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Abstract

The object of the present paper is to consider f -Kenmotsu 3-manifolds fulfilling certain
curvature conditions on Q-curvature tensor with the Schouten-van Kampen connection.
Certain consequences of Q-curvature tensor on such manifolds bearing Ricci soliton in
perspective of Schouten-van Kampen association are likewise displayed. In the last segment,
examples are given.

1. Introduction

Let ~M be a (2n+ 1)-dimensional almost contact manifold with an almost contact metric structure (φ̆ ,ξ ,η ,g) [1]. We denote by ~Ω, the
fundamental 2-form of ~M i.e., ~Ω(~X ,~Y ) = g(~X , φ̆~Y ), ~X ,~Y ∈ χ(~M), where χ(~M) being the Lie algebra of the differentiable vector fields on ~M.
Furthermore, we recall the following definitions [1, 2].
The manifold ~M and its structure (φ̆ ,ξ ,η ,g) is said to be:
(i) normal if the almost complex structure defined on the product manifold ~M×ℜ is integrable (equivalently [φ̆ , φ̆ ]+2dη⊗ξ = 0),
(ii) almost cosymplectic if dη = 0 and dφ̆ = 0,
(iii) cosymplectic if it is normal and almost cosymplectic (equivalently, ~∇φ̆ = 0, ~∇ being covariant differentiation with respect to the
Levi-Civita connection).
Olszak and Rosca [3] contemplated normal locally conformal almost cosymplectic manifold and gave the geometric translation of f -
Kenmotsu manifolds and its curvature tensors. Among others, they proved that a Riccisymmetric f -Kenmotsu manifold is an Einstein
manifold.
The Schouten-van Kampen connection is quite possibly the most widely recognized connection acclimated to two or three necessary
allocations on a differentiable manifold conceding with a relative connection [4, 5]. Solov’ev has investigated hyperdistributions in
Riemannian manifolds using the Schouten-van Kampen connection [6, 7]. From that point, Olszak has contemplated the Schouten-van
Kampen connection with an almost contact metric structure [8]. He has depicted a few classes of almost contact metric manifolds bearing
the Schouten-van Kampen connection and closed some particular curvature properties of this connection on such manifolds.
Let ~M be a (2n+ 1)-dimensional Riemannian manifold. On the off chance that there exists a balanced correspondence between each
facilitate neighborhood of ~M and an area in Euclidean space with the end goal that any geodesic of the Riemannian manifold compares to a
straight line in the Euclidean space, at that point ~M is supposed to be locally projectively flat. For n≥ 1, ~M is locally projectively flat if and
just if the notable projective curvature tensor P vanishes. Truth be told, P is projectively flat (i. e., P=0) if and just if the manifold is of
consistent curvature [9]. ξ -conformally flat K-contact manifolds have been concentrated by Zhen et al. [10]. Yildiz et al. [11] considered
f -Kenmotsu 3-manifolds with the Schouten-van Kampen connection and demonstrated that such manifold is consistently ξ -projectively flat.
The projective curvature tensor is characterized by [12]:

P(~X ,~Y )~Z = ~R(~X ,~Y )~Z− 1
2n
{ ~Ric(~Y ,~Z)~X− ~Ric(~X ,~Z)~Y}, (1.1)
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where ~Ric is the Ricci tensor on ~M.
A change in a (2n+ 1)-dimensional Reimannian manifold ~M, which changes each geodesic circle of ~M into a geodesic circle of ~M, is
supposed to be a concircular change [13, 14]. A concircular change is consistently a conformal change [13]. It means a geodesic circle by a
bend in ~M whose first curvature is steady and second arch is indistinguishably zero. Subsequently the geometry of concircular change is a
speculation of intrusive geometry as in the difference in measurement is more broad than incited by a circle safeguarding diffeomorphism. A
significant invariant of concircular transformation is the concircular curvature tensor C, characterized by [14]

C(~X ,~Y )~Z = ~R(~X ,~Y )~Z−
~scal

2n(2n+1)
{g(~Y ,~Z)~X−g(~X ,~Z)~Y}, (1.2)

for all ~X ,~Y ,~Z ∈ χ(~M), where ~R is the Reimannian curvature tensor and ~scal is the scalar curvature with respect to the Levi-Civita connection.
An (2n+1)-dimensional Riemannian manifold (~Mn,g), the Q-curvature tensor is defined as [15]

Q(~X ,~Y )~Z = ~R(~X ,~Y )~Z− ψ̆

2n
{g(~Y ,~Z)~X−g(~X ,~Z)~Y}, (1.3)

where ψ̆ is an arbitrary scalar function. If ψ̆= ~scal
(2n+1) , then Q- curvature tensor reduces to concircular curvature tensor. Mantica and Suh [15]

have studied pseudo-Q-symmetric Riemannian manifolds.
In a Riemannian manifold (~M,g), the metric g is called a Ricci soliton if [16]

