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Abstract 

Harmonic solid ring finite elements are commonly used in the analysis of axisymmetric structures subjected to 
non-axisymmetric as well as axisymmetric loadings. Depending on the material and/or geometrical properties of 
axisymmetric problems the finite element analysis may produce erroneous solutions due to approximations 
assumed in the formulation. Volumetric and shear locking are the some troublesome behaviors of some finite 
elements. In this study, finite element formulations of 4-noded (Ring4) and 9-noded (Ring9) ring elements are 
developed considering constant and linear shear locking effect for the element types, respectively, by 
incorporating selectively reduced integration technique. A computer program is coded in Matlab for the purpose 
and the performances of both elements are explored in terms of locking issue as well as accuracy. For this 
purpose several axisymmetric problems are solved such as hollow thick cylinder and circular plate problems. 
Numerical results indicate that while Ring9 does not suffer from volumetric locking for high values of Poisson’s 
ratios Ring4 suffers. Besides, while Ring4 with full integration displays shear locking effects Ring4 with 
selectively reduced integration eliminates the locking. The finite element formulations are explained in detail 
and the results of numerical examples are presented comparatively in graphical and tabular formats.                   
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1. Introduction 
 

Finite elements are versatile and most commonly used numerical method among researchers 
and practitioners to solve complex problems in engineering and science. Sometimes 
unpredicted behaviors under certain conditions can be experienced due to the approximations 
made in the finite element formulations. Assumptions made in the displacement functions to 
represent real behavior of the system and applications of programming friendly numerical 
integration techniques instead of continuous integration may end up with some erratic 
manners in the result. For instance, shear and volumetric locking are the most important 
problematic behaviors that can occur in finite element formulations. The locking phenomenon 
is characterized by a severe underestimation of the displacements, i.e. the structure is too stiff. 
The word “locking” means that the structure “locks” itself against deformations. Also, locking 
means the effect of a reduced rate of convergence for coarse meshes in dependence of a 
critical parameter such as thickness [1].When nearly incompressible material or thin shell 
applications are described using the standard finite elements some numerical problems or 
erroneous solutions may arise due to locking effects [2-4]. In order to alleviate locking 
problems several solutions are proposed in the literature [5-9]. Reduced and selectively 
reduced integration techniques, mixed formulation technique and enhanced strain method are 
the most common solution procedures described in literature. In this study the finite element 

International Journal of Engineering & Applied Sciences (IJEAS) 
Vol.7, Issue 1(2015)68-85  

  

 
 

 

 

 
 

 
  
 

 

 



Ali İ. Karakaş and  Ayşe T. Daloğlu 

69 
 

formulations of 4-noded (Ring4) and 9-noded (Ring9) harmonic solid ring with selectively 
reduced integration techniques are presented in general terms to solve locking problems in 
axisymmetric structures. In selectively reduced integration procedure the shear strain terms 
are only integrated using reduced Gauss points. In other words, in the stiffness formulations 
the normal strain terms are integrated using required number of Gauss points for the exact 
evaluation of integrals whereas the shear strain terms are integrated using lesser number of 
Gauss points. Additionally, the performance of the developed quadrilateral harmonic solid 
ring finite elements is investigated as far as volumetric and shear locking problems are 
considered for axisymmetric thin or thick solid structures. For this purposes several numerical 
studies are performed using the finite element program coded in Matlab. A thick cylinder is 
studied to mainly focus on volumetric locking by changing Poisson’s ratio, and shear locking 
is explained considering circular plate subjected to pure bending with varying thicknesses.      

  
 

2. Harmonic Finite Element Model 
 

For harmonic model in linear elastic analysis, it is possible to demonstrate both the loads and 
the displacement as Fourier series expansions in terms of circumferential coordinate θ [10]. 
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where m is the circumferential mode (harmonic) number and symbols ru , u  and zu  indicate 
the radial, circumferential and axial displacement components, respectively, see Fig. 1. All 
barred quantities in Eq.(1) are amplitudes approximated using the finite element method, 
which are functions of r, z but not of  . This produces a harmonic finite element in the (r, z) 
plane. Single and double barred amplitudes represent symmetric ( ( ) ( )f f   ) and anti-
symmetric ( ( ) ( )f f    ) displacement terms, respectively. The amplitudes of the 
displacement components in Eq. (1) can be interpolated from nodal amplitudes using the 
shape functions. Fig. 1 shows the shape and node numbering of the ring elements as well as    
coordinatesystems.                                                                                                                         
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Figure1: Displacement components, nodal numbering and cross sections of Ring4 and Ring9 elements. 

