terms of the nature of the design variables employed: continuous 
and discrete. In continuous sizing optimization any positive value can be assigned to cross sectional 
areas of elements. However, this is usually not the case in practical applications, where structural 
members should be adopted from a set of available sections. The latter is addressed to discrete sizing 
optimization. In shape optimization, the best positions of a selected group of joints in a structure are 
determined. Due to practical aspects this type of design optimization is usually involved in optimum 
design applications of truss structures rather than frames. In both the aforementioned optimization 
categories topology of a structure is assumed to be fixed. However, it is sometimes more expedient 
to search for the optimum topology of a structure, which entails considering the presence or absence 
of structural components, such as elements and nodes. 
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Since in practical sizing optimization of skeletal structures usually the structural members are to be 
adopted from a set of available sections, the design problem turns into a discrete sizing optimization. 
Here the aim is to seek for the best set of ready sections which yield the optimum design. Although 
for a given structure in fact the number of candidate solutions is numerically limited, however, in 
real world applications performing an exhaustive search is not possible in a timely manner. 
Therefore, structural optimization techniques have been proposed for locating the optimum or a 
reasonably good near optimum solution through investigating a portion of the design space in a 
reasonable computational time. These techniques as well as their applications in design optimization 
of structural systems are outlined in the following sections. 

2. Structural Optimization Techniques 

During the past decades, inherent complexity of practical structural optimization problems motivated 
the researchers to develop efficient and robust optimization techniques. Basically, structural 
optimization methods can be divided into two main categories: (i) traditional methods (ii) modern 
techniques. Two main categories of traditional structural optimization methods include mathematical 
programming and optimality criteria approaches, whereas heuristics or metaheuristic search 
techniques are referred to as the modern structural optimization methods. An overview of these 
techniques is provided in this section as follows. Mathematical programming techniques are amongst 
the well known classes of structural optimization techniques which work based on gradients of the 
objective function. The basic idea is to move in the negative direction of the gradient of the objective 
function to find a more promising candidate design. Many studies have been conducted on 
application of mathematical programming techniques in structural design optimization so far [1-4]. 
However, it is generally convinced that mathematical programming techniques are not efficient for 
optimum design of structural systems having numerous design variables. Another class of traditional 
structural optimization techniques covers optimality criteria methods. Typically in optimality criteria 
methods first a set of necessary optimality criteria (such as Kuhn-Tucker conditions) are derived for 
the design. Next, in order to generate an optimum design a recursive algorithm is employed to update 
the structural members for satisfying the optimality criteria. Early works on optimality criteria 
methods are due to Prager et al. [5], Prager [6], and Venkayya et al. [7]. Later, numerous variants of 
the optimality criteria methods are applied to optimum design of pin-jointed (Feury and Geradin [8], 
Fleury [9], Saka [10]) and frame structures (Tabak and Wright [11], Khan [12], Chan et al. [13]).  

It is worth mentioning that the well known fully stressed design (FSD) (Gallagher [14], Patnaik et al. 
[15]) can be also considered as a simple stress-ratio optimality criteria technique which can only deal 
with stress constraints. An extension of FSD to handle both stress and displacement constraints is 
fully utilized design (FUD). The FUD includes two main steps (i) providing a FSD considering stress 
constrains (ii) prorating the FSD to obtain the FUD. The proportion parameter is computed with 
respect to the most violated displacement constraint. Although FUD is capable of generating a 
feasible solution through a small number of structural analyses, the obtained solution can be an 
overdesign. Patnaik et al. [15] developed a modified fully utilized design (MFUD) using the 
integrated force method (IFM) of structural analysis [16], however the study was limited to truss 
structures. The MFUD technique which can be also developed using the displacement method of 
structural analysis [15] employs some basic concepts of structural mechanics for optimal sizing of 
truss structures under both stress and displacement constraints. Hence, further research on 
application of the MFUD in practical optimum sizing of truss structures seems fruitful. 