1
2
L~V g+ ~Ric+λg = 0, (1.4)

where L is the Lie derivative, ~Ric the Ricci tensor, ~V a complete vector field on ~M and λ is a constant. Compact Ricci solitons are the fixed
points of the Ricci flow ∂

∂ t g=-2 ~Ric projected from the space of metrics onto its quotient modulo diffeomorphisms and scalings, and often
arise as blow-up limits for the Ricci flow on compact manifolds. The Ricci soliton is said to be shrinking, steady and expanding if λ is
negative, zero and positive respectively. A Ricci soliton with ~V =0 is reduced to Einstein equation. During the last two decades, the geometry
of Ricci solitons have been light up by the several mathematicians [17–19]. It has became more important after Perelman applied Ricci
solitons to solve the long standing Poincare conjecture posed in 1904.
Our paper is structured as follows: After the introduction. In section 2 we recall the fundamental results of the Schouten-van Kampen
connection and f -Kenmotsu 3-manifolds. In the portion 3 we review the thought of Ricci solition on f -Kenmotsu 3-manifolds with the
Schouten-van Kampen connection. In segment 4 we study ξ -Q flat f -Kenmotsu 3-manifolds with the Schouten-van Kampen connection. We
demonstrate the some results on f -Kenmotsu 3-manifolds with the Schouten-van Kampen connection under the condition Q̃ · R̃ic=0, Q̃ · R̃=0,
Q̃ · P̃=0, Q̃(ξ ,~X) · Q̃=0 and ((ξ ∧R̃ic

~X) · Q̃)=0 in the sections 5-9, respectively. In the last segment, we give the examples.

2. Preliminaries

Let ~M be a real (2n+1)-dimensional differentiable manifold endowed with an almost contact structure (φ̆ ,ξ ,η ,g) satisfying

φ̆
2 = I−η⊗ξ , η(ξ ) = 1, φ̆ξ = 0, η ◦ φ̆ = 0, η(~X) = g(~X ,ξ ), (2.1)

and

g(φ̆~X , φ̆~Y ) = g(~X ,~Y )−η(~X)η(~Y ), (2.2)

for any vector fields ~X ,~Y ∈ χ(~M), where I is the identity of the tangent bundle T ~M, φ̆ is a tensor field of (1,1)-type, η is a 1-form, ξ is a
vector field and g is a metric tensor of ~M. We say that (φ̆ ,ξ ,η ,g) is a f -Kenmotsu manifold [20, 21] if the covariant differentiation of φ̆

satisfies

(∇~X φ̆)~Y = f{g(φ̆~X ,~Y )ξ −η(~Y )φ̆~X}, (2.3)

where f ∈C∞(~M) such that d f ∧η = 0. If f = α(6= 0) = constant, then the manifold (~M,g) is an α-Kenmotsu manifold [21]. Kenmotsu
manifold is an example of f -Kenmotsu manifold with f =1 [22, 23]. If f =0, then the manifold (~M,g) reduces to cosymplectic [21]. An
f -Kenmotsu manifold is said to be regular if f 2 + ḟ 6= 0, where ḟ = ξ f . For an f -Kenmotsu manifold from (2.3) it follows that

∇~X ξ = f{~X−η(~X)ξ}. (2.4)

The condition d f ∧η = 0 holds if dim ~M ≥ 5. In general this relation does not hold if dim ~M=3 [23]. It is well-known that in a Riemannian
3-manifold.

~R(~X ,~Y )~Z = g(~Y ,~Z)~Q~X−g(~X ,~Z)~Q~Y + ~Ric(~Y ,~Z)~X− ~Ric(~X ,~Z)~Y − ~scal
2 {g(~Y ,~Z)~X−g(~X ,~Z)~Y}. (2.5)

In a f -Kenmotsu 3-manifold, we have [3].

~R(~X ,~Y )~Z = (
~scal
2 +2 f 2 +2 ḟ )(~X ∧~Y )~Z− (

~scal
2 +3 f 2 +3 ḟ ){η(~X)(ξ ∧~Y )~Z +η(~Y )(~X ∧ξ )~Z}, (2.6)

~Ric(~X ,~Y ) = (
~scal
2

+ f 2 + ḟ )g(~X ,~Y )− (
~scal
2

+3 f 2 +3 ḟ )η(~X)η(~Y ), (2.7)
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where ~scal is the scalar curvature of ~M. From (2.6) and (2.7) we obtain

~R(~X ,~Y )ξ =−( f 2 + ḟ )[η(~Y )~X−η(~X)~Y ], (2.8)

~Ric(~X ,ξ ) =−2( f 2 + ḟ ) η(~X), (2.9)

~Ric(ξ ,ξ ) =−2( f 2 + ḟ ), (2.10)

~Qξ =−2( f 2 + ḟ )ξ , (2.11)

for any vector fields ~X ,~Y on ~M.
On the other hand ~H and ~V are two complementary, orthogonal distributions on ~M such that dim~H=n−1, dim~V =1, and the distribution
~V is non-null. Thus T ~M=~H⊕~V , ~H ∩~V ={0} and ~H⊥~V . Assume that ξ is a unit vector field and η is a linear form such that η(ξ )=1,
g(ξ ,ξ )=ε=±1 and