 
In this study the formulation of symmetric part of the harmonic ring finite element is 
presented for the simplicity and a detailed explanation and anti-symmetric formulation can be 
found in [11]. The vector of displacement field within the element can be described such that 
subscript im specifies that amplitude refers to node i  and harmonic m   [12].                             
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where is the nodal displacement vector for the Fourier term (mode) m and  N  is the   
shape functions matrix, which are defined as                                                                                
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where b=4 for bilinear (Ring4) and b=9  for biquadratic (Ring9) quadrilateral elements. The 
shape functions at each node i for both quadrilateral elements are given in [13, 14].                  
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Also, the matrices of harmonic functions for harmonic m are                             
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Strains and stresses in an element can also be stated in terms of the Fourier series. For a 
Fourier term m, the strain vector in cylindrical coordinates can be written as:                             
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 The strain displacement matrices can be stated as follows for harmonic m:                               

        
 

)7(  
 
 

     
     

11 12 1

21 22 2

....

....
m m m bm

m m mmm m m m bm

B B B B
B g B g g

B B B B


  


   
                        

    

 
 where mB    is the matrix which relates the symmetric nodal displacement amplitudes with 

corresponding strains and the matrix mg    of the harmonic functions for the harmonic m is: 
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and for the ith node, the submatrices are given as: 

 



Ali İ. Karakaş and  Ayşe T. Daloğlu 

72 
 

)10(  
,

1

,

0 0

0

0 0

i r

i i
im

i z

N
N mNB
r r

N

 
 
 
 
 
 

    

 

)11(  
, ,

,2

,

0

( ) 0

0

i z i r

i i
i rim

i
j z

N N
mN NB N

r r
mNN

r

 
 
 
   
 
 
 
 

    

 
The stress vector for the mth harmonic in the cylindrical coordinate system related to the strain 
vector through the constitutive equations is given for an isotropic material as follows [14]        
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in which [D] is the material property matrix for isotropic material given by the following     
equation where E modulus of elasticity and v  is Poisson’s ratio                                                  
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                    2.  Element Matrices 

2.1. The element stiffness matrix 
 
The stiffness matrix of a linear system is calculated from the derivation of the strain energy of 
an axisymmetric solid ring element [15]. The element strain energy is given as:  
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Substituting Eqs. (6) and (12) into Eq. (15) for single barred terms the stiffness matrix for 
symmetric terms in Fourier series expansion is obtained as:                                                         
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It can be observed that each term in the products of  
T
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         will be a function of ( E , v ) multiplied by either 2cos m  or 2sin m . 

Thus, integration over the circumferential direction θ can be carried out explicitly. The 
stiffness matrix of a quadrilateral ring element can be numerically integrated by Gauss 
quadrature rule which is very suitable for finite element applications. If both the bending (ε) 
and shear terms (γ) in the stiffness matrix are integrated using p1= p2 Gauss points then it is 
called Full Integration (FI). And it is called Selectively Reduced Integration (SRI) technique 
in which the bending terms are integrated using (p1)-point Gauss quadrature rule and the 
shear terms are integrated using (p2)-point Gauss quadrature rule. By taking explicit 
integrations and using numerical integration the stiffness matrices for symmetric terms are 
calculated from the following expressions:                                                                                   
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for m >0 

 

)18( 
    

   

1 1

1 1
2 2

1 1

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

p p
T

k l m k l m k l k l k l
k l

m p p
T

k l m k l m k l k l k l
k l

w w B E B r J
k

w w B E B r J

 

 

       


       

 

 

 
 
      
     
 




    

 
    
where k  and l  are the Gauss points abcissae whereas kw  and lw  are the corresponding 
integration weights. Also   ( , )m k lB     and   ( , )m k lB     mean that these matrices are 

evaluated at Gauss points; likewise for ( , )k lr   , the radius of Gauss point and ( , )k lJ   ,  
Jacobian determinant that transforms the element from global coordinates (r, z) to the natural 
coordinates (ξ, η). The number of Gauss points used for full and selectively reduced 
integration are given in Table 1.                                                                                                    

 
 

Table 1. Gauss point numbers 
Element Type Full integration(FI) Selectively Reduced Integration(SRI) 

 p1xp1 p2xp2 p1xp1 p2xp2 
Ring4 2x2 2x2 2x2 1x1 
Ring9 3x3 3x3 3x3 2x2 

  
 
2.2. The element force vectors 
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The consistent force vectors are calculated from the derivation of the work done by the 
applied loads. Using p-point two dimensional Gauss quadrature rule we have the following 
expressions for the consistent body force vectors for symmetric Fourier harmonics as:             

                                                                                                                                      
for    m=0                                                                                                   
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where  bmq  is the body load amplitude vector for the Fourier term m of symmetric loads. 