Basically, traditional structural optimization techniques i.e. mathematical programming and 
optimality criteria are developed for handling continuous design variables, hence, they are not 
effective for tackling practical discrete optimization instances. Furthermore, gradient based 
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formulations of such methods entail different types of approximations which sometimes are far from 
the reality. Therefore, due to the shortcomings of traditional techniques in handling real world design 
optimization instances, in the recent decades, stochastic search techniques or metaheuristics have 
received an increasing attention and found plenty of applications in structural optimization field. In 
general, metaheuristic techniques, such as genetic algorithms (GAs) [17], particle swarm 
optimization (PSO) [18], ant colony optimization (ACO) [19], etc., borrow their working principles 
from natural phenomena [20]; and follow non-deterministic search strategies in locating the optimum 
solutions. The rising popularity of these techniques arise from (i) the lack of dependency on gradient 
information; (ii) inherent capability to deal with both discrete and continuous design variables; and 
(iii) automated global search features to produce near-optimum solutions (if not the global optimum) 
for complicated problems. In addition, the simplicity in their coding makes it possible to avoid 
cumbersome formulations frequently encountered with traditional structural optimization technique, 
and renders them ideal and prevalent tools for structural optimization applications. The state-of-the-
art reviews of metaheuristic algorithms and their applications in structural optimization problems can 
be found in Saka [21], Lamberti and Pappalettere [22], Saka and Geem [23], and Hare et al. [24]. 

3. Metaheuristics Based Structural Optimization 

Indeed, in the recent years, most of the optimization algorithms developed for optimum design of 
truss and frame structures belong to the class of stochastic search algorithms or metaheuristics. 
Besides various inspiration resources reported in the literature for development of metaheuristic 
search techniques, in fact these techniques have similar characteristics. Basically, a metaheuristic 
structural optimization algorithm aims to locate the global optimum in the solution space through 
generating candidate solutions in an iterative way. Roughly speaking, the fundamental idea is to seek 
the vicinity of more promising candidate designs found so far to drive the search towards more 
reliable portions of the solution space. Since working principals of these techniques are somewhat 
identical, a general description is provided here. Detailed descriptions of various types of 
metaheuristic algorithms can be found in [20]. 

Typically, a metaheuristic structural optimization algorithm initiates with a population of randomly 
generated candidate designs. Then in order to investigate the quality of generated designs, each 
candidate design is evaluated with respect to a merit function which can be the objective function of 
the problem. Once merit or fitness of each candidate design is computed, new candidate designs can 
be generated using the obtained information from the formerly generated designs. Generally, 
different mechanisms and operators are utilized for generating a new population of solutions to guide 
the search towards the optimum. In fact the key difference between the algorithms is in the way that 
they propose the next move in the solution space. In metaheuristics generation of new populations is 
iteratively performed until a predefined termination criterion, which is usually the maximum number 
of iterations, is met. The last iteration of a metaheuristic algorithm is expected to include the 
optimum or a reasonably good near optimum design. Many studies have been conducted on 
structural optimization using metaheuristics so far. Some of the most recent applications of these 
algorithms in optimum design of truss and frame structures are outlined as follows. 

In fact GAs [17] are the most well known metaheuristic algorithms frequently employed for 
structural optimization applications. Kameshki and Saka [25] studied the effect of bracing on the 
optimum design of planar steel frames using GAs. In their study, first, a 15 story frame was designed 
assuming rigid beam column connections and fix supports, as well as rigid frame with pin supports. 
Then the same frame, with pin supports, was designed assuming pin beam-column connections with 
four types of frequently used bracing systems. Through investigating X-bracing, X-bracing with 
outrigger truss, V-bracing and Z-bracing systems they presented a clear numerical comparison 



S. Kazemzadeh Azad and O. Hasançebi 

4 
 

among the minimum weights obtained for all the aforementioned systems. According to the reported 
results X-bracing provided the minimum weight frame in comparison to the other considered 
structural systems. 

