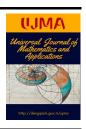
UJMA

Universal Journal of Mathematics and Applications

Journal Homepage: www.dergipark.gov.tr/ujma ISSN 2619-9653 DOI: https://doi.org/10.32323/ujma.1055272



*Q***-Curvature Tensor on** *f***-Kenmotsu 3-Manifolds**

Sunil Kumar Yadav¹ and Ahmet Yıldız^{2*}

¹Department of Applied Science and Humanities, United College of Engineering & Research, A-31, UPSIDC Institutional Area, Naini-211010, Prayagraj, Uttar Pradesh, India ²Faculty of Education, Department of Mathematics and Science Education, Inönü University, Malatya, 44280, Turkey

*Corresponding author

Article Info

Abstract

Keywords: Q-curvatute tensor, f-Kenmotsu 3-manifolds, Ricci soliton, Schouten-van Kampen connection. 2010 AMS: 53C15, 53C25, 53C50. Received: 11 January 2022 Accepted: 29 July 2022 Available online: 30 September 2022

The object of the present paper is to consider f-Kenmotsu 3-manifolds fulfilling certain curvature conditions on Q-curvature tensor with the Schouten-van Kampen connection. Certain consequences of Q-curvature tensor on such manifolds bearing Ricci soliton in perspective of Schouten-van Kampen association are likewise displayed. In the last segment, examples are given.

1. Introduction

Let \vec{M} be a (2n+1)-dimensional almost contact manifold with an almost contact metric structure $(\check{\phi}, \xi, \eta, g)$ [1]. We denote by $\vec{\Omega}$, the fundamental 2-form of \vec{M} i.e., $\vec{\Omega}(\vec{X}, \vec{Y}) = g(\vec{X}, \check{\phi}\vec{Y}), \vec{X}, \vec{Y} \in \chi(\vec{M})$, where $\chi(\vec{M})$ being the Lie algebra of the differentiable vector fields on \vec{M} . Furthermore, we recall the following definitions [1,2].

The manifold \vec{M} and its structure (ϕ, ξ, η, g) is said to be:

(*i*) normal if the almost complex structure defined on the product manifold $\vec{M} \times \Re$ is integrable (equivalently $[\phi, \phi] + 2d\eta \otimes \xi = 0$),

(*ii*) almost cosymplectic if $d\eta = 0$ and $d\phi = 0$,

(*iii*) cosymplectic if it is normal and almost cosymplectic (equivalently, $\vec{\nabla} \phi = 0$, $\vec{\nabla}$ being covariant differentiation with respect to the Levi-Civita connection).

Olszak and Rosca [3] contemplated normal locally conformal almost cosymplectic manifold and gave the geometric translation of f-Kenmotsu manifolds and its curvature tensors. Among others, they proved that a Riccisymmetric f-Kenmotsu manifold is an Einstein manifold.

The Schouten-van Kampen connection is quite possibly the most widely recognized connection acclimated to two or three necessary allocations on a differentiable manifold conceding with a relative connection [4, 5]. Solov'ev has investigated hyperdistributions in Riemannian manifolds using the Schouten-van Kampen connection [6, 7]. From that point, Olszak has contemplated the Schouten-van Kampen connection with an almost contact metric structure [8]. He has depicted a few classes of almost contact metric manifolds bearing the Schouten-van Kampen connection and closed some particular curvature properties of this connection on such manifolds.

Let \vec{M} be a (2n+1)-dimensional Riemannian manifold. On the off chance that there exists a balanced correspondence between each facilitate neighborhood of \vec{M} and an area in Euclidean space with the end goal that any geodesic of the Riemannian manifold compares to a straight line in the Euclidean space, at that point \vec{M} is supposed to be locally projectively flat. For $n \ge 1$, \vec{M} is locally projectively flat if and just if the notable projective curvature tensor P vanishes. Truth be told, P is projectively flat (i. e., P=0) if and just if the manifold is of consistent curvature [9]. ξ -conformally flat K-contact manifolds have been concentrated by Zhen et al. [10]. Yildiz et al. [11] considered f-Kenmotsu 3-manifolds with the Schouten-van Kampen connection and demonstrated that such manifold is consistently ξ -projectively flat. The projective curvature tensor is characterized by [12]:

$$P(\vec{X}, \vec{Y})\vec{Z} = \vec{R}(\vec{X}, \vec{Y})\vec{Z} - \frac{1}{2n}\{\vec{Ric}(\vec{Y}, \vec{Z})\vec{X} - \vec{Ric}(\vec{X}, \vec{Z})\vec{Y}\},\$$

(1.1)

where \vec{Ric} is the Ricci tensor on \vec{M} .

A change in a (2n+1)-dimensional Reimannian manifold \vec{M} , which changes each geodesic circle of \vec{M} into a geodesic circle of \vec{M} , is supposed to be a concircular change [13, 14]. A concircular change is consistently a conformal change [13]. It means a geodesic circle by a bend in \vec{M} whose first curvature is steady and second arch is indistinguishably zero. Subsequently the geometry of concircular change is a speculation of intrusive geometry as in the difference in measurement is more broad than incited by a circle safeguarding diffeomorphism. A significant invariant of concircular transformation is the concircular curvature tensor *C*, characterized by [14]

$$C(\vec{X}, \vec{Y})\vec{Z} = \vec{R}(\vec{X}, \vec{Y})\vec{Z} - \frac{scal}{2n(2n+1)} \{g(\vec{Y}, \vec{Z})\vec{X} - g(\vec{X}, \vec{Z})\vec{Y}\},\tag{1.2}$$

for all $\vec{X}, \vec{Y}, \vec{Z} \in \chi(\vec{M})$, where \vec{R} is the Reimannian curvature tensor and $s\vec{cal}$ is the scalar curvature with respect to the Levi-Civita connection. An (2n+1)-dimensional Riemannian manifold (\vec{M}^n, g) , the *Q*-curvature tensor is defined as [15]

$$Q(\vec{X}, \vec{Y})\vec{Z} = \vec{R}(\vec{X}, \vec{Y})\vec{Z} - \frac{\psi}{2n} \{g(\vec{Y}, \vec{Z})\vec{X} - g(\vec{X}, \vec{Z})\vec{Y}\},\tag{1.3}$$

where $\check{\psi}$ is an arbitrary scalar function. If $\check{\psi} = \frac{s c c a l}{(2n+1)}$, then *Q*- curvature tensor reduces to concircular curvature tensor. Mantica and Suh [15] have studied pseudo-*Q*-symmetric Riemannian manifolds.

In a Riemannian manifold (\vec{M}, g) , the metric g is called a Ricci soliton if [16]

$$\frac{1}{2}\mathcal{L}_{\vec{V}}g + \vec{Ric} + \lambda g = 0, \tag{1.4}$$

where \mathfrak{L} is the Lie derivative, Ric the Ricci tensor, \vec{V} a complete vector field on \vec{M} and λ is a constant. Compact Ricci solitons are the fixed points of the Ricci flow $\frac{\partial}{\partial t}g=-2Ric$ projected from the space of metrics onto its quotient modulo diffeomorphisms and scalings, and often arise as blow-up limits for the Ricci flow on compact manifolds. The Ricci soliton is said to be shrinking, steady and expanding if λ is negative, zero and positive respectively. A Ricci soliton with $\vec{V}=0$ is reduced to Einstein equation. During the last two decades, the geometry of Ricci solitons have been light up by the several mathematicians [17–19]. It has became more important after Perelman applied Ricci solitons to solve the long standing Poincare conjecture posed in 1904.

Our paper is structured as follows: After the introduction. In section 2 we recall the fundamental results of the Schouten-van Kampen connection and *f*-Kenmotsu 3-manifolds. In the portion 3 we review the thought of Ricci solition on *f*-Kenmotsu 3-manifolds with the Schouten-van Kampen connection. In segment 4 we study ξ -*Q* flat *f*-Kenmotsu 3-manifolds with the Schouten-van Kampen connection. We demonstrate the some results on *f*-Kenmotsu 3-manifolds with the Schouten-van Kampen connection under the condition $\tilde{Q} \cdot \tilde{Ric}=0$, $\tilde{Q} \cdot \tilde{R}=0$, $\tilde{Q} \cdot \tilde{P}=0$, $\tilde{Q}(\xi,\vec{X}) \cdot \tilde{Q}=0$ and $((\xi \wedge_{\tilde{Ric}}\vec{X}) \cdot \tilde{Q})=0$ in the sections 5-9, respectively. In the last segment, we give the examples.