Also, unidimensional numerical integration can be applied for the consistent force vector 
associated with surface traction. Then we have the following expressions in which J  is the 
associated arc length Jacobian.                                                                                                      
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where  sN  is the values of  N at locations of surface load vectors and  smq is the surface 

load amplitude vector for the Fourier term m. 
 
3.  Solution Procedure  

 
In this study we are concerned with the solution of the simultaneous equations that arise in the 
static analysis of axisymmetric structures using finite element method. The matrix equation 
for static problems is given by  
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where mK    is the system stiffness matrix,  mU  is the system nodal displacement 

amplitude vector, and  mF  is the system nodal force amplitude vector for symmetric 
harmonic mode m and single barred terms in Fourier series expansion. Solution of the 
equation is obtained by the Gauss elimination procedure.                                                             



Ali İ. Karakaş and  Ayşe T. Daloğlu 

75 
 

4. Numerical Examples 

The static deformations of a hollow cylinder under various loadings, an internally pressurized 
thick cylinder and a circular plate bending problem are investigated for volumetric and shear 
locking behaviors using Ring4 and Ring9 harmonic solid finite elements. Full and selectively 
reduced integration techniques are applied to get rid of locking effect on both the elements 
and comparisons are made.                                                                                                            

4.1. Hollow Cylinder Under Various Loadings 

A hollow cylinder with length L=0.6m, inner radius a=0.05m and outer radius b=0.06m with 
modulus of elasticity E=2x1011Pa and Poisson’s ratio v=0.3 is considered as the first 
example. The cylinder is investigated under three different loading cases which are axial load, 
torque and lateral point load. The magnitude of the loads are Fz=8x103N, Tz=4.4x103N and 
P=1x103N, respectively. The boundary condition of the cylinder is completely fixed at one 
end and free at the other end. The loads are applied at the top of the hollow cylinder. The 
analytical solutions of this problem can be obtained from mechanic of materials for axial 
elongation, rotation and tip deflection [16].                                                                                   

 
 

Figure 2: FEM discretization for the hollow cylinder (a) 10-element Ring4 discretization (b) 5-element 
Ring9 discretization 

 
Finite element discretizations of the cylinder are shown in Fig.2. 10 Ring4 and 5 Ring9 
elements are used in the static deformation analysis under various loadings. The analytical 
results are compared with the ones obtained finite element method using Ring4 and Ring9 
elements and given in Table 2. All relative errors are measured with respect to the analytical 
method. Numbers in brackets indicate the number of finite elements used.                                 
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Table 1. Cylinder deformations under various loadings 

Deformation 
Method Relative error 

Ring4 (10) Ring9 (5) Analytical Ring4 Ring9 
Elongation(m) 6.870x10-6 6.882x10-6 6.945x10-6 1.1% 0.8% 
Rotation(rad) 3.255x10-3 3.255x10-3 3.256x10-3 0.03% 0.03% 
Tip deflection(m) 6.597x10-5 6.835x10-5 6.831x10-5 3.4% 0.06% 

 
Considering the relative errors it can be said that the results obtained using both the ring 
elements agree well with the analytical solutions. It seems from Table 2 that Ring9 gives 
better results when relative errors are considered due to quadratic shape functions used. Also, 
it should be noted that mesh refinement can decrease the relative errors. Finally it can be 
concluded that both elements produces accurate results and the program coded for the study is 
verified with exact solutions.                                                              .                                         

                                                                 

4.2. Internally Pressurized Thick Cylinder 

A cylindrical hollow tube of inner radius a=160mm and outer radius b=320 mm subjected to 
internal pressure P=150 MPa as shown Fig. 3 is analyzed next. The problem can be 
considered as a plane strain state since the tube extends indefinitely along the z direction. The 
material is isotropic with elastic modulus E=2x105 MPa and Poisson’s ratio v=0.2. A slice of 
thickness d is extracted and finite element discretizations are shown in Fig. 3(a, b) using four 
Ring4 and two Ring9 elements along the radial direction r and one along the axial direction z. 
The axial element number is assumed to be one because the solution only depends on r.  The 
nodes move in radial direction only and the support conditions are given in Fig.3(a, b).             