Kameshki and Saka [26] presented a GA for optimum design of steel frames with semi-rigid 
connections based on BS 5950 (1990) [27] specifications. Considering the optimum design of two 
unbraced steel frames with end plate connection without column stiffeners, it was deducted that the 
semi-rigid connection modeling produces lighter designs. In their work the number of investigated 
semi-rigid connections was limited to one type. In a more comprehensive study, Kameshki and Saka 
[28] evaluated the effect of connection flexibility and the geometric non-linearity of the frame 
members in the optimum design of planer steel frames. A GA based approach was employed for 
optimization of three unbraced steel frames with rigid and three different types of semi-rigid 
connections. It was demonstrated that considering the geometric nonlinearity, in the analysis stage, 
leads to lighter frames in case of rigid connections. 

Kaveh and Kalatjari [29] employed the force method for structural analysis stage of a genetic 
algorithm based structural optimization technique. Considering optimum design of truss structures 
they demonstrated the computational efficiency of the proposed method. Hayalioglu and Degertekin 
[30] developed a genetic algorithm for cost efficient design of steel frames with semi-rigid 
connections and column bases. The optimization results of three planar steel frames using eight 
different types of semi-rigid connections and column bases was compared to those obtained using 
rigid connections. According to the presented numerical results, instead of using rigid connections, 
sometimes choosing specific types of semi-rigid connections could to be more economical. It should 
be noted that, since the study does not cover seismic loading, the conclusion cannot be generalized 
for the steel frames exposed to seismic loads. Later, Degertekin et al. [31] investigated the efficiency 
of the tabu search and genetic algorithm in design optimization of geometrically nonlinear steel 
space frames based on the AISC-LRFD (1995) [32] specifications. According to the investigated 
examples, tabu search (TS) algorithm resulted in lighter designs. Recently, Kazemzadeh Azad et al. 
[33] developed a mutation based GA for sizing and shape optimization of planar and spatial truss 
structures. An adaptive tournament selection mechanism in combination with adaptive Gaussian 
mutation operators were used to achieve an effective search in the design space. The efficiency of the 
proposed GA was demonstrated using design examples of truss structures with both discrete and 
continuous design variables. 

The PSO algorithm proposed by Kennedy and Eberhart [18] is another popular metaheuristic search 
technique with extensive applications in the field of structural design optimization. Fourie and 
Groenwold [34] applied the PSO algorithm to design optimization instances with sizing and shape 
variables and compared its performance to that of GA as well as three gradient based techniques. 
Considering optimum design of three truss structures and a torque arm the authors demonstrated the 
suitability of the PSO in tackling structural optimization problems. Perez and Behdinan [35] 
investigated the effect of different parameter settings on the efficiency of the PSO algorithm through 
optimal design of classical truss optimization instances. Li et al. [36, 37] proposed improved variants 
of the PSO as heuristic PSO algorithms for optimum design of truss structures. Further, Kaveh and 
Talatahari [38] developed a hybrid version of the PSO algorithm for discrete sizing optimization of 
truss structures and demonstrated its promising performance. Luh and Lin [39] used a two stage PSO 
algorithm for minimum weight design of truss structures. In their approach first a topology 
optimization is performed using a ground structure and next sizing and shape optimizations are 
carried out to locate the minimum weight design. Recently, Gomes [40] employed the PSO algorithm 
for sizing and shape optimization of truss structures with frequency constraints and reported 
promising performance of the technique. 
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Geem et al. [41] developed the harmony search (HS) algorithm as a new meta-heuristic technique. 
Later, Lee and Geem [42] used the algorithm for sizing optimization of truss structures and 
demonstrated its efficiency compared to conventional mathematical methods as well as genetic 
algorithm. They concluded that the algorithm can be also employed for optimum design of other 
types of structures such as frame, plate or shell structures. Saka [43] demonstrated the efficiency of 
the HS algorithm in optimum geometry design of single layer geodesic domes. In their approach the 
height of the dome crown was treated as a design variable along with the cross-sectional designations 
of dome members. Later, Carbas and Saka [44] employed the algorithm for design optimization of 
single layer network domes. Saka [45] used the HS algorithm for optimum design of steel sway 
frames. Recently, Hasancebi et al. [46] presented an adaptive harmony search algorithm for 
structural optimization and employed it for sizing optimization of a 162-member braced planar steel 
frame and a 744-member unbraced space steel frame. Unlike the standard HS algorithm where the 
control parameters are typically set to constant values, in their algorithm these parameters are 
adaptively tuned during the search to establish a tradeoff between the exploration and exploitation in 
the design space. They illustrated the efficiency of their adaptive approach through comparison of the 
obtained numerical results with those of four other metaheuristic algorithms. 