2. Preliminaries

Let \vec{M} be a real (2n+1)-dimensional differentiable manifold endowed with an almost contact structure (ϕ, ξ, η, g) satisfying

$$\check{\phi}^2 = I - \eta \otimes \xi, \ \eta(\xi) = 1, \ \check{\phi}\xi = 0, \ \eta \circ \check{\phi} = 0, \ \eta(\vec{X}) = g(\vec{X},\xi),$$

$$(2.1)$$

and

$$g(\check{\phi}\vec{X},\check{\phi}\vec{Y}) = g(\vec{X},\vec{Y}) - \eta(\vec{X})\eta(\vec{Y}), \tag{2.2}$$

for any vector fields $\vec{X}, \vec{Y} \in \chi(\vec{M})$, where *I* is the identity of the tangent bundle $T\vec{M}, \check{\phi}$ is a tensor field of (1,1)-type, η is a 1-form, ξ is a vector field and *g* is a metric tensor of \vec{M} . We say that $(\check{\phi}, \xi, \eta, g)$ is a *f*-Kenmotsu manifold [20, 21] if the covariant differentiation of $\check{\phi}$ satisfies

$$(\nabla_{\vec{X}}\check{\phi})\vec{Y} = f\{g(\check{\phi}\vec{X},\vec{Y})\xi - \eta(\vec{Y})\check{\phi}\vec{X}\},\tag{2.3}$$

where $f \in C^{\infty}(\vec{M})$ such that $df \wedge \eta = 0$. If $f = \alpha \neq 0$ = constant, then the manifold (\vec{M}, g) is an α -Kenmotsu manifold [21]. Kenmotsu manifold is an example of *f*-Kenmotsu manifold with *f*=1 [22, 23]. If *f*=0, then the manifold (\vec{M}, g) reduces to cosymplectic [21]. An *f*-Kenmotsu manifold is said to be regular if $f^2 + \dot{f} \neq 0$, where $\dot{f} = \xi f$. For an *f*-Kenmotsu manifold from (2.3) it follows that

$$\nabla_{\vec{X}}\xi = f\{\vec{X} - \eta(\vec{X})\xi\}.$$
(2.4)

The condition $df \wedge \eta = 0$ holds if dim $\vec{M} \ge 5$. In general this relation does not hold if dim $\vec{M}=3$ [23]. It is well-known that in a Riemannian 3-manifold.

$$\vec{R}(\vec{X},\vec{Y})\vec{Z} = g(\vec{Y},\vec{Z})\vec{Q}\vec{X} - g(\vec{X},\vec{Z})\vec{Q}\vec{Y} + \vec{Ric}(\vec{Y},\vec{Z})\vec{X} - \vec{Ric}(\vec{X},\vec{Z})\vec{Y} - \frac{\vec{xcal}}{2}\{g(\vec{Y},\vec{Z})\vec{X} - g(\vec{X},\vec{Z})\vec{Y}\}.$$
(2.5)

In a *f*-Kenmotsu 3-manifold, we have [3].

$$\vec{R}(\vec{X},\vec{Y})\vec{Z} = (\frac{\vec{scal}}{2} + 2f^2 + 2\dot{f})(\vec{X}\wedge\vec{Y})\vec{Z} - (\frac{\vec{scal}}{2} + 3f^2 + 3\dot{f})\{\eta(\vec{X})(\xi\wedge\vec{Y})\vec{Z} + \eta(\vec{Y})(\vec{X}\wedge\xi)\vec{Z}\},\tag{2.6}$$

$$\vec{Ric}(\vec{X},\vec{Y}) = (\frac{\vec{scal}}{2} + f^2 + \dot{f})g(\vec{X},\vec{Y}) - (\frac{\vec{scal}}{2} + 3f^2 + 3\dot{f})\eta(\vec{X})\eta(\vec{Y}),$$
(2.7)

where scal is the scalar curvature of \vec{M} . From (2.6) and (2.7) we obtain

$$\vec{R}(\vec{X},\vec{Y})\xi = -(f^2 + \dot{f})[\eta(\vec{Y})\vec{X} - \eta(\vec{X})\vec{Y}],$$
(2.8)

$$\vec{Ric}(\vec{X},\xi) = -2(f^2 + \dot{f}) \,\eta(\vec{X}),\tag{2.9}$$

$$\vec{Ric}(\xi,\xi) = -2(f^2 + \dot{f}), \tag{2.10}$$

$$\vec{Q}\xi = -2(f^2 + \dot{f})\xi, \tag{2.11}$$

for any vector fields \vec{X}, \vec{Y} on \vec{M} .

On the other hand \vec{H} and \vec{V} are two complementary, orthogonal distributions on \vec{M} such that dim $\vec{H}=n-1$, dim $\vec{V}=1$, and the distribution \vec{V} is non-null. Thus $T\vec{M}=\vec{H}\oplus\vec{V}$, $\vec{H}\cap\vec{V}=\{0\}$ and $\vec{H}\perp\vec{V}$. Assume that ξ is a unit vector field and η is a linear form such that $\eta(\xi)=1$, $g(\xi,\xi)=\varepsilon=\pm 1$ and

$$\vec{H} = \ker \eta, \ \vec{V} = \operatorname{span}\{\xi\}.$$
(2.12)

For any $X \in T\vec{M}$, by \vec{X}^h and \vec{X}^v we denote the projections of \vec{X} onto \vec{H} and \vec{V} , respectively. Thus, we have $\vec{X} = \vec{X}^h + \vec{X}^v$ with

$$\vec{X}^{h} = \vec{X} - \eta(\vec{X})\xi, \ \vec{X}^{\nu} = \eta(\vec{X})\xi.$$
 (2.13)

The Schouten-van Kampen connection $\tilde{\nabla}$ associated to the Levi-Civita connection $\vec{\nabla}$ and adapted to the pair of the distributions (\vec{H}, \vec{V}) is defined by [5]

$$\widetilde{\nabla}_{\vec{X}}\vec{Y} = (\vec{\nabla}_{\vec{X}}\vec{Y}^h)^h + (\vec{\nabla}_{\vec{X}}\vec{Y}^\nu)^\nu.$$
(2.14)

From (2.13), we compute

$$(\vec{\nabla}_{\vec{X}}\vec{Y}^h)^h = \vec{\nabla}_{\vec{X}}\vec{Y} - \eta(\vec{\nabla}_{\vec{X}}\vec{Y})\xi - \eta(\vec{Y})\vec{\nabla}_{\vec{X}}\xi,$$
(2.15)

$$(\vec{\nabla}_{\vec{X}}\vec{Y}^{\nu})^{\nu} = \eta(\vec{\nabla}_{\vec{X}}\vec{Y})\xi + \eta(\vec{\nabla}_{\vec{X}}\vec{Y})\xi,$$
(2.16)

which enables us to express the Schouten-van Kampen connection with help of the Levi-Civita connection in the following way [6]

$$\widetilde{\nabla}_{\vec{X}}\vec{Y} = \vec{\nabla}_{\vec{X}}\vec{Y} - \eta(\vec{Y})\vec{\nabla}_{\vec{X}}\xi + (\vec{\nabla}_{\vec{X}}\eta)(\vec{Y})\xi.$$
(2.17)

In view of the Schouten-van Kampen connection (2.17), many properties of some geometric objects connected with the distributions \vec{H}, \vec{V} can be characterized [6,7]. For example $\tilde{\nabla}g = 0, \tilde{\nabla}\xi = 0, \tilde{\nabla}\eta = 0$.

Proposition 2.1 ([24]). Let \vec{M} be a *f*-Kenmotsu 3-manifold with the Schouten-van Kampen connection $\widetilde{\nabla}$ we have

$$\nabla_{\vec{X}}\vec{Y} = \vec{\nabla}_{\vec{X}}\vec{Y} + f\{g(\vec{X},\vec{Y})\xi - \eta(\vec{Y})\vec{X}\}.$$
(2.18)

$$\widetilde{R}(\vec{X},\vec{Y})\vec{Z} = \vec{R}(\vec{X},\vec{Y})\vec{Z} + f^2\{g(\vec{Y},\vec{Z})\vec{X} - g(\vec{X},\vec{Z})\vec{Y}\} + \dot{f}\{g(\vec{Y},\vec{Z})\eta(\vec{X})\xi - g(\vec{X},\vec{Z})\eta(\vec{Y})\xi + \eta(\vec{Y})\eta(\vec{Z})\vec{X} - \eta(\vec{X})\eta(\vec{Z})\vec{Y}\}.$$
(2.19)

$$\widetilde{Ric}(\vec{Y},\vec{Z}) = Ric(\vec{Y},\vec{Z}) + (2f^2 + \dot{f})g(\vec{Y},\vec{Z}) + \dot{f}\eta(\vec{Y})\eta(\vec{Z}),$$
(2.20)

$$\ddot{\tilde{Q}}\vec{X} = \vec{Q}\vec{X} + (2f^2 + \dot{f})\vec{X} + \dot{f}\eta(\vec{X})\xi,$$
(2.21)

$$\widetilde{scal} = s\widetilde{cal} + 6f^2 + 4\dot{f}, \tag{2.22}$$

where \tilde{R} , \tilde{R} , \tilde{Ric} , \tilde{Ric} , \tilde{Q} , \vec{Q} and \tilde{scal} , scal are consider as the Riemann curvature, Ricci tensors, Ricci operators and the scalar curvatures of the connection $\tilde{\nabla}$ and $\vec{\nabla}$ respectively.

3. Ricci Soliton on f-Kenmotsu 3-Manifold with the Schouten-Van Kampen Connection

In this section, we study the nature of Ricci soliton on *f*-Kenmotsu 3-manifold with respect to the Schouten-van Kampen connection ∇ . Let $(\vec{M}^3, \phi, \xi, \eta, g)$ be a *f*-Kenmotsu 3-manifold with the Schouten-van Kampen connection, since $\nabla g=0$ and $\tilde{T} \neq 0$ then from [25], we have

$$(\widetilde{\mathfrak{L}}_{\vec{V}}g)(\vec{X},\vec{Y}) = g(\vec{\nabla}_{\vec{X}}\vec{V},\vec{Y}) + g(\vec{X},\vec{\nabla}_{\vec{Y}}\vec{V}) = (\mathfrak{L}_{\vec{V}}g)(\vec{X},\vec{Y}),$$
(3.1)

where $\widetilde{\mathfrak{L}}$ denotes the Lie derivative on the manifold with respect to the Schouten-van Kampen connection. Thus from (1.4) we can write

$$(\widetilde{\mathfrak{L}}_{\vec{v}}g + 2\widetilde{Ric} + 2\lambda g)(\vec{X}, \vec{Y}) = 0,$$
(3.2)

that is

$$g(\vec{\nabla}_{\vec{X}}\vec{V},\vec{Y}) + g(\vec{X},\vec{\nabla}_{\vec{Y}}\vec{V}) + 2\widetilde{Ric}(\vec{X},\vec{Y}) + 2\lambda g(\vec{X},\vec{Y}) = 0,$$
(3.3)

Putting $\vec{V} = \xi$ in (3.3) and using (2.4) we obtain

$$\widehat{Ric}(\vec{X},\vec{Y}) = -(\lambda + f)g(\vec{X},\vec{Y}) + f\eta(\vec{X})\eta(\vec{Y})$$
(3.4)

In view of (2.20) and (3.4), we get

$$\vec{Ric}(\vec{X},\vec{Y}) = -(\dot{f} + 2f^2 + f + \lambda)g(\vec{X},\vec{Y}) + (-\dot{f} + f)\eta(\vec{X})\eta(\vec{Y})$$
(3.5)

Thus we can state the following:

Proposition 3.1. A *f*-Kenmotsu 3-manifold with respect to the Schouten-van Kampen connection $\widetilde{\nabla}$ admitting Ricci soliton then the manifold is an η -Einstein manifold with the Schouten-van Kampen connection $\widetilde{\nabla}$ and Levi-Civita connection $\vec{\nabla}$.