~H = kerη , ~V = span{ξ}. (2.12)

For any X ∈ T ~M, by ~Xh and ~Xv we denote the projections of ~X onto ~H and ~V , respectively. Thus, we have ~X = ~Xh +~Xv with

~Xh = ~X−η(~X)ξ , ~Xv = η(~X)ξ . (2.13)

The Schouten-van Kampen connection ∇̃ associated to the Levi-Civita connection ~∇ and adapted to the pair of the distributions (~H,~V ) is
defined by [5]

∇̃~X
~Y = (~∇~X

~Y h)h +(~∇~X
~Y v)v. (2.14)

From (2.13), we compute

(~∇~X
~Y h)h = ~∇~X

~Y −η(~∇~X
~Y )ξ −η(~Y )~∇~X ξ , (2.15)

(~∇~X
~Y v)v = η(~∇~X

~Y )ξ +η(~∇~X
~Y )ξ , (2.16)

which enables us to express the Schouten-van Kampen connection with help of the Levi-Civita connection in the following way [6]

∇̃~X
~Y = ~∇~X

~Y −η(~Y )~∇~X ξ +(~∇~X η)(~Y )ξ . (2.17)

In view of the Schouten-van Kampen connection (2.17), many properties of some geometric objects connected with the distributions ~H,~V
can be characterized [6, 7]. For example ∇̃g = 0, ∇̃ξ = 0, ∇̃η = 0.

Proposition 2.1 ( [24]). Let ~M be a f -Kenmotsu 3-manifold with the Schouten-van Kampen connection ∇̃ we have

∇̃~X
~Y = ~∇~X

~Y + f{g(~X ,~Y )ξ −η(~Y )~X}. (2.18)

R̃(~X ,~Y )~Z = ~R(~X ,~Y )~Z + f 2{g(~Y ,~Z)~X−g(~X ,~Z)~Y}+ ḟ{g(~Y ,~Z)η(~X)ξ −g(~X ,~Z)η(~Y )ξ +η(~Y )η(~Z)~X−η(~X)η(~Z)~Y}. (2.19)

R̃ic(~Y ,~Z) = ~Ric(~Y ,~Z)+(2 f 2 + ḟ )g(~Y ,~Z)+ ḟ η(~Y )η(~Z), (2.20)

¨̃Q~X = ~Q~X +(2 f 2 + ḟ )~X + ḟ η(~X)ξ , (2.21)

s̃cal = ~scal +6 f 2 +4 ḟ , (2.22)

where R̃, ~R, R̃ic, ~Ric, ¨̃Q, ~Q and s̃cal, ~scal are consider as the Riemann curvature, Ricci tensors, Ricci operators and the scalar curvatures of
the connection ∇̃ and ~∇ respectively.
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3. Ricci Soliton on f -Kenmotsu 3-Manifold with the Schouten-Van Kampen Connection

In this section, we study the nature of Ricci soliton on f -Kenmotsu 3-manifold with respect to the Schouten-van Kampen connection ∇̃.
Let (~M3,φ ,ξ ,η ,g) be a f -Kenmotsu 3-manifold with the Schouten-van Kampen connection, since ∇̃g=0 and T̃ 6= 0 then from [25], we have

(L̃~V g)(~X ,~Y ) = g(~∇~X
~V ,~Y )+g(~X ,~∇~Y

~V ) = (L~V g)(~X ,~Y ), (3.1)

where L̃ denotes the Lie derivative on the manifold with respect to the Schouten-van Kampen connection. Thus from (1.4) we can write

(L̃~V g+2R̃ic+2λg)(~X ,~Y ) = 0, (3.2)

that is

g(~∇~X
~V ,~Y )+g(~X ,~∇~Y

~V )+2R̃ic(~X ,~Y )+2λg(~X ,~Y ) = 0, (3.3)

Putting ~V =ξ in (3.3) and using (2.4) we obtain

R̃ic(~X ,~Y ) =−(λ + f )g(~X ,~Y )+ f η(~X)η(~Y ) (3.4)

In view of (2.20) and (3.4), we get

~Ric(~X ,~Y ) =−( ḟ +2 f 2 + f +λ )g(~X ,~Y )+(− ḟ + f )η(~X)η(~Y ) (3.5)

Thus we can state the following:

Proposition 3.1. A f -Kenmotsu 3-manifold with respect to the Schouten-van Kampen connection ∇̃ admitting Ricci soliton then the manifold
is an η-Einstein manifold with the Schouten-van Kampen connection ∇̃ and Levi-Civita connection ~∇.

Proposition 3.2. A Ricci soliton on an f -Kenmotsu 3-manifold with respect to the Schouten-van Kampen connection ∇̃ is always steady.