Another novel metaheuristic algorithm is a nature-inspired method so called artificial bee colony 
(ABC) algorithm which is proposed by Karaboga [47]. One recent application of this algorithm in 
sizing optimization of planar and space truss structures is due to Hadidi et al. [48]. The authors 
proposed some modifications in the original algorithm and reported satisfactory results of optimum 
design of four truss structure examples. Sonmez [49] used a discrete ABC algorithm for optimum 
design of truss structures with up to 582 members and reported promising performance of the 
algorithm compared to the other well known metaheuristic techniques. Furthermore, Sonmez [50] 
employed the ABC algorithm with an adaptive penalty function approach for minimum weight 
design of truss structures with fixed geometries. Besides the available works in the literature on 
application of the ABC in optimum design of truss structures, further research is required to 
investigate the performance of the algorithm in optimum design of steel frames. 

Erol and Eksin [51] introduced a new metaheuristic optimization method called Big Bang–Big 
Crunch (BB-BC) algorithm. Due to the simple algorithmic outline of the method as well as its 
efficiency in tackling practical optimization instances, it has become one of the popular 
metaheuristics of the recent years. The first application of the algorithm in optimum design of 
skeletal structures was carried out by Camp [52]. In his work the optimum design of planar and 
spatial truss structures was performed using a modified version of the algorithm. In order to increase 
the efficiency of the BB–BC algorithm, Camp [52] introduced a weighting parameter to control the 
influence of both the center of mass and the current global best solution on new candidate solutions. 
Further, a multiphase search strategy was employed to increase the quality of final solution. The 
study demonstrated the efficiency of the BB–BC algorithm in comparison to the previously reported 
GA, PSO, and ACO based approaches. Later, Kaveh and Abbasgholiha [53] adopted the Camp’s 
strategy of generating new candidate solutions for design optimization of planar steel sway frames. 
Lamberti and Pappalettere [54] proposed an improved version of the BB-BC algorithm for weight 
minimization of truss structures and reported promising results using four benchmark truss 
optimization instances. Kaveh and Talatahari [55-57] developed hybrid versions of the BB-BC 
algorithm for optimum design of different types of skeletal structures. Recently, in Kazemzadeh 
Azad et al. [58] the success of BB-BC algorithm in benchmark problems of engineering optimization 
is investigated. 

Charged system search (CSS) is a very recent meta-heuristic optimization algorithm proposed by 
Kaveh and Talatahari [59]. The authors employed the algorithm for optimum design of skeletal 
structures including three truss and two frame structures [60]. The study revealed the efficiency of 
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the CSS in comparison to the other heuristic methods. In another study the authors applied a discrete 
version of the algorithm to sizing optimization of different types of truss structures with fixed 
configurations [61]. Furthermore, an enhanced version of the CSS algorithm is used for configuration 
optimization of truss structures in Ref. [62]. Additionally, the efficiency of the charged system search 
is demonstrated considering the optimum design of three benchmark examples of frame structures 
with up to 290 members by Kaveh and Talatahari [63]. 