Proposition 3.2. A Ricci soliton on an *f*-Kenmotsu 3-manifold with respect to the Schouten-van Kampen connection $\widehat{\nabla}$ is always steady.

Also from (3.4), we get

$$\widetilde{scal} = -2f - 3\lambda. \tag{3.6}$$

In view of (2.22) and (3.6), one can easily bring out that

$$\lambda = -\frac{1}{3}(\vec{scal} + 6f^2 + 4\dot{f} + 2f). \tag{3.7}$$

We have the following:

Proposition 3.3. A Ricci soliton on *f*-Kenmotsu 3-manifold with the Schouten-van Kampen connection $\widetilde{\nabla}$ is an expanding, steady or shrinking according as $\vec{scal} < -6f^2 - 4\dot{f} - 2f$, $\vec{scal} = -6f^2 - 4\dot{f} - 2f$ or $\vec{scal} > -6f^2 - 4\dot{f} - 2f$.

Proposition 3.4. A Ricci soliton on α -Kenmotsu 3-manifold with the Schouten-van Kampen connection $\widetilde{\nabla}$ is an expanding, steady or shrinking according as $\vec{scal} < -6\alpha^2 - 2\alpha$, $\vec{scal} = -6\alpha^2 - 2\alpha$ or $\vec{scal} > -6\alpha^2 - 2\alpha$.

Proposition 3.5. A Ricci soliton on cosymplectic 3-manifold with respect to the Schouten-van Kampen connection $\widetilde{\nabla}$ is an expanding, steady or shrinking according as $\overrightarrow{scal} < 0$, $\overrightarrow{scal} = 0$ or $\overrightarrow{scal} > 0$.

In [24], Yildiz et al. demonstrated that *f*-Kenmotsu 3-manifold is projectively flat with respect to the Schouten-van Kampen connection if and only if \vec{M} is a Ricci-flat manifold with respect to the Schouten-van Kampen connection $\widetilde{\nabla}$. Therefore in perspective on this outcome and utilizing (3.4) we express the following:

Corollary 3.6. A Ricci soliton on a projectively flat f-Kenmotsu 3-manifold with respect to the Schouten-van Kampen connection $\tilde{\nabla}$ is always steady.

With the help of Theorem 6.1. of [24] and (3.4) we have the following:

Corollary 3.7. A Ricci soliton on a conharmonically flat f-Kenmotsu 3-manifold with respect to the Schouten-van Kampen connection $\widetilde{\nabla}$ is always steady.

4. ξ - \hat{Q} Flat f-Kenmotsu 3-Manifold with the Schouten-Van Kampen Connection

In this section, we consider $\xi - \tilde{Q}$ flat *f*-Kenmotsu 3-manifold admitting the Schouten-van Kampen connection $\tilde{\nabla}$. Now we state the following definitions and result:

Definition 4.1. A *f*-Kenmotsu 3-manifold is said to be $\xi - \widetilde{Q}$ flat if $\widetilde{Q}(\vec{X}, \vec{Y})\xi = 0$ on \vec{M} .

Theorem 4.2. A *f*-Kenmotsu 3-manifold with the Schouten-van Kampen connection $\widetilde{\nabla}$ is $\xi - \widetilde{Q}$ flat if and only if $\widetilde{\Psi} = 0$.

(5.3)

Π

Proof. From (1.3) we have

$$\widetilde{Q}(\vec{X},\vec{Y})\xi = \widetilde{R}(\vec{X},\vec{Y})\xi - \frac{\breve{\Psi}}{2}[\eta(\vec{Y})\vec{X} - \eta(\vec{X})\vec{Y}],\tag{4.1}$$

for any for any vector fields \vec{X} and $\vec{Y} \in \chi(\vec{M})$. With the help of (2.6) and (2.19), equation (4.1) reduces

$$\widetilde{\mathcal{Q}}(\vec{X},\vec{Y})\xi = -\frac{\psi}{2}[\eta(\vec{Y})\vec{X} - \eta(\vec{X})\vec{Y}].$$
(4.2)

This completes the proof.

If $\psi = \frac{scal}{3}$ then *Q*-curvature tensor reduces to concircular curvature tensor. Thus keeping in mind Theorem 4.2 and making use of (1.2) we obtain the followings:

Corollary 4.3. A *f*-Kenmotsu 3-manifold with the Schouten-van Kampen connection $\widetilde{\nabla}$ is ξ -concircularly flat if and only if the scalar curvature of the manifold is zero.

Corollary 4.4. A ξ -concircularly flat complete Einstein f-Kenmotsu 3-manifold is Ricci flat.

Corollary 4.5. A Ricci soliton on ξ -concircularly flat complete Einstein f-Kenmotsu 3-manifold is always steady.

If $0 \neq f$ =constant (we assume $f=\alpha$) then $\dot{f}=0$. Thus we state the followings:

Corollary 4.6. An α -Kenmotsu 3-manifold with the Schouten-van Kampen connection $\widetilde{\nabla}$ is $\xi - \widetilde{Q}$ flat if and only if $\psi = 0$.

Corollary 4.7. In a ξ - \tilde{Q} flat α -Kenmotsu 3- manifold with the Schouten-van Kampen connection $\tilde{\nabla}$ the Q-curvature tensor is equal to the Reimannian curvature tensor.

Corollary 4.8. In a $\xi - \widetilde{Q}$ flat α -Kenmotsu 3-manifold with the Schouten-van Kampen connection $\widetilde{\nabla}$ the concircular curvature tensor is equal to the Reimannian curvature tensor.

Corollary 4.9. A Ricci soliton on ξ -concircularly flat α -Kenmotsu 3-manifold with respect to the Schouten-van Kampen connection $\widetilde{\nabla}$ is always shrinking.

5. *f*-Kenmotsu 3-Manifolds Satisfying $\widetilde{Q} \cdot \widetilde{Ric}=0$ with the Schouten-Van Kampen Connection

In this section we restrict our study to *f*-Kenmotsu 3-manifolds satisfying $\widetilde{Q} \cdot \widetilde{Ric}=0$ with the Schouten-van Kampen connection $\widetilde{\nabla}$. We conclude the following:

Theorem 5.1. A *f*-Kenmotsu 3-manifolds with the Schouten-van Kampen connection $\widetilde{\nabla}$ satisfying $\widetilde{Q} \cdot \widetilde{Ric} = 0$, then ether Q-curvature tensor is equal to the Riemannian curvature or the manifold is an η -Einstein manifold.

Proof. Let \vec{M} satisfies the condition $\widetilde{Q}(\xi, \vec{X}) \cdot \widetilde{Ric}=0$. So it implies that

$$\widetilde{Ric}(\widetilde{Q}(\xi,\vec{X})\vec{Y},\vec{Z}) + \widetilde{Ric}(\vec{Y},\widetilde{Q}(\xi,\vec{X})\vec{Z}) = 0,$$
(5.1)

for any $\vec{X}, \vec{Y}, \vec{Z}$ on \vec{M} . Using (1.3), (2.6) and (2.19) in (5.1), we have

$$\frac{\Psi}{2}\left\{g(\vec{X},\vec{Y})\widetilde{Ric}(\xi,\vec{Z}) - \widetilde{Ric}(\vec{X},\vec{Z})\eta(\vec{Y}) + g(\vec{X},\vec{Z})\widetilde{Ric}(\xi,\vec{Y}) - \widetilde{Ric}(\vec{X},\vec{Y})\eta(\vec{Z})\right\} = 0.$$
(5.2)

For $\vec{Z} = \xi$ and keeping in mind (2.9) and (2.20), we obtain

$$\breve{\psi} Ric(\vec{X}, \vec{Y}) = 0,$$

which implies that either $\breve{\psi}=0$, or $\widetilde{Ric}(\vec{X},\vec{Y})=0$. Thus we have:

Case (i) In particular, if $\breve{\psi}=0$, and $\widetilde{Ric}(\vec{X},\vec{Y}) \neq 0$ then from (1.3) we get $Q(\vec{X},\vec{Y})\vec{Z} = \vec{R}(\vec{X},\vec{Y})\vec{Z}$.

Case (ii) Also if $\psi \neq 0$ and $\widetilde{Ric}(\vec{X}, \vec{Y})=0$, then from (2.20), the manifold is an η -Einstein manifold. This completes the proof.