Also from (3.4), we get

s̃cal =−2 f −3λ . (3.6)

In view of (2.22) and (3.6), one can easily bring out that

λ =−1
3
( ~scal +6 f 2 +4 ḟ +2 f ). (3.7)

We have the following:

Proposition 3.3. A Ricci soliton on f -Kenmotsu 3-manifold with the Schouten-van Kampen connection ∇̃ is an expanding, steady or
shrinking according as ~scal <−6 f 2−4 ḟ −2 f , ~scal=−6 f 2−4 ḟ −2 f or ~scal >−6 f 2−4 ḟ −2 f .

Proposition 3.4. A Ricci soliton on α-Kenmotsu 3-manifold with the Schouten-van Kampen connection ∇̃ is an expanding, steady or
shrinking according as ~scal <−6α2−2α , ~scal =−6α2−2α or ~scal >−6α2−2α .

Proposition 3.5. A Ricci soliton on cosymplectic 3-manifold with respect to the Schouten-van Kampen connection ∇̃ is an expanding, steady
or shrinking according as ~scal < 0, ~scal = 0 or ~scal > 0.

In [24], Yildiz et al. demonstrated that f -Kenmotsu 3-manifold is projectively flat with respect to the Schouten-van Kampen connection if
and only if ~M is a Ricci-flat manifold with respect to the Schouten-van Kampen connection ∇̃. Therefore in perspective on this outcome and
utilizing (3.4) we express the following:

Corollary 3.6. A Ricci soliton on a projectively flat f -Kenmotsu 3-manifold with respect to the Schouten-van Kampen connection ∇̃ is
always steady.

With the help of Theorem 6.1. of [24] and (3.4) we have the following:

Corollary 3.7. A Ricci soliton on a conharmonically flat f -Kenmotsu 3-manifold with respect to the Schouten-van Kampen connection ∇̃ is
always steady.

4. ξ -Q̃ Flat f -Kenmotsu 3-Manifold with the Schouten-Van Kampen Connection

In this section, we consider ξ -Q̃ flat f -Kenmotsu 3-manifold admitting the Schouten-van Kampen connection ∇̃. Now we state the following
definitions and result:

Definition 4.1. A f -Kenmotsu 3-manifold is said to be ξ -Q̃ flat if Q̃(~X ,~Y )ξ = 0 on ~M.

Theorem 4.2. A f -Kenmotsu 3-manifold with the Schouten-van Kampen connection ∇̃ is ξ -Q̃ flat if and only if ψ̆=0.



100 Universal Journal of Mathematics and Applications

Proof. From (1.3) we have

Q̃(~X ,~Y )ξ = R̃(~X ,~Y )ξ − ψ̆

2
[η(~Y )~X−η(~X)~Y ], (4.1)

for any for any vector fields ~X and~Y ∈ χ(~M). With the help of (2.6) and (2.19), equation (4.1) reduces

Q̃(~X ,~Y )ξ =− ψ̆

2
[η(~Y )~X−η(~X)~Y ]. (4.2)

This completes the proof.

If ψ̆= ~scal
3 then Q-curvature tensor reduces to concircular curvature tensor. Thus keeping in mind Theorem 4.2 and making use of (1.2) we

obtain the followings:

Corollary 4.3. A f -Kenmotsu 3-manifold with the Schouten-van Kampen connection ∇̃ is ξ -concircularly flat if and only if the scalar
curvature of the manifold is zero.

Corollary 4.4. A ξ -concircularly flat complete Einstein f -Kenmotsu 3-manifold is Ricci flat.

Corollary 4.5. A Ricci soliton on ξ -concircularly flat complete Einstein f -Kenmotsu 3-manifold is always steady.

If 0 6= f =constant (we assume f =α) then ḟ =0. Thus we state the followings:

Corollary 4.6. An α-Kenmotsu 3-manifold with the Schouten-van Kampen connection ∇̃ is ξ -Q̃ flat if and only if ψ̆=0.

Corollary 4.7. In a ξ -Q̃ flat α-Kenmotsu 3- manifold with the Schouten-van Kampen connection ∇̃ the Q-curvature tensor is equal to the
Reimannian curvature tensor.

Corollary 4.8. In a ξ -Q̃ flat α-Kenmotsu 3-manifold with the Schouten-van Kampen connection ∇̃ the concircular curvature tensor is equal
to the Reimannian curvature tensor.

Corollary 4.9. A Ricci soliton on ξ -concircularly flat α-Kenmotsu 3-manifold with respect to the Schouten-van Kampen connection ∇̃ is
always shrinking.

5. f -Kenmotsu 3-Manifolds Satisfying Q̃ · R̃ic=0 with the Schouten-Van Kampen Connection

In this section we restrict our study to f -Kenmotsu 3-manifolds satisfying Q̃ · R̃ic=0 with the Schouten-van Kampen connection ∇̃. We
conclude the following:

Theorem 5.1. A f -Kenmotsu 3-manifolds with the Schouten-van Kampen connection ∇̃ satisfying Q̃ · R̃ic=0, then ether Q-curvature tensor
is equal to the Riemannian curvature or the manifold is an η-Einstein manifold.