      

 
Figure 3: Two example FEM discretization for the pressurized thick cylinder (a) 4- element                 

Ring4 discretization of a slice (b) 2-element Ring9 discretization of a slice 
 

The exact stress distributions across the wall for a condition of plane strain in the z direction 
are obtained in [16]. The pressure lumping to the nodes on the inner radius r=a depends on 
the type of the element such as Pr1=Pr2 for Ring4 and Pr2=4Pr2=4Pr3 for Ring9. The radial 
stresses σr and hoop stresses or circumferential stresses σθ are graphically compared over the 
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wall a≤r≤b with the exact solutions in Fig.4 for various Poisson’s ratios. If the Poisson ratio is 
increased over zero, Ring4 results gradually lose accuracy if the number of elements are kept 
as 16 as shown in Fig. 4(a, b). It can be shown that when the material gets closer to the limit 
state of Poisson’s ratio for incompressibility the deterioration of the solution obtained speeds 
up. This phenomenon is known as volumetric locking in literature. Significant deficiencies 
can be observed. Also it should be noted that the volumetric locking is of a problem in such 
case that the plane strain condition does not allow the longitudinal expansion and contraction 
[1]. All stress components extremely oscillate as coming closer to the inner boundary and the 
values taken are meaningless. Besides a smaller stress oscillation can be observed at the outer 
boundary. For example, the radial stress is calculated as 48 MPa  instead of -150 MPa at r=a 
for 0.485v  . Modeling the same problem by using Ring9 makes a big difference. For an 8-
element mesh in radial direction the radial hoop stresses are graphically compared over 
a r b   with the exact solution in Fig. 4(c, d). As can be seen volumetric locking or 
oscillations are not observed, and the stresses are well predicted everywhere. The agreement 
with the exact solution is excellent with Ring9 elements.                                                         .  

                                                   

 

 

 
 Figure 4: Computed versus exact (a) radial stresses with Ring4 (b) hoop stresses with Ring4 (c) radial 

stresses with  Ring9  (d) hoop stresses with Ring9 for various values of Poisson’s ratio 
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4.3. Circular Plate Bending 

The last problem is a simply supported circular plate bending by a point load and uniformly 
distributed load as shown in Fig. 5(a). The plate has radius of R=10m and thickness of H=1m. 
The point load of magnitude P=500 kN acts downward at the plate center and uniformly 
distributed surface pressure of magnitude Po=5 kN/m2 acts downward over the whole top 
surface of the plate. The material is isotropic with elasticity modulus of E=30000 MPa and 
Poisson’s ratio of v=0.2. Two FEM discretizations are pictured in Fig. 5(b, c). For Ring4 
element 4x2, 8x2 and 16x2 discretizations are used, whereas for Ring9 the meshes are 2x1, 
4x1 and 8x1 in radial and axial directions, respectively. Nodes are allowed to move in the z 
direction except those on the edge at r=R. The nodes at r=0 are constrained against radial 
deflection due to axial symmetry. The resulting support conditions are shown in Fig. 5(b, c).   
The central point load appropriately lumped to the nodes on the z axis.                                       

 
Figure 5: The circular plate (a) loading conditions (b) 8-Ring4 (c) 2-Ring9 element                

 
The exact solution for axial displacement and radial stress of this problem under central point 
load using Kirchhoff plate theory can be found in [17]. Axial displacements are compared 
graphically over a r b   with the exact solution in Fig. 6 for the point load at the center of 
the circular plate. As seen in Fig. 6(a) the axial displacements have the right pattern but the 
values are under estimated with Ring4. This is a mild case of so-called “shear locking” in 
which significant amount of element energy is spent in shear [1]. As seen in Fig. 6(a) 
increasing the number of Ring4 elements reduces the shear locking but the displacement is 
still under estimated. The analysis is repeated for Ring9 with half the elements: 2, 4 and 8 
respectively in radial direction, and only one element in the axial direction. From Fig. 6(b) it 
can be seen that the transverse or axial displacement is well captured since the element does 
not suffer from shear locking.                                                                                                        
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Figure 6: Axial displacements of circular plate with central point load (a) Ring4 (b) Ring9 
 