Again, if $\tilde{\psi} = \frac{scal}{3}$ then *Q*-curvature tensor reduces to concircular curvature tensor. So from Theorem 5.1 and making use of (1.2), we can mention the following:

Corollary 5.2. A *f*-Kenmotsu 3-manifolds with the Schouten-van Kampen connection $\widetilde{\nabla}$ satisfying $\widetilde{C} \cdot \widetilde{Ric} = 0$ then either Q-curvature tensor is equal to concircular curvature tensor or the manifold is an η -Einstein manifold.

Also, if $0 \neq f$ =constant (we assume $f=\alpha$), then $\dot{f}=0$. Thus we state the followings:

Corollary 5.3. A *f*-Kenmotsu 3-manifolds satisfying $\widetilde{Q} \cdot \widetilde{Ric} = 0$ with the Schouten-van Kampen connection $\widetilde{\nabla}$ then ether the Q-curvature tensor is equal to the Riemannian curvature or the manifold is an η -Einstein manifold.

Corollary 5.4. An α -Kenmotsu 3-manifolds with the Schouten-van Kampen connection $\widetilde{\nabla}$ satisfying $\widetilde{C} \cdot \widetilde{Ric} = 0$ then either Q-curvature tensor reduces to concircular curvature tensor or the manifold is an η -Einstein manifold.

Again, in view of (5.3) and (3.4), we have the followings:

Corollary 5.5. A Ricci soliton on f-Kenmotsu 3-manifolds with the Schouten-van Kampen connection ∇ satisfying $\tilde{Q} \cdot \tilde{Ric}=0$, then either the soliton is steady or Q-curvature tensor is equal to the Remannian curvature tensor.

Corollary 5.6. A Ricci soliton on f-Kenmotsu 3-manifold with the Schouten-van Kampen connection $\widetilde{\nabla}$ satisfying $\widetilde{C} \cdot \widetilde{Ric} = 0$, then either the soliton is steady or concircular curvature tensor is equal to the Remannian curvature tensor.

6. *f*-Kenmotsu 3-Manifolds Satisfying $\widetilde{Q} \cdot \widetilde{R}=0$ with the Schouten-Van Kampen Connection

At this stage we consider *f*-Kenmotsu 3-manifolds with the Schouten-van Kampen connection $\widetilde{\nabla}$ satisfying $\widetilde{Q} \cdot \widetilde{R}=0$. Therefore we illustrate the following:

Theorem 6.1. A *f*-Kenmotsu 3-manifolds satisfying $\widetilde{Q} \cdot \widetilde{R} = 0$ with the Schouten-van Kampen connection $\widetilde{\nabla}$ then either Q-curvature tensor is equal to the Riemannian curvature, or it has the sectional curvature $-(f^2 + \dot{f})$.

Proof. Suppose that f-Kenmotsu 3-manifolds with the Schouten-van Kampen connection $\widetilde{\nabla}$ satisfying

$$\tilde{Q}(\xi,\vec{X})\tilde{R}(\vec{Y},\vec{Z})\vec{U} = 0.$$
(6.1)

Equation (6.1) can be written as

$$\widetilde{Q}(\xi,\vec{X})\widetilde{R}(\vec{Y},\vec{Z})\vec{U} - \widetilde{R}(\widetilde{Q}(\xi,\vec{X})\vec{Y},\vec{Z})\vec{U} - \widetilde{R}(\vec{Y},\widetilde{Q}(\xi,\vec{X})\vec{Z})\vec{U} - \widetilde{R}(\vec{Y},\vec{Z})\widetilde{Q}(\xi,\vec{X})\vec{U} = 0,$$

$$(6.2)$$

for any vector fields \vec{X} , \vec{Y} , \vec{Z} and \vec{U} on \vec{M} . Using (1.3), (2.6) and (2.19) in (6.2), we obtain

$$\frac{\Psi}{2}\left[-g(\vec{X}, \widetilde{R}(\vec{Y}, \vec{Z})\vec{U})\boldsymbol{\xi} + \eta(\widetilde{R}(\vec{Y}, \vec{Z})\vec{U}) - \eta(\vec{Y})\widetilde{R}(\vec{X}, \vec{Z})\vec{U} - \eta(\vec{Z})\widetilde{R}(\vec{Y}, \vec{X})\vec{U} - \eta(\vec{U})\widetilde{R}(\vec{Y}, \vec{Z})\vec{X}\right] = 0.$$

$$(6.3)$$

Taking the inner product with ξ of (6.3) and using (2.19) we get

$$\frac{\Psi}{2}[g(\vec{X},\vec{R}(\vec{Y},\vec{Z})\vec{U} + (f^2 + \dot{f})\{g(\vec{Z},\vec{U})g(\vec{X},\vec{Y}) - g(\vec{Y},\vec{U})g(\vec{X},\vec{Z})\} + \dot{f}\{g(\vec{X},\vec{Y})\eta(\vec{Z})\eta(\vec{U}) - g(\vec{X},\vec{Z})\eta(\vec{Y})\eta(\vec{U})\}] = 0.$$
(6.4)

It follows that either $\check{\psi}$ =0, or it has the sectional curvature $-(f^2 + \dot{f})$. This completes the proof.

In particular, if $\breve{\psi} = \frac{scal}{3}$ then *Q*-curvature tensor reduces to concircular curvature tensor. Therefore in view of the first result of the above Theorem 6.1 and making use of (1.2), we can mention the following:

Corollary 6.2. If a f-Kenmotsu 3-manifolds with the Schouten-van Kampen connection $\widetilde{\nabla}$ satisfying $\widetilde{C} \cdot \widetilde{R} = 0$ then either concircular curvature tensor is equal to the Riemannian curvature or it has the sectional curvature $-(f^2 + \dot{f})$.

Also with the help of (3.7) and Theorem 6.1, we conclude that:

Corollary 6.3. If a *f*-Kenmotsu 3-manifolds with the Schouten-van Kampen connection $\widetilde{\nabla}$ satisfying $\widetilde{C} \cdot \widetilde{R} = 0$ then either Ricci soliton is shrinking or it has the sectional curvature $-(f^2 + \dot{f})$.

If $0 \neq f$ =constant (we assume $f=\alpha$), then $\dot{f}=0$. Thus we state the followings:

Corollary 6.4. If an α -Kenmotsu 3-manifolds with the Schouten-van Kampen connection $\widetilde{\nabla}$ satisfying $\widetilde{C} \cdot \widetilde{R} = 0$ then either concircular curvature tensor is equal to the Riemannian curvature or it has the sectional curvature α^2 .

Corollary 6.5. If an α -Kenmotsu 3-manifolds with the Schouten-van Kampen connection $\widetilde{\nabla}$ satisfying $\widetilde{C} \cdot \widetilde{R} = 0$ then either Ricci soliton is shrinking or it has the sectional curvature α^2 .

7. *f*-Kenmotsu 3-Manifolds Satisfying $\widetilde{Q} \cdot \widetilde{P}=0$ with the Schouten-Van Kampen Connection

We consider f-Kenmotsu 3-manifolds with the Schouten-van Kampen connection $\widetilde{\nabla}$ satisfying the condition $\widetilde{Q} \cdot \widetilde{P}=0$. Then we have:

Theorem 7.1. A *f*-Kenmotsu 3-manifolds satisfying $\widetilde{Q} \cdot \widetilde{P} = 0$ with the Schouten-van Kampen connection $\widetilde{\nabla}$ is either the *Q*-curvature tensor is equal to the Riemannian curvature or it has the sectional curvature $\frac{1}{2}(\frac{s\widetilde{cal}}{2} + f^2 + 2\dot{f})$.

Proof. The condition $\widetilde{Q}(\xi, \vec{X})\widetilde{P} = 0$ reflect that

$$(\widetilde{Q}(\xi,\vec{X})\widetilde{P})(\vec{Y},\vec{Z})\vec{U}) = \widetilde{Q}(\xi,\vec{X})\widetilde{P}(\vec{Y},\vec{Z})\vec{U} - \widetilde{P}(\widetilde{Q}(\xi,\vec{X})\vec{Y},\vec{Z})\vec{U} - \widetilde{P}(\vec{Y},\widetilde{Q}(\xi,\vec{X})\vec{Z})\vec{U} - \widetilde{P}(\vec{Y},\vec{Z})\widetilde{Q}(\xi,\vec{X})\vec{U} = 0,$$
(7.1)

for any vector fields \vec{X} , \vec{Y} , \vec{Z} and \vec{U} on \vec{M} . On the other hand from (1.3), we have

$$\widetilde{Q}(\xi,\vec{X})\widetilde{P}(\vec{Y},\vec{Z})\vec{U} = -\frac{\check{\Psi}}{2} \{ g(\vec{X},\widetilde{P}(\vec{Y},\vec{Z})\vec{U})\xi - \eta(\widetilde{P}(\vec{Y},\vec{Z})\vec{U})\vec{X} \},$$
(7.2)

$$\widetilde{P}(\widetilde{Q}(\xi,\vec{X})\vec{Y},\vec{Z})\vec{U} = -\frac{\breve{\Psi}}{2} \{g(\vec{X},\vec{Y})\widetilde{P}(\xi,\vec{Y})\vec{Z} - \eta(\vec{Y})\widetilde{P}(\vec{X},\vec{Z})\vec{U}\},\tag{7.3}$$

$$\widetilde{P}(\vec{Y}, \widetilde{Q}(\xi, \vec{X})\vec{Z}, \vec{U}) = -\frac{\Psi}{2} \{ g(\vec{X}, \vec{Z}) \widetilde{P}(\vec{Y}, \xi) \vec{U} - \eta(\vec{Z}) \widetilde{P}(\vec{Y}, \vec{X}) \vec{U} \},$$
(7.4)