Proof. Let ~M satisfies the condition Q̃(ξ ,~X) · R̃ic=0. So it implies that

R̃ic(Q̃(ξ ,~X)~Y ,~Z)+ R̃ic(~Y , Q̃(ξ ,~X)~Z) = 0, (5.1)

for any ~X ,~Y ,~Z on ~M. Using (1.3), (2.6) and (2.19) in (5.1), we have

ψ̆

2

{
g(~X ,~Y )R̃ic(ξ ,~Z)− R̃ic(~X ,~Z)η(~Y )+g(~X ,~Z)R̃ic(ξ ,~Y )− R̃ic(~X ,~Y )η(~Z)

}
= 0. (5.2)

For ~Z=ξ and keeping in mind (2.9) and (2.20), we obtain

ψ̆R̃ic(~X ,~Y ) = 0, (5.3)

which implies that either ψ̆=0, or R̃ic(~X ,~Y )=0. Thus we have:
Case (i) In particular, if ψ̆=0, and R̃ic(~X ,~Y ) 6= 0 then from (1.3) we get Q(~X ,~Y )~Z = ~R(~X ,~Y )~Z.
Case (ii) Also if ψ̆ 6= 0 and R̃ic(~X ,~Y )=0, then from (2.20), the manifold is an η-Einstein manifold. This completes the proof.

Again, if ψ̆= ~scal
3 then Q-curvature tensor reduces to concircular curvature tensor. So from Theorem 5.1 and making use of (1.2), we can

mention the following:

Corollary 5.2. A f -Kenmotsu 3-manifolds with the Schouten-van Kampen connection ∇̃ satisfying C̃ · R̃ic=0 then either Q-curvature tensor
is equal to concircular curvature tensor or the manifold is an η-Einstein manifold.

Also, if 0 6= f =constant (we assume f =α), then ḟ =0. Thus we state the followings:

Corollary 5.3. A f -Kenmotsu 3-manifolds satisfying Q̃ · R̃ic=0 with the Schouten-van Kampen connection ∇̃ then ether the Q-curvature
tensor is equal to the Riemannian curvature or the manifold is an η-Einstein manifold.

Corollary 5.4. An α-Kenmotsu 3-manifolds with the Schouten-van Kampen connection ∇̃ satisfying C̃ · R̃ic=0 then either Q-curvature
tensor reduces to concircular curvature tensor or the manifold is an η-Einstein manifold.

Again, in view of (5.3) and (3.4), we have the followings:

Corollary 5.5. A Ricci soliton on f -Kenmotsu 3-manifolds with the Schouten-van Kampen connection ∇̃ satisfying Q̃ · R̃ic=0, then either
the soliton is steady or Q-curvature tensor is equal to the Remannian curvature tensor.

Corollary 5.6. A Ricci soliton on f -Kenmotsu 3-manifold with the Schouten-van Kampen connection ∇̃ satisfying C̃ · R̃ic=0, then either the
soliton is steady or concircular curvature tensor is equal to the Remannian curvature tensor.
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6. f -Kenmotsu 3-Manifolds Satisfying Q̃ · R̃=0 with the Schouten-Van Kampen Connection

At this stage we consider f -Kenmotsu 3-manifolds with the Schouten-van Kampen connection ∇̃ satisfying Q̃ · R̃=0 . Therefore we illustrate
the following:

Theorem 6.1. A f -Kenmotsu 3-manifolds satisfying Q̃ · R̃=0 with the Schouten-van Kampen connection ∇̃ then either Q-curvature tensor is
equal to the Riemannian curvature, or it has the sectional curvature −( f 2 + ḟ ).

Proof. Suppose that f -Kenmotsu 3-manifolds with the Schouten-van Kampen connection ∇̃ satisfying

Q̃(ξ ,~X)R̃(~Y ,~Z)~U = 0. (6.1)

Equation (6.1) can be written as

Q̃(ξ ,~X)R̃(~Y ,~Z)~U− R̃(Q̃(ξ ,~X)~Y ,~Z)~U− R̃(~Y , Q̃(ξ ,~X)~Z)~U− R̃(~Y ,~Z)Q̃(ξ ,~X)~U = 0, (6.2)

for any vector fields ~X ,~Y , ~Z and ~U on ~M. Using (1.3), (2.6) and (2.19) in (6.2), we obtain

ψ̆

2 [−g(~X , R̃(~Y ,~Z)~U)ξ +η(R̃(~Y ,~Z)~U)−η(~Y )R̃(~X ,~Z)~U−η(~Z)R̃(~Y ,~X)~U−η(~U)R̃(~Y ,~Z)~X ] = 0. (6.3)

Taking the inner product with ξ of (6.3) and using (2.19) we get

ψ̆

2 [g(~X ,~R(~Y ,~Z)~U +( f 2 + ḟ ){g(~Z,~U)g(~X ,~Y )−g(~Y ,~U)g(~X ,~Z)}+ ḟ{g(~X ,~Y )η(~Z)η(~U)−g(~X ,~Z)η(~Y )η(~U)}] = 0. (6.4)

It follows that either ψ̆=0, or it has the sectional curvature −( f 2 + ḟ ).
This completes the proof.