Besides the above-mentioned algorithms, numerous metaheuristic search techniques have been also 
developed in the recent years to deal with challenging optimization problems [64, 65]. Due to the 
variety of metaheuristic techniques available in the literature of structural optimization, adopting an 
appropriate method for practical applications may turn into a confusing task. Therefore, comparison 
and performance evaluation of optimization algorithms can lessen the burden of choosing an efficient 
algorithm to deal with a given design optimization problem. In this regard, Hasançebi et al. [66] 
evaluated the performance of seven metaheuristic optimization algorithms in optimum design of real 
size pin jointed structures. The investigated algorithms include GA, simulated annealing (SA) [67], 
evolution strategies (ES) [68], PSO, tabu search (TS) [69], ant colony optimization (ACO) and HS. 
The algorithms were compared through design optimization of four real size truss structures 
according to the design limitations of AISC-ASD (1989) [70]. The study revealed the superiority of 
SA and ES to the other techniques in design optimization of truss structures. Later, Hasancebi et al. 
[71] investigated the performance of the above mentioned algorithms in design optimization of steel 
frames with rigid connections. In the studied three steel frame examples, the two best performances 
were related to ES and SA algorithms amongst the other techniques. The study provides general 
guidelines for future practical applications of metaheuristics in design optimization of steel frames. 

4. Today's Dilemma in Practical Structural Optimization 

Despite many studies conducted on developing efficient optimization algorithms for structural 
optimization applications, no unique method is accepted to be the most successful approach for 
optimum design of skeletal structures so far. Basically, two main factors determine the efficiency of 
a design optimization algorithm. The first criterion is optimality of the obtained final design and the 
second measure is speed of the algorithm in finding the optimum solution. The latter is highly 
dependent on the number of structural analysis required in the optimization process to locate the 
optimum or a relatively good near optimum solution. In spite of many advantageous characteristics 
of modern structural optimization techniques namely metaheuristics, the slow rate of convergence 
towards the optimum as well as the need for a high number of structural analyses are conceived as 
the downside of the search features of these techniques in structural optimization applications. It is 
known that response computations of designs sampled during a search process usually occupies 85-
95% workload of a metaheuristic technique [72], and thus large number of structural analyses 
substantially increases the total computing time. Here, one solution to this is to reduce the total 
computational time by taking advantage of high performance computing methods, such as parallel or 
distributed computing methods. The idea in this approach is to distribute the total workload of the 
algorithm amongst multiprocessors of a single computer or within a cluster of computers connected 
to each other via local area network. In Hasançebi et al. [72] it is shown that a maximum speedup 
ratio between 12.2 and 16.8 can be achieved for three large-scale design examples solved using a 
cluster computing system consisting of 32 processors.  

Another approach, which is more straightforward and easier to apply, is to develop efficient 
strategies for diminishing the number of structural analyses required in the course of optimization. 
The latter, can be carried out by proposing efficient optimization techniques that are able to locate a 
reasonable solution using fewer numbers of structural analyses, i.e. less computational effort [73]. 
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Considering the above mentioned issues today there is a great demand for optimum design 
algorithms capable of handling practical design instances in a timely manner, of course without 
employing expensive high performance computing techniques. 

5. Concluding Remarks 

Although numerous studies demonstrate the applicability of modern optimization techniques in 
structural design optimization, still optimization is not established well in practical design of skeletal 
structures basically due to the fact that enormously time consuming procedures of modern techniques 
make structural engineers reluctant to use them in real world applications. The computational 
inefficiency of modern techniques makes it almost impossible to use them for large scale 
applications without utilizing expensive high performance computing techniques. As a result of this, 
structural engineers generally do not receive benefits of optimization in large scale applications 
wherein optimality of final designs are much more important in comparison to small size structures. 
In the other words, there is a great demand for robust and efficient algorithms capable of handling 
large scale systems without employing high performance computing techniques. Regarding this issue 
the new trend of structural design optimization is towards developing automated optimum design 
tools capable of locating promising solutions in a reasonable computational time for practical 
applications. There is a great need for robust and efficient algorithms capable of handling large scale 
systems in a timely manner. 
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