$$\widetilde{P}(\vec{Y},\vec{Z},\widetilde{Q}(\xi,\vec{X})\vec{U}) = -\frac{\psi}{2} \{ g(\vec{X},\vec{U})\widetilde{P}(\vec{Y},\vec{Z})\xi - \eta(\vec{U})\widetilde{P}(\vec{Y},\vec{Z})\vec{X} \}.$$

$$(7.5)$$

Using (7.2), (7.3), (7.4) and (7.5) in (7.1), we get

$$\frac{\psi}{2} \{ -g(\vec{X}, \widetilde{P}(\vec{Y}, \vec{Z})\vec{U})\boldsymbol{\xi} + \eta(\widetilde{P}(\vec{Y}, \vec{Z})\vec{U})\vec{X} + g(\vec{X}, \vec{Y})\widetilde{P}(\boldsymbol{\xi}, \vec{Y})\vec{Z} - \eta(\vec{Y})\widetilde{P}(\vec{X}, \vec{Z})\vec{U} + g(\vec{X}, \vec{Z})\widetilde{P}(\vec{Y}, \boldsymbol{\xi})\vec{U} - \eta(\vec{Z})\widetilde{P}(\vec{Y}, \vec{X})\vec{U} + g(\vec{X}, \vec{U})\widetilde{P}(\vec{Y}, \vec{Z})\boldsymbol{\xi} - \eta(\vec{U})\widetilde{P}(\vec{Y}, \vec{Z})\vec{X} \} = 0.$$

$$(7.6)$$

Taking the inner product of (7.6) with ξ and using (1.1), (2.6), (2.8) and (2.19), which implies

$$\frac{\breve{\Psi}}{2} \{ g(\vec{X}, \vec{R}(\vec{Y}, \vec{Z})\vec{U}) - \frac{1}{2} (\frac{s\tilde{cal}}{2} + f^2 + 2\dot{f}) (g(\vec{X}, \vec{Y})g(\vec{Z}, \vec{U}) - g(\vec{X}, \vec{Z})g(\vec{Y}, \vec{U})) \} = 0.$$

$$(7.7)$$

It is clear that either $\breve{\psi}=0$, or it has the sectional curvature $\frac{1}{2}(\frac{scal}{2}+f^2+2\dot{f})$.

This leads to the proof of the Theorem 7.1.

For $\psi = \frac{scal}{3}$ then *Q*-curvature tensor reduces to concircular curvature tensor. Therefore in view of the first result of the above Theorem 7.1 and use of (1.2), we can mention the following:

Corollary 7.2. A *f*-Kenmotsu 3-manifolds with the Schouten-van Kampen connection $\widetilde{\nabla}$ satisfying $\widetilde{C} \cdot \widetilde{Ric} = 0$ then either concircular curvature tensor is equal to the Remannian curvature tensor or it has the sectional curvature $\frac{1}{2}(f^2 + 2\dot{f})$.

Again from Corollary 7.2, and (3.7), we have the following:

Corollary 7.3. A *f*-Kenmotsu 3-manifolds with the Schouten-van Kampen connection $\widetilde{\nabla}$ satisfying $\widetilde{C} \cdot \widetilde{Ric} = 0$ then either Ricci soliton is shrinking or it has the sectional curvature $\frac{1}{2}(f^2 + 2\dot{f})$.

If $0 \neq f$ =constant (we assume $f=\alpha$), then $\dot{f}=0$. Thus we state the followings:

Corollary 7.4. An α -Kenmotsu 3-manifolds with the Schouten-van Kampen connection $\widetilde{\nabla}$ satisfying $\widetilde{C} \cdot \widetilde{Ric} = 0$ then either concircular curvature tensor is equal to the Remannian curvature tensor or it has the sectional curvature $\frac{\alpha^2}{2}$.

Corollary 7.5. An α -Kenmotsu 3-manifolds with the Schouten-van Kampen connection $\widetilde{\nabla}$ satisfying $\widetilde{C} \cdot \widetilde{Ric} = 0$ then either Ricci soliton is shrinking or it has the sectional curvature $\frac{\alpha^2}{2}$.

8. *f*-Kenmotsu 3-Manifolds Satisfying $\widetilde{Q}(\xi, \vec{X}) \cdot \widetilde{Q}=0$ with the Schouten-Van Kampen Connection

In this section we study *f*-Kenmotsu 3-manifolds with the Schouten-van Kampen connection $\widetilde{\nabla}$ satisfying $\widetilde{Q}(\xi, \vec{X}) \cdot \widetilde{Q}=0$. We have the following:

Theorem 8.1. A *f*-Kenmotsu 3-manifolds satisfying $\widetilde{Q}(\xi, \vec{X}) \cdot \widetilde{Q} = 0$ with the Schouten-van Kampen connection $\widetilde{\nabla}$ then either the Q-curvature tensor is equal to the Riemannian curvature or it has the sectional curvature $-(f^2 + \dot{f})$.

Proof. The condition $(\widetilde{Q}(\xi, \vec{X}) \cdot \widetilde{Q})(\vec{Y}, \vec{Z})\vec{U}=0$ implies that

$$\widetilde{\mathcal{Q}}(\xi,\vec{X})\widetilde{\mathcal{Q}}(\vec{Y},\vec{Z})\vec{U} - \widetilde{\mathcal{Q}}(\widetilde{\mathcal{Q}}(\xi,\vec{X})\vec{Y},\vec{Z})\vec{U} - \widetilde{\mathcal{Q}}(\vec{Y},\widetilde{\mathcal{Q}}(\xi,\vec{X})\vec{Z})\vec{U} - \widetilde{\mathcal{Q}}(\vec{Y},\vec{Z})\widetilde{\mathcal{Q}}(\xi,\vec{X})\vec{U} = 0,$$

$$(8.1)$$

for any vector fields $\vec{X}, \vec{Y}, \vec{Z}$ and \vec{U} on \vec{M} . In view of (2.6) and (2.19), equation (1.3) reduces to

$$\widetilde{Q}(\vec{Y},\vec{Z})\vec{U} = \left\{\frac{\vec{scal}}{2} + 3f^2 + 2\dot{f} - \frac{\psi}{2}\right\} [g(\vec{Z},\vec{U})\vec{Y} - g(\vec{Y},\vec{U})\vec{Z}]
- \left\{\frac{\vec{scal}}{2} + 3f^2 + 2\dot{f}\right\} [g(\vec{Z},\vec{U})\eta(\vec{Y})\xi - g(\vec{Y},\vec{U})\eta(\vec{Z})\xi + \eta(\vec{Z})\eta(\vec{U})\vec{Y} - \eta(\vec{Y})\eta(\vec{U})\vec{Z}].$$
(8.2)

Then we have

$$\widetilde{Q}(\xi,\vec{Z})\vec{U} = -\frac{\Psi}{2}[g(\vec{Z},\vec{U})\xi - \eta(\vec{U})\vec{Z}],\tag{8.3}$$

$$\widetilde{Q}(\xi,\vec{X})\widetilde{Q}(\vec{Y},\vec{Z})\vec{U} = -\frac{\check{\Psi}}{2}[g(\vec{X},\widetilde{Q}(\vec{Y},\vec{Z})\vec{U}))\xi - \eta(\widetilde{Q}(\vec{Y},\vec{Z})\vec{U})\vec{X}],\tag{8.4}$$

$$\widetilde{Q}(\widetilde{Q}(\xi,\vec{X})(\vec{Y},\vec{Z})\vec{U} = -\frac{\Psi}{2}[g(\vec{X},\vec{Y})\widetilde{Q}(\xi,\vec{Z})\vec{U}) - \eta(\vec{Y})\widetilde{Q}(\vec{X},\vec{Z})\vec{U}],\tag{8.5}$$

$$\widetilde{\mathcal{Q}}(\vec{Y}, \widetilde{\mathcal{Q}}(\xi, \vec{X})\vec{Z})\vec{U} = -\frac{\psi}{2}[g(\vec{X}, \vec{Z})\widetilde{\mathcal{Q}}(\vec{Y}, \xi)\vec{U} - \eta(\vec{Z})\widetilde{\mathcal{Q}}(\vec{Y}, \vec{X})\vec{U}],\tag{8.6}$$

$$\widetilde{Q}(\vec{Y},\vec{Z})\widetilde{Q}(\xi,\vec{X})\vec{U} = -\frac{\psi}{2}[g(\vec{X},\vec{U})\widetilde{Q}(\vec{Y},\vec{Z})\xi - \eta(\vec{U})\widetilde{Q}(\vec{Y},\vec{Z})\vec{X}].$$
(8.7)

Using (8.4), (8.5), (8.6) and (8.7) in (8.1), we get

$$\frac{\Psi}{2} [-g(\vec{X}, \widetilde{Q}(\vec{Y}, \vec{Z})\vec{U}))\xi + \eta(\widetilde{Q}(\vec{Y}, \vec{Z})\vec{U})\vec{X} + g(\vec{X}, \vec{Y})\widetilde{Q}(\xi, \vec{Z})\vec{U}) - \eta(\vec{Y})\widetilde{Q}(\vec{X}, \vec{Z})\vec{U} + g(\vec{X}, \vec{Z})\widetilde{Q}(\vec{Y}, \xi)\vec{U} - \eta(\vec{Z})\widetilde{Q}(\vec{Y}, \vec{X})\vec{U} \\ + g(\vec{X}, \vec{U})\widetilde{Q}(\vec{Y}, \vec{Z})\xi - \eta(\vec{U})\widetilde{Q}(\vec{Y}, \vec{Z})\vec{X}] = 0.$$

$$(8.8)$$

Taking the inner product of (8.8) with ξ , and using (8.2) and (8.3) we obtain

$$\frac{\check{\Psi}}{2}[g(\vec{X},\vec{R}(\vec{Y},\vec{Z})\vec{U}) + (f^2 + \dot{f})[g(\vec{X},\vec{Y})g(\vec{Z},\vec{Y}) - g(\vec{X},\vec{Z})g(\vec{Y},\vec{U})] = 0.$$
(8.9)

This implies that either $\check{\psi}$ =0, or it has the sectional curvature $-(f^2 + \dot{f})$. If $\check{\psi}$ =0, then from (1.3) we get $Q(\vec{X}, \vec{Y})\vec{Z} = \vec{R}(\vec{X}, \vec{Y})\vec{Z}$. This complete the proof.