In particular, if ψ̆= ~scal
3 then Q-curvature tensor reduces to concircular curvature tensor. Therefore in view of the first result of the above

Theorem 6.1 and making use of (1.2), we can mention the following:

Corollary 6.2. If a f -Kenmotsu 3-manifolds with the Schouten-van Kampen connection ∇̃ satisfying C̃ · R̃=0 then either concircular
curvature tensor is equal to the Riemannian curvature or it has the sectional curvature −( f 2 + ḟ ).

Also with the help of (3.7) and Theorem 6.1, we conclude that:

Corollary 6.3. If a f -Kenmotsu 3-manifolds with the Schouten-van Kampen connection ∇̃ satisfying C̃ · R̃=0 then either Ricci soliton is
shrinking or it has the sectional curvature −( f 2 + ḟ ).

If 0 6= f =constant (we assume f =α), then ḟ =0. Thus we state the followings:

Corollary 6.4. If an α-Kenmotsu 3-manifolds with the Schouten-van Kampen connection ∇̃ satisfying C̃ · R̃=0 then either concircular
curvature tensor is equal to the Riemannian curvature or it has the sectional curvature α2.

Corollary 6.5. If an α-Kenmotsu 3-manifolds with the Schouten-van Kampen connection ∇̃ satisfying C̃ · R̃=0 then either Ricci soliton is
shrinking or it has the sectional curvature α2.

7. f -Kenmotsu 3-Manifolds Satisfying Q̃ · P̃=0 with the Schouten-Van Kampen Connection

We consider f -Kenmotsu 3-manifolds with the Schouten-van Kampen connection ∇̃ satisfying the condition Q̃ · P̃=0. Then we have:

Theorem 7.1. A f -Kenmotsu 3-manifolds satisfying Q̃ · P̃=0 with the Schouten-van Kampen connection ∇̃ is either the Q-curvature tensor
is equal to the Riemannian curvature or it has the sectional curvature 1

2 (
~scal
2 + f 2 +2 ḟ ).

Proof. The condition Q̃(ξ ,~X)P̃ = 0 reflect that

(Q̃(ξ ,~X)P̃)(~Y ,~Z)~U) = Q̃(ξ ,~X)P̃(~Y ,~Z)~U− P̃(Q̃(ξ ,~X)~Y ,~Z)~U− P̃(~Y , Q̃(ξ ,~X)~Z)~U− P̃(~Y ,~Z)Q̃(ξ ,~X)~U = 0, (7.1)

for any vector fields ~X ,~Y , ~Z and ~U on ~M. On the other hand from (1.3), we have

Q̃(ξ ,~X)P̃(~Y ,~Z)~U =− ψ̆

2
{g(~X , P̃(~Y ,~Z)~U)ξ −η(P̃(~Y ,~Z)~U)~X}, (7.2)

P̃(Q̃(ξ ,~X)~Y ,~Z)~U =− ψ̆

2
{g(~X ,~Y )P̃(ξ ,~Y )~Z−η(~Y )P̃(~X ,~Z)~U}, (7.3)

P̃(~Y , Q̃(ξ ,~X)~Z,~U) =− ψ̆

2
{g(~X ,~Z)P̃(~Y ,ξ )~U−η(~Z)P̃(~Y ,~X)~U}, (7.4)

P̃(~Y ,~Z, Q̃(ξ ,~X)~U) =− ψ̆

2
{g(~X ,~U)P̃(~Y ,~Z)ξ −η(~U)P̃(~Y ,~Z)~X}. (7.5)
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Using (7.2), (7.3), (7.4) and (7.5) in (7.1), we get

ψ̆

2 {−g(~X , P̃(~Y ,~Z)~U)ξ +η(P̃(~Y ,~Z)~U)~X +g(~X ,~Y )P̃(ξ ,~Y )~Z−η(~Y )P̃(~X ,~Z)~U +g(~X ,~Z)P̃(~Y ,ξ )~U−η(~Z)P̃(~Y ,~X)~U
+g(~X ,~U)P̃(~Y ,~Z)ξ −η(~U)P̃(~Y ,~Z)~X}= 0.

(7.6)

Taking the inner product of (7.6) with ξ and using (1.1), (2.6), (2.8) and (2.19), which implies

ψ̆

2
{g(~X ,~R(~Y ,~Z)~U)− 1

2
(
~scal
2

+ f 2 +2 ḟ )(g(~X ,~Y )g(~Z,~U)−g(~X ,~Z)g(~Y ,~U))}= 0. (7.7)

It is clear that either ψ̆=0, or it has the sectional curvature 1
2 (

scal
2 + f 2 +2 ḟ ).