The shear locking effect is further investigated in detail for various ratios of thickness to 
diameter of the circular plate. Circular plates under uniformly distributed load with simple 
supports along the edges are analyzed for different ratios. The convergence rates of the center 
deflections and radial stresses at the bottom of the plate with increasing number of elements 
for four different ring elements are shown in Figs. 7 and 8. These are the bilinear 4 node 
element with full integration Ring4(FI) and selectively reduced integration Ring4(SRI) and 
the biquadratic 9 node element with full integration Ring9(FI) and selective reduced 
integration Ring9(SRI). Non-dimensional center displacements and radial stresses are 
presented in figures using D*=EH3/(12(1-v2)). The results are compared with the exact 
solution obtained by Kirchoff thin plate theory.                                                                            
As shown in Figs. 7 and 8 the rate of convergence of Ring4 (FI) is too slow below a certain 
limit of thickness to diameter ratio. In Fig. 7(a) it can be easily seen that the required number 
of elements for an acceptable convergence of element Ring4(FI) to the exact solution is too 
large for the small ratio of H/D=0.001. Therefore, for the purpose of computational cost and 
computer capacities it is important to avoid from such locking effects. As can be seen from 
Figs. 7 and 8 increasing the ratio of thickness to diameter accelerates the convergence rate of 
the Ring4(FI). However, it is possible to reach an optimal rate of convergence for coarse 
meshes using selectively reduced integration element Ring4(SRI) in the analysis of even very 
thin plates as shown in Figs. 7(a) and 8(a). Additionally, it can be realized from Figs. 7 and 8 
that the convergence of Ring4(SRI) is uniform with respect to thickness to diameter H/D 
ratio.                                                                                                                                               
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Figure 7: Non-dimensional center displacement versus number of elements for various thickness to 
diameter ratios (a) H/D=0.001 (b) H/D=0.005 (c) H/D=0.015 (d) H/D=0.025 (e) H/D=0.035 

(f) H/D=0.05 
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Figure 8: Non-dimensional  radial stresses versus number of elements for various thickness to 

diameter ratios (a) H/D=0.001 (b) H/D=0.005 (c) H/D=0.015  (d) H/D=0.025 (e) H/D=0.035 
(f) H/D=0.05  

 
Also, it can be stated that the convergence rate of Ring4(SRI) element is still smaller than that 
of Ring9(FI) and Ring9(SRI) elements since these are the higher-order elements based on 
quadratic shape functions. Although Ring9(FI) element shows no signs of shear locking in 
this problem it is not guaranteed that its performance would be good for different type of 
loading and boundary conditions. However, its performance can be improved if SRI technique 
is used for shear strain energies as explained previously. Using Ring9(FI) or Ring9(SRI) in 
the analysis of circular plate, displacement and radial stresses can be obtained with the same 
accuracy and rate of convergence for coarse meshes. The rate of convergence of these 
elements is independent of the thickness to diameter ratio, H/D. In Figs. 9 and 10, 
dimensionless center displacements and radial stresses are plotted against various              
thickness to diameter ratios.                                                                                                           
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Figure 9: Dimensionless center displacements of simply supported circular plate under uniformly 

distributed load 
 

  

  
Figure 10: Dimensionless center radial stresses at the bottom surface of the simply supported circular 

plate under uniformly distributed load 
 
 

Four types of ring elements are used in the analysis of the circular plate for different 
thicknesses. It can be seen from Figs. 9 and 10 that all lines intersect or come so close to each 
other at the ratio of H/D=0.05 and H/D=0.1 for center displacements and radial stresses, 
respectively. Therefore, it can be stated that shear locking problem disappears above these 
certain limits for the elements suffering from shear locking. Also it can be observed from 
Figs. 9 and 10 that below the limit of H/D=0.05 the displacement and stress values of 
Ring9(FI) and Ring9(SRI) elements coincide with those of Kirchhoff thin plate theory while 
above these limits the values obtained using these elements move away from the Kirchhoff 
solutions. This means that results by Kirchhoff thin plate theory deviate as the plate gets 
thicker since the transverse shear deformations are ignored. Moreover, it can be concluded 
that Ring4(SRI) can be used as a locking free element although the absolute errors of locking 
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free elements such as Ring9(FI) and Ring9(SRI) are much smaller due to the order of the 
shape functions used in the formulations. Table 3 and 4 present the dimensionless values of 
center displacements and center radial stresses at the bottom of the circular plates respectively 
for various thickness to diameter ratios or for different thin circular plates (below H/D=0.05) 
and for thick circular plates (above H/D=0.05) with the given number of elements in axial 
(nez) and radial directions (ner).                                                                                                      