Further if $\breve{\psi} = \frac{scal}{3}$ then *Q*-curvature tensor reduces to concircular curvature tensor. Therefore in view of Theorem 8.1 and use of (1.2), we have the followings:

Corollary 8.2. A *f*-Kenmotsu 3-manifolds satisfying $\widetilde{C}(\xi, \vec{X}) \cdot \widetilde{C}=0$ with the Schouten-van Kampen connection $\widetilde{\nabla}$ then either the concircular curvature tensor is equal to the Riemannian curvature or it has the sectional curvature $-(f^2 + \dot{f})$.

Corollary 8.3. A *f*-Kenmotsu 3-manifolds satisfying $\widetilde{C}(\xi, \vec{X}) \cdot \widetilde{C} = 0$ with the Schouten-van Kampen connection $\widetilde{\nabla}$ then either Ricci soltion is shrinking or it has the sectional curvature $-(f^2 + \dot{f})$.

If $0 \neq f$ =constant (we assume $f=\alpha$), then $\dot{f}=0$. Therefore, we have:

Corollary 8.4. An α -Kenmotsu 3-manifolds satisfying $\widetilde{C}(\xi, \vec{X}) \cdot \widetilde{C} = 0$ with the Schouten-van Kampen connection ∇ then either the concircular curvature tensor is equal to the Riemannian curvature or it has the sectional curvature $-\alpha^2$.

Corollary 8.5. An α -Kenmotsu 3-manifolds satisfying $\widetilde{C}(\xi, \vec{X}) \cdot \widetilde{C} = 0$ with the Schouten-van Kampen connection $\widetilde{\nabla}$ then either Ricci soltion is shrinking or it has the sectional curvature $-\alpha^2$.

9. *f*-Kenmotsu 3-Manifolds Bearing Ricci Soliton Satisfying $((\xi \wedge_{\widetilde{Ric}} \vec{X}) \cdot \widetilde{Q})=0$ with the Schouten-Van Kampen Connection

In this segment we study *f*-Kenmotsu 3-manifolds bearing Ricci soliton satisfying $((\xi \wedge_{\widetilde{Ric}} \vec{X}) \cdot \tilde{Q})=0$ with the Schouten-van Kampen connection $\tilde{\nabla}$. Therefore, we have the following:

Theorem 9.1. A *f*-Kenmotsu 3-manifolds bearing Ricci soliton satisfying $((\xi \wedge_{Ric} \vec{X}) \cdot \vec{Q}) = 0$ with the Schouten-van Kampen connection ∇ then either *Q*-curvature tensor is equal to the Riemannian curvature or soliton is steady.

Proof. The condition $((\xi \wedge_{\widetilde{Ric}} \vec{X}) \cdot \widetilde{Q})(\vec{Y}, \vec{Z})\vec{U}=0$ implies that

$$\widehat{Ric}(\vec{X}, Q(\vec{Y}, \vec{Z})\vec{U})\xi - \widehat{Ric}(\xi, Q(\vec{Y}, \vec{Z})\vec{U})\vec{X} - \widehat{Ric}(\vec{X}, \vec{Y})Q(\xi, \vec{Z})\vec{U}
+ \widehat{Ric}(\xi, \vec{Y})\widetilde{Q}(\vec{X}, \vec{Z})\vec{U} - \widehat{Ric}(\vec{X}, \vec{Z})\widetilde{Q}(\vec{Y}, \xi)\vec{U} + \widehat{Ric}(\xi, \vec{Z})\widetilde{Q}(\vec{Y}, \vec{X})\vec{U}
- \widehat{Ric}(\vec{X}, \vec{U})\widetilde{Q}(\vec{Y}, \vec{Z})\xi + \widehat{Ric}(\xi, \vec{U})\widetilde{Q}(\vec{Y}, \vec{Z})\vec{X} = 0.$$
(9.1)

Using (3.4) in (9.1), we get

$$-\lambda_{g}(\vec{X}, \widetilde{Q}(\vec{Y}, \vec{Z})\vec{U})\xi + \lambda\eta(\widetilde{Q}(\vec{Y}, \vec{Z})\vec{U})\vec{X} + \lambda_{g}(\vec{X}, \vec{Y})\widetilde{Q}(\xi, \vec{Z})\vec{U} -\lambda\eta(\vec{Y})\widetilde{Q}(\vec{X}, \vec{Z})\vec{U} + \lambda_{g}(\vec{X}, \vec{Z})\widetilde{Q}(\vec{Y}, \xi)\vec{U} - \lambda\eta(\vec{Z})\widetilde{Q}(\vec{Y}, \vec{X})\vec{U} + \lambda_{g}(\vec{X}, \vec{U})\widetilde{Q}(\vec{Y}, \vec{Z}, \xi) - \lambda\eta(\vec{U})\widetilde{Q}(\vec{Y}, \vec{Z})\vec{X} = 0.$$

$$(9.2)$$

Taking the inner product of (9.2) with ξ and using (8.2) that implies

$$\begin{cases} \left(\frac{scal}{2} + 3f^{2} + 2\dot{f} - \frac{\dot{\psi}}{2}\right) \left[-\lambda_{g}(\vec{Z},\vec{U})_{g}(\vec{X},\vec{Y}) + 3\lambda_{g}(\vec{Y},\vec{U})_{g}(\vec{X},\vec{Z}) + 3\lambda_{g}(\vec{Z},\vec{U})\eta(\vec{Y}) \\ -3\lambda_{g}(\vec{Y},\vec{U})\eta(\vec{Z}) \right] - \left\{ \frac{scal}{2} + 3f^{2} + 2\dot{f} \right\} \left[-3\lambda_{g}(\vec{Z},\vec{U})\eta(\vec{X})\eta(\vec{Y}) + 3\lambda_{g}(\vec{Y},\vec{U})\eta(\vec{X})\eta(\vec{Z}) \\ -3\lambda_{g}(\vec{X},\vec{Y})\eta(\vec{Z})\eta(\vec{U}) + 3\lambda_{g}(\vec{X},\vec{Z})\eta(\vec{Y})\eta(\vec{U}) + 3\lambda_{g}(\vec{Z},\vec{U})\eta(\vec{Y}) \\ -3\lambda_{g}(\vec{Y},\vec{U})\eta(\vec{Z}) \right] + \frac{\dot{\psi}}{2} \left[-3\lambda_{g}(\vec{X},\vec{Y})g(\vec{Z},\vec{U}) + 3\lambda_{g}(\vec{X},\vec{Y})\eta(\vec{Z})\eta(\vec{U}) \\ +3\lambda_{g}(\vec{Z},\vec{U})\eta(\vec{X})\eta(\vec{Y}) - 3\lambda_{g}(\vec{X},\vec{U})\eta(\vec{Z})\eta(\vec{Y}) - 3\lambda_{g}(\vec{X},\vec{Z})\eta(\vec{Y})\eta(\vec{U}) \\ +3\lambda_{g}(\vec{X},\vec{Z})g(\vec{Y},\vec{U}) + 3\lambda_{g}(\vec{X},\vec{U})\eta(\vec{Y})\eta(\vec{Z}) - 3\lambda_{g}(\vec{Y},\vec{U})\eta(\vec{Y})\eta(\vec{X}) \\ +3\lambda_{g}(\vec{X},\vec{Z})\eta(\vec{Y})\eta(\vec{U}) - 3\lambda_{g}(\vec{X},\vec{Y})\eta(\vec{Z})\eta(\vec{U}) \right] = 0. \end{cases}$$

$$(9.3)$$

For fix $\vec{U} = \xi$ in (9.3) and on simplification, we get

$$3\lambda \check{\psi}[g(\vec{X},\vec{Z})\eta(\vec{Y}) - g(\vec{X},\vec{Y})\eta(\vec{Z})] = 0.$$

$$\tag{9.4}$$

This implies that either $\lambda = 0$, or $\psi = 0$. If $\lambda = 0$, and $\psi \neq 0$, then the Ricci soliton is steady. Whereas if $\lambda \neq 0$ and $\psi = 0$, so from (1.3), we obtain $Q(\vec{X}, \vec{Y})\vec{Z} = \vec{R}(\vec{X}, \vec{Y})\vec{Z}$. This complete the proof.

As per consequence if $\psi = \frac{scal}{3}$ then *Q*-curvature tensor reduces to concircular curvature tensor. Therefore in view of Theorem 9.1 and use of (1.2), we have the following:

Corollary 9.2. A *f*-Kenmotsu 3-manifolds bearing Ricci soliton satisfying $((\xi \wedge_{Ric} \vec{X}) \cdot \tilde{C})=0$ with the Schouten-van Kampen connection ∇ then either concircular curvature tensor is equal to the Riemannian curvature or Ricci soliton is steady.