This leads to the proof of the Theorem 7.1.
For ψ̆= ~scal

3 then Q-curvature tensor reduces to concircular curvature tensor. Therefore in view of the first result of the above Theorem 7.1
and use of (1.2), we can mention the following:

Corollary 7.2. A f -Kenmotsu 3-manifolds with the Schouten-van Kampen connection ∇̃ satisfying C̃ · R̃ic=0 then either concircular
curvature tensor is equal to the Remannian curvature tensor or it has the sectional curvature 1

2 ( f 2 +2 ḟ ).

Again from Corollary 7.2, and (3.7), we have the following:

Corollary 7.3. A f -Kenmotsu 3-manifolds with the Schouten-van Kampen connection ∇̃ satisfying C̃ · R̃ic=0 then either Ricci soliton is
shrinking or it has the sectional curvature 1

2 ( f 2 +2 ḟ ).

If 0 6= f =constant (we assume f =α), then ḟ =0. Thus we state the followings:

Corollary 7.4. An α-Kenmotsu 3-manifolds with the Schouten-van Kampen connection ∇̃ satisfying C̃ · R̃ic=0 then either concircular
curvature tensor is equal to the Remannian curvature tensor or it has the sectional curvature α2

2 .

Corollary 7.5. An α-Kenmotsu 3-manifolds with the Schouten-van Kampen connection ∇̃ satisfying C̃ · R̃ic=0 then either Ricci soliton is
shrinking or it has the sectional curvature α2

2 .

8. f -Kenmotsu 3-Manifolds Satisfying Q̃(ξ ,~X) · Q̃=0 with the Schouten-Van Kampen Connection

In this section we study f -Kenmotsu 3-manifolds with the Schouten-van Kampen connection ∇̃ satisfying Q̃(ξ ,~X) · Q̃=0 . We have the
following:

Theorem 8.1. A f -Kenmotsu 3-manifolds satisfying Q̃(ξ ,~X) · Q̃=0 with the Schouten-van Kampen connection ∇̃ then either the Q-curvature
tensor is equal to the Riemannian curvature or it has the sectional curvature -( f 2 + ḟ ).

Proof. The condition (Q̃(ξ ,~X) · Q̃)(~Y ,~Z)~U=0 implies that

Q̃(ξ ,~X)Q̃(~Y ,~Z)~U− Q̃(Q̃(ξ ,~X)~Y ,~Z)~U− Q̃(~Y , Q̃(ξ ,~X)~Z)~U− Q̃(~Y ,~Z)Q̃(ξ ,~X)~U = 0, (8.1)

for any vector fields ~X ,~Y ,~Z and ~U on ~M.
In view of (2.6) and (2.19), equation (1.3) reduces to

Q̃(~Y ,~Z)~U =
{

~scal
2 +3 f 2 +2 ḟ − ψ̆

2

}
[g(~Z,~U)~Y −g(~Y ,~U)~Z]

−
{

~scal
2 +3 f 2 +2 ḟ

}
[g(~Z,~U)η(~Y )ξ −g(~Y ,~U)η(~Z)ξ +η(~Z)η(~U)~Y −η(~Y )η(~U)~Z].

(8.2)

Then we have

Q̃(ξ ,~Z)~U =− ψ̆

2
[g(~Z,~U)ξ −η(~U)~Z], (8.3)

Q̃(ξ ,~X)Q̃(~Y ,~Z)~U =− ψ̆

2
[g(~X , Q̃(~Y ,~Z)~U))ξ −η(Q̃(~Y ,~Z)~U)~X ], (8.4)

Q̃(Q̃(ξ ,~X)(~Y ,~Z)~U =− ψ̆

2
[g(~X ,~Y )Q̃(ξ ,~Z)~U)−η(~Y )Q̃(~X ,~Z)~U ], (8.5)

Q̃(~Y , Q̃(ξ ,~X)~Z)~U =− ψ̆

2
[g(~X ,~Z)Q̃(~Y ,ξ )~U−η(~Z)Q̃(~Y ,~X)~U ], (8.6)

Q̃(~Y ,~Z)Q̃(ξ ,~X)~U =− ψ̆

2
[g(~X ,~U)Q̃(~Y ,~Z)ξ −η(~U)Q̃(~Y ,~Z)~X ]. (8.7)
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Using (8.4), (8.5), (8.6) and (8.7) in (8.1), we get

ψ̆

2 [−g(~X , Q̃(~Y ,~Z)~U))ξ +η(Q̃(~Y ,~Z)~U)~X +g(~X ,~Y )Q̃(ξ ,~Z)~U)−η(~Y )Q̃(~X ,~Z)~U +g(~X ,~Z)Q̃(~Y ,ξ )~U−η(~Z)Q̃(~Y ,~X)~U
+g(~X ,~U)Q̃(~Y ,~Z)ξ −η(~U)Q̃(~Y ,~Z)~X ] = 0.