 
Table 3. Dimensionless center displacements of simply supported circular 

plates under uniformly distributed load for various thickness/diameter 
ratios and integration techniques 

H/D 

RING4 RING9 RING4 RING9 RING4 
Mesh 

(nerxnez) 

RING9 
Mesh 

(nerxnez) 
FI FI SRI SRI 

100uzD*/(PoR4) 
0,001 1,1527 6,7674 6,6027 6,7698 40x2 20x1 
0,005 5,0230 6,7686 6,6030 6,7702 40x2 20x1 
0,015 6,3267 6,7726 6,6063 6,7731 40x2 20x1 
0,025 6,5085 6,7805 6,6128 6,7807 40x2 20x3 
0,035 6,5703 6,7910 6,6225 6,7911 40x2 20x3 
0,050 6,7442 6,8131 6,7686 6,8132 40x4 20x3 
0,100 6,9233 6,9426 6,9259 6,9426 40x7 20x6 
0,150 7,1460 7,1541 7,1444 7,1541 40x10 20x6 
0,200 7,4366 7,4415 7,4334 7,4415 40x12 20x6 
0,250 7,7941 7,7956 7,7898 7,7956 40x16 20x7 
0,300 8,2039 8,2037 8,1991 8,2037 40x20 20x8 
0,350 8,6488 8,6474 8,6434 8,6473 40x24 20x10 

  
 

Table 4. Dimensionless radial stresses at the bottom of simply supported 
circular plates under uniformly distributed load for various 
thickness/diameter ratios and integration techniques 

H/D 

RING4 RING9 RING4 RING9 RING4 
Mesh 

(nerxnez) 

 RING9 
Mesh 

(nerxnez) 
FI FI SRI SRI 

σrH2/PoR2 
0,001 1,7466 1,2006 1,2382 1,2007 40x2 20x1 
0,005 3,4882 1,2010 1,2382 1,2007 40x2 20x1 
0,015 1,6564 1,2007 1,2381 1,2007 40x2 20x1 
0,025 1,3942 1,2007 1,2381 1,2009 40x2 20x3 
0,035 1,3183 1,2008 1,2380 1,2010 40x2 20x3 
0,050 1,2784 1,2012 1,2274 1,2014 40x4 20x3 
0,100 1,2406 1,2042 1,2213 1,2045 40x7 20x6 
0,150 1,2342 1,2090 1,2223 1,2092 40x10 20x6 
0,200 1,2366 1,2156 1,2280 1,2158 40x12 20x6 
0,250 1,2430 1,2251 1,2358 1,2253 40x16 20x7 
0,300 1,2532 1,2371 1,2469 1,2372 40x20 20x8 
0,350 1,2657 1,2511 1,2600 1,2513 40x24 20x10 
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5. Conclusions  
 

An investigation is performed to see the effect of volumetric and shear locking effects on the 
performance of 4 and 8-noded harmonic solid ring finite elements. For this purpose, several 
benchmark problems such as internally pressurized thick cylinder and circular plate in 
bending are solved by the coded program in Matlab. The program is capable of solving 
problems with 4-noded (Ring4) and 9-noded (Ring9) harmonic solid ring elements using full 
or selectively reduced integration techniques in finite element procedure. The axial 
displacements and radial stresses are compared with the exact solutions obtained from the 
literature. Most important conclusions can be drawn from the study are as follows:                   

                                                                 
 In the case of hollow cylinder problem under axial load, axial torque and lateral load the 
relative errors compare to analytical solutions are very small for both Ring4 and Ring9 and 
decrease with the mesh refinement. 
 Volumetric locking problem is observed using Ring4 in case of internally pressurized thick 
cylinder for high values of Poisson’s ratio. However, Ring9 does not suffer from this type of 
locking problem. 
 Shear locking problem is observed using Ring4 in the case of plate bending problem. The 
convergence rate of Ring4 becomes much smaller when the thickness to diameter ratio of the 
circular plate is decreased but that of Ring9 is not significant. 
 While Ring4 (SRI) with selectively reduced integration eliminates the shear locking 
problem Ring9 (SRI) produces excellent results due to higher order displacement functions in 
the formulation. 
 Results obtained using full integration and selectively reduced integration come very close 
to each other at the ratio of H/D=0.05 and H/D=0.1 for the center displacements and the radial 
stresses in the plate bending. That means that above these certain limits shear locking 
disappears for the circular plate problem. 
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