 \square

10. Examples

Example 10.1. We consider the 3-dimensional manifold $\vec{M} = \{(u, v, w) \in \Re^3, w \neq 0\}$, where (u, v, w) are the standard coordinate in \Re^3 . Let $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$ be linearly independent vector fields at each point of \vec{M} , given by

$$\vec{e}_1 = \frac{1}{w} \frac{\partial}{\partial u}, \quad \vec{e}_2 = \frac{1}{w} \frac{\partial}{\partial v}, \quad \vec{e}_3 = -\frac{\partial}{\partial w}$$

are linearly independent at each point of \vec{M} . Let g be the Riemannian metric defined

$$g(\vec{e}_1, \vec{e}_2) = g(\vec{e}_2, \vec{e}_3) = g(\vec{e}_1, \vec{e}_3) = 0, \quad g(\vec{e}_1, \vec{e}_1) = g(\vec{e}_2, \vec{e}_2) = g(\vec{e}_3, \vec{e}_3) = 1.$$

and given by

$$g = w^{2}[du \otimes du + dv \otimes dv + \frac{1}{w^{2}}dw \otimes dw].$$

Let η be the 1-form have the significance

 $\eta(\vec{U}) = g(\vec{U}, \vec{e}_3)$

for any $\vec{U} \in \Gamma(T\vec{M})$ and $\check{\phi}$ be the (1,1)-tensor field defined by

 $\check{\phi}\vec{e}_1 = -\vec{e}_2, \ \check{\phi}\vec{e}_2 = \vec{e}_1, \ \check{\phi}\vec{e}_3 = 0.$

Making use of the linearity of $\check{\phi}$ and g we have

$$\eta(\vec{e}_3) = 1, \quad \check{\phi}^2(\vec{U}) = -\vec{U} + \eta(\vec{U})\vec{e}_3, \quad g(\check{\phi}\vec{U},\check{\phi}\vec{V}) = g(\vec{U},\vec{V}) - \eta(\vec{U})\eta(\vec{V}),$$

for any $\vec{U}, \vec{W} \in \Gamma(T\vec{M})$. Now we can easily calculate

$$[\vec{e}_1, \vec{e}_2] = 0, \quad [\vec{e}_1, \vec{e}_3] = -\frac{1}{w}\vec{e}_2, \quad [\vec{e}_2, \vec{e}_3] = -\frac{1}{w}\vec{e}_1.$$

The Riemannian connection $\vec{\nabla}$ of the metric tensor g is given by the Koszul's formula, i. e.,

$$2g(\vec{\nabla}_{\vec{U}}\vec{V},\vec{W}) = \vec{U}(g(\vec{V},\vec{W})) + \vec{V}(g(\vec{W},\vec{X})) - \vec{W}(g(\vec{U},\vec{V})) - g(\vec{U},[\vec{V},\vec{W}]) - g(\vec{V},[\vec{U},\vec{W}]) + g(\vec{W},[\vec{U},\vec{V}])$$

Making use of Koszul's formula we get the following:

$$\begin{split} \vec{\nabla}_{\vec{e}_2} \vec{e}_3 &= -\frac{1}{w} \vec{e}_2, \quad \vec{\nabla}_{\vec{e}_2} \vec{e}_2 = \frac{1}{w} \vec{e}_3, \quad \vec{\nabla}_{\vec{e}_2} \vec{e}_1 = 0, \\ \vec{\nabla}_{\vec{e}_3} \vec{e}_3 &= 0, \quad \vec{\nabla}_{\vec{e}_3} \vec{e}_2 = 0, \quad \vec{\nabla}_{\vec{e}_3} \vec{e}_1 = 0, \\ \vec{\nabla}_{\vec{e}_1} \vec{e}_3 &= -\frac{1}{w} \vec{e}_1, \quad \vec{\nabla}_{\vec{e}_1} \vec{e}_2 = 0, \quad \vec{\nabla}_{\vec{e}_1} \vec{e}_1 = \frac{1}{w} \vec{e}_3 \end{split}$$

Consequently it is clear that \vec{M} satisfies the condition $\vec{\nabla}_{\vec{U}}\xi = f\{\vec{U} - \eta(\vec{U})\xi\}$ for $\vec{e}_3 = \xi$, where $f = -\frac{1}{w}$. Thus we conclude that \vec{M} leads to f-Kenmotsu manifold. Also $f^2 + \hat{f} = \frac{2}{w^2} \neq 0$. That implies \vec{M} is a regular f-Kenmotsu 3-manifold. Also the Schouten-van Kampen connection $\widetilde{\nabla}$ on \vec{M} as follows

$$\begin{split} \widetilde{\nabla}_{\vec{e}_{2}}\vec{e}_{3} &= -(\frac{1}{w} + f)\vec{e}_{2}, \quad \widetilde{\nabla}_{\vec{e}_{2}}\vec{e}_{2} = (\frac{1}{w} + f)\vec{e}_{3}, \quad \widetilde{\nabla}_{\vec{e}_{2}}\vec{e}_{1} = 0, \\ \widetilde{\nabla}_{\vec{e}_{3}}\vec{e}_{3} &= 0, \qquad \widetilde{\nabla}_{\vec{e}_{3}}\vec{e}_{2} = 0, \qquad \widetilde{\nabla}_{\vec{e}_{3}}\vec{e}_{1} = 0, \\ \widetilde{\nabla}_{\vec{e}_{1}}\vec{e}_{3} &= -(\frac{1}{w} + f)\vec{e}_{1}, \quad \widetilde{\nabla}_{\vec{e}_{1}}\vec{e}_{2} = 0, \qquad \widetilde{\nabla}_{\vec{e}_{1}}\vec{e}_{1} = (\frac{1}{w} + f)\vec{e}_{3}. \end{split}$$

It is clear that for $\vec{e}_3 = \xi$ and $f = -\frac{1}{w}$, we get $\widetilde{\nabla}_{\vec{e}_i}\vec{e}_j = 0$ $(1 \le i, j \le 3)$. So the manifold \vec{M} is a f-Kenmotsu 3-manifold with the Schouten-van Kampen connection $\widetilde{\nabla}$. Also one can seen that $\widetilde{R}=0$. Thus the manifold \vec{M} is a flat manifold with respect to the Schouten-van Kampen connection $\widetilde{\nabla}$. Since a flat manifold is a Ricci-flat manifold with respect to the Schouten-van Kampen connection $\widetilde{\nabla}$. So from (3.4), we get $\lambda=0$, that is Ricci solition is always steady on regular f-Kenmotsu 3-manifold with the Schouten-van Kampen connection $\widetilde{\nabla}$. In case of Ricci soliton, from (3.4) it is sufficient to verify that

$$\overline{Ric}(\vec{e}_i, \vec{e}_i) = -(\lambda + f)g(\vec{e}_i, \vec{e}_i) + f\eta(\vec{e}_i)\eta(\vec{e}_i), \ i = 1, 2, 3.$$
(10.1)

It is clear that $\lambda = 0$, that is Ricci solition is always steady on regular *f*-Kenmotsu 3-manifold with the Schouten-van Kampen connection ∇ . Hence Proposition 3.2, Corollary 3.6 and Corollary 3.7 are hold.

Example 10.2. We consider the 3-dimensional manifold $\vec{M} = \{(u, v, w) \in \Re^3, w \neq 0\}$, where (u, v, w) are the standard coordinate in \Re^3 . Let $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$ be linearly independent vector fields at each point of \vec{M} , given by

$$\vec{e}_1 = \sin^2 w \frac{\partial}{\partial u}, \quad \vec{e}_2 = \sin^2 w \frac{\partial}{\partial v}, \quad \vec{e}_3 = \sin w \frac{\partial}{\partial w}$$

are linearly independent at each point of \vec{M} . Let g be the Riemannian metric defined

 $g(\vec{e}_1,\vec{e}_2) = g(\vec{e}_2,\vec{e}_3) = g(\vec{e}_1,\vec{e}_3) = 0, \quad g(\vec{e}_1,\vec{e}_1) = g(\vec{e}_2,\vec{e}_2) = g(\vec{e}_3,\vec{e}_3) = 1.$

and given by

$$g = \sin^4 w \left[du \otimes du + dv \otimes dv + \frac{1}{\sin^2 w} dw \otimes dw \right].$$

Let η be the 1-form have the significance

$$\eta(\vec{U}) = g(\vec{U}, \vec{e}_3)$$

for any $\vec{U} \in \Gamma(TM)$ and $\check{\phi}$ be the (1,1)-tensor field defined by

 $\check{\phi}\vec{e}_1 = -\vec{e}_2, \ \check{\phi}\vec{e}_2 = \vec{e}_1, \ \check{\phi}\vec{e}_3 = 0.$

Making use of the linearity of $\check{\phi}$ and g we have

$$\eta(\vec{e}_3) = 1, \quad \check{\phi}^2(\vec{U}) = -\vec{U} + \eta(\vec{U})\vec{e}_3, \quad g(\check{\phi}\vec{U},\check{\phi}\vec{V}) = g(\vec{U},\vec{V}) - \eta(\vec{U})\eta(\vec{V}),$$

for any $\vec{U}, \vec{W} \in \Gamma(T\vec{M})$. Now we can easily calculate

$$[\vec{e}_1, \vec{e}_2] = 0, \quad [\vec{e}_1, \vec{e}_3] = -2\cos w \vec{e}_2, \quad [\vec{e}_2, \vec{e}_3] = -2\cos w \vec{e}_1.$$

The Riemannian connection $\vec{\nabla}$ of the metric tensor g is given by the Koszul's formula, that is.,

$$2g(\nabla_{\vec{ll}}\vec{V},\vec{W}) = \vec{U}(g(\vec{V},\vec{W})) + \vec{V}(g(\vec{W},\vec{X})) - \vec{W}(g(\vec{U},\vec{V})) - g(\vec{U},[\vec{V},\vec{W}]) - g(\vec{V},[\vec{U},\vec{W}]) + g(\vec{W},[\vec{U},\vec{V}])$$

Making use Koszul's formula we get the following:

$$\begin{split} \vec{\nabla}_{\vec{e}_2} \vec{e}_3 &= -2\cos w \vec{e}_2, \quad \vec{\nabla}_{\vec{e}_2} \vec{e}_2 = 2\cos w \vec{e}_3, \quad \vec{\nabla}_{\vec{e}_2} \vec{e}_1 = 0, \\ \vec{\nabla}_{\vec{e}_3} \vec{e}_3 &= 0, \quad \vec{\nabla}_{\vec{e}_3} \vec{e}_2 = 0, \quad \vec{\nabla}_{\vec{e}_3} \vec{e}_1 = 0, \\ \vec{\nabla}_{\vec{e}_1} \vec{e}_3 &= -2\cos w \vec{e}_1, \quad \vec{\nabla}_{\vec{e}_1} \vec{e}_2 = 0, \quad \vec{\nabla}_{\vec{e}_1} \vec{e}_1 = 2\cos w \vec{e}_3. \end{split}$$

Consequently it is clear that \vec{M} satisfies the condition $\vec{\nabla}_U \xi = f\{\vec{U} - \eta(\vec{U})\xi\}$ for $\vec{e}_3 = \xi$, where $f = -2\cos w$. Thus we conclude that \vec{M} leads to f-Kenmotsu manifold. Also $f^2 + \dot{f} = 2\cos w(2\cos w + \tan w) \neq 0$, which implies that \vec{M} is a regular f-Kenmotsu 3-manifold. It is known that

 $\vec{R}(\vec{X},\vec{Y})\vec{Z} = \vec{\nabla}_{\vec{X}}\vec{\nabla}_{\vec{Y}}\vec{Z} - \vec{\nabla}_{\vec{Y}}\vec{\nabla}_{\vec{X}}\vec{Z} - \vec{\nabla}_{[\vec{X}\ \vec{Y}]}\vec{Z}.$

Therefore, we find the component of curvature tensor as follows

$$\begin{split} \vec{R}(\vec{e}_2,\vec{e}_3)\vec{e}_3 &= -2(\sin w + 2\cos^2 w)\vec{e}_2, \quad \vec{R}(\vec{e}_3,\vec{e}_2)\vec{e}_2 = -2(\sin w + 2\cos^2 w)\vec{e}_3, \\ \vec{R}(\vec{e}_1,\vec{e}_3)\vec{e}_3 &= -2(\sin w + 2\cos^2 w)\vec{e}_1, \quad \vec{R}(\vec{e}_3,\vec{e}_1)\vec{e}_1 = -2(\sin w + 2\cos^2 w)\vec{e}_2, \\ \vec{R}(\vec{e}_3,\vec{e}_1)\vec{e}_2 &= 0, \quad \vec{R}(\vec{e}_1,\vec{e}_2)\vec{e}_2 = -4\cos^2 w\vec{e}_1, \quad \vec{R}(\vec{e}_1,\vec{e}_2)\vec{e}_3 = 0, \\ \vec{R}(\vec{e}_2,\vec{e}_3)\vec{e}_1 &= 0, \quad \vec{R}(\vec{e}_2,\vec{e}_1)\vec{e}_1 = 4\cos^2 w\vec{e}_3. \end{split}$$

The Schouten-van Kampen connection $\widetilde{\nabla}$ on \vec{M} is given by

$$\begin{split} \widetilde{\nabla}_{\vec{e}_2} \vec{e}_3 &= (-2\cos w - f)\vec{e}_2, \quad \widetilde{\nabla}_{\vec{e}_2} \vec{e}_2 = (-2\cos w - f)\vec{e}_3, \quad \widetilde{\nabla}_{\vec{e}_2} \vec{e}_1 = 0, \\ \widetilde{\nabla}_{\vec{e}_3} \vec{e}_3 &= 0, \quad \widetilde{\nabla}_{\vec{e}_3} \vec{e}_2 = 0, \quad \widetilde{\nabla}_{\vec{e}_3} \vec{e}_1 = 0, \\ \widetilde{\nabla}_{\vec{e}_1} \vec{e}_3 &= (-2\cos w - f)\vec{e}_1, \quad \widetilde{\nabla}_{\vec{e}_1} \vec{e}_2 = 0, \quad \widetilde{\nabla}_{\vec{e}_1} \vec{e}_1 = (-2\cos w - f)\vec{e}_3 \end{split}$$

It is clear that for $\vec{e}_3 = \xi$ and $f = -2\cos w$, we get $\widetilde{\nabla}_{\vec{e}_i}\vec{e}_j = 0$ $(1 \le i, j \le 3)$. So the manifold \vec{M} is a f-Kenmotsu 3-manifold with the Schouten-van Kampen connection $\widetilde{\nabla}$. Also from above curvature component one can be seen that $\widetilde{R}=0$. Thus the manifold \vec{M} is a flat manifold with respect to the Schouten-van Kampen connection $\widetilde{\nabla}$. Since a flat manifold is a Ricci-flat manifold with respect to the Schouten-van Kampen connection $\widetilde{\nabla}$.

In case of Ricci soliton, from (3.4) it is sufficient to verify that

$$\widetilde{Ric}(\vec{e}_i, \vec{e}_i) = -(\lambda + f)g(\vec{e}_i, \vec{e}_i) + f\eta(\vec{e}_i)\eta(\vec{e}_i), \ i = 1, 2, 3.$$
(10.2)

It is clear that $\lambda = 0$, that is Ricci solition is always steady on regular *f*-Kenmotsu 3-manifold with the Schouten-van Kampen connection ∇ . Hence Proposition 3.2, Corollary 3.6 and Corollary 3.7 are hold.

11. Conclusion

In this study, we examine certain new curvature conditions of *Q*-curvature tensor on *f*-Kenmotsu 3-manifold admitting the Schouten-van Kampen connection $\widetilde{\nabla}$ and deduce some geometrical results. Also we explore the nature of Ricci soliton.

Acknowledgements

The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

Funding

There is no funding for this work.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author's contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

References

- [1] D. E. Blair, Contact manifolds in Riemannian geometry, Lect. Notes Math., 509 (1976).
- S. Sasaki, Y. Hatakeyama, On differentiable manifolds with certain structures which are closely related to almost contact structures II, Tohoku Math. J., [2] 13 (1961), 281-294.
- [3] Z. Olszak, R. Rosca, Normal locally conformal almost cosymplectic manifolds, Publ. Math. Debrecen, 39 (1991), 315-323.
- [4] S. Ianus, Some almost product structures on manifolds with linear connection, Kodai Math. Sem. Rep., 23 (1971), 305-310.
- [5] A. Bejancu, H. Faran, Foliations and Geometric Structures, Math. and Its Appl., 580, Springer, Dordrecht, 2006. [6] A. F. Solov'ev, On the curvature of the connection induced on a hyperdistribution in a Riemannian space, Geom. Sb., 19 12-23, (1978).
- [7] A. F. Solov'ev, The bending of hyperdistributions, Geom. Sb., 20 (1979), 101-112.
- [8] Z. Olszak, The Schouten-van Kampen affine connection adapted an almost (para) contact metric structure, Publ. De L'inst. Math., 94 (2013), 31-42.
- [9] K. Yano, S. Bochner, Curvature and Betti numbers, Ann. Math. Stud., 32 (1953).
 [10] G. Zhen, J. L. Cabrerizo, L. M. Fernández, M. Fernández, On ξ-conformally flat contact metric manifolds, Indian J. Pure Appl. Math., 28, (1997),
- [11] A. Yildiz, U. C. De, M. Turan, On 3-dimensional f-Kenmotsu manifolds and Ricci solitons, Ukrainian. Math. J., 65(5) (2013), 620-628.
- [12] U. C. De, A. Yıldız, Certain curvature conditions on generalized Sasakian-space-forms, Quaest. Math., 38(4) (2015), 495-504.
- [13] W. Kuhnel, Conformal transformations between Einstein spaces, In: Conformal Geometry, Vieweg Teubner Verlag, Wiesbaden, 105-146.
- [14] K. Yano, Concircular geometry I. Concircular transformation, Proc. Imp. Acad. Tokyo, 16, (1940), 195-200.
- [15] C. A. Mantica, Y. J. Suh, *Pseudo-Q-symmetric Riemannian manifolds*, Int. J. Geom. Methods Mod. Phys. **10**(5) (2013), 25 pages.
 [16] R. S. Hamilton, *The Ricci flow on surfaces*, Contemp. Math., **71** (1988), 237-262.

- [17] B. Chow, D. Knopf, *The Ricci flow: An introduction*, Math. Surv. and Monogram, **110** (2004).
 [18] C. Călin, C. Crasmareanu, *From the Eisenhart problem to the Ricci solitons in f-Kenmotau manifolds*, Bull. Malays. Math. Sci. Soc. (2), **33**(3), (2010),
- 361-368. [19] T. Ivey, *Ricci solitons on compact 3-manifolds*, Different. Geom. Appl., **3** (1993), 301-307.
- [20] A. Derdzinski, A Myers-type theorem and compact Ricci solitons, Proc. Am. Math. Soc., 134(12) (2006), 3645-3648.
- [21] D. Jannsens, L. Vanhecke, Almost contact structures and curvature tensor, Kodai Math. J., 4(1) (1981), 1-27.
 [22] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J., 24(1) (1972), 93-103.
- [23] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv:math/0211159v1 [math.DG], (2002).
- [24] A. Yıldız, On f-Kenmotsu manifolds with the Schouten-van Kampen connection, Publ. de l'Institut Math., Nouvelle série, tome 102(116) (2017), 93-105. [25] S. Y. Perktaş, A. Yıldız, On f-Kenmotsu 3-manifolds with respect to the Schouten-van Kampen connection, Turk. J. Math., 45 (2021), 387-409.