(8.8)

Taking the inner product of (8.8) with ξ , and using (8.2) and (8.3) we obtain

ψ̆

2
[g(~X ,~R(~Y ,~Z)~U)+( f 2 + ḟ )[g(~X ,~Y )g(~Z,~Y )−g(~X ,~Z)g(~Y ,~U)] = 0. (8.9)

This implies that either ψ̆=0, or it has the sectional curvature -( f 2 + ḟ ).
If ψ̆=0, then from (1.3) we get Q(~X ,~Y )~Z = ~R(~X ,~Y )~Z. This complete the proof.

Further if ψ̆= ~scal
3 then Q-curvature tensor reduces to concircular curvature tensor. Therefore in view of Theorem 8.1 and use of (1.2), we

have the followings:

Corollary 8.2. A f -Kenmotsu 3-manifolds satisfying C̃(ξ ,~X) ·C̃=0 with the Schouten-van Kampen connection ∇̃ then either the concircular
curvature tensor is equal to the Riemannian curvature or it has the sectional curvature -( f 2 + ḟ ).

Corollary 8.3. A f -Kenmotsu 3-manifolds satisfying C̃(ξ ,~X) ·C̃=0 with the Schouten-van Kampen connection ∇̃ then either Ricci soltion is
shrinking or it has the sectional curvature -( f 2 + ḟ ).

If 0 6= f =constant (we assume f =α), then ḟ =0. Therefore, we have:

Corollary 8.4. An α-Kenmotsu 3-manifolds satisfying C̃(ξ ,~X) ·C̃=0 with the Schouten-van Kampen connection ∇̃ then either the concircular
curvature tensor is equal to the Riemannian curvature or it has the sectional curvature -α2.

Corollary 8.5. An α-Kenmotsu 3-manifolds satisfying C̃(ξ ,~X) ·C̃=0 with the Schouten-van Kampen connection ∇̃ then either Ricci soltion
is shrinking or it has the sectional curvature -α2.

9. f -Kenmotsu 3-Manifolds Bearing Ricci Soliton Satisfying ((ξ ∧R̃ic
~X) · Q̃)=0 with the Schouten-

Van Kampen Connection

In this segment we study f -Kenmotsu 3-manifolds bearing Ricci soliton satisfying ((ξ ∧R̃ic
~X) · Q̃)=0 with the Schouten-van Kampen

connection ∇̃. Therefore, we have the following:

Theorem 9.1. A f -Kenmotsu 3-manifolds bearing Ricci soliton satisfying ((ξ ∧R̃ic
~X) · Q̃)=0 with the Schouten-van Kampen connection ∇̃

then either Q-curvature tensor is equal to the Riemannian curvature or soliton is steady.

Proof. The condition ((ξ ∧R̃ic
~X) · Q̃)(~Y ,~Z)~U=0 implies that

R̃ic(~X , Q̃(~Y ,~Z)~U)ξ − R̃ic(ξ , Q̃(~Y ,~Z)~U)~X− R̃ic(~X ,~Y )Q̃(ξ ,~Z)~U
+R̃ic(ξ ,~Y )Q̃(~X ,~Z)~U− R̃ic(~X ,~Z)Q̃(~Y ,ξ )~U + R̃ic(ξ ,~Z)Q̃(~Y ,~X)~U
−R̃ic(~X ,~U)Q̃(~Y ,~Z)ξ + R̃ic(ξ ,~U)Q̃(~Y ,~Z)~X = 0.

(9.1)

Using (3.4) in (9.1), we get

−λg(~X , Q̃(~Y ,~Z)~U)ξ +λη(Q̃(~Y ,~Z)~U)~X +λg(~X ,~Y )Q̃(ξ ,~Z)~U
−λη(~Y )Q̃(~X ,~Z)~U +λg(~X ,~Z)Q̃(~Y ,ξ )~U−λη(~Z)Q̃(~Y ,~X)~U
+λg(~X ,~U)Q̃(~Y ,~Z,ξ )−λη(~U)Q̃(~Y ,~Z)~X = 0.

(9.2)

Taking the inner product of (9.2) with ξ and using (8.2) that implies{
(

~scal
2 +3 f 2 +2 ḟ − ψ̆

2

}
[−λg(~Z,~U)g(~X ,~Y )+3λg(~Y ,~U)g(~X ,~Z)+3λg(~Z,~U)η(~Y )

−3λg(~Y ,~U)η(~Z)]−
{

~scal
2 +3 f 2 +2 ḟ

}
[−3λg(~Z,~U)η(~X)η(~Y )+3λg(~Y ,~U)η(~X)η(~Z)

−3λg(~X ,~Y )η(~Z)η(~U)+3λg(~X ,~Z)η(~Y )η(~U)+3λg(~Z,~U)η(~Y )
−3λg(~Y ,~U)η(~Z)]+ ψ̆

2 [−3λg(~X ,~Y )g(~Z,~U)+3λg(~X ,~Y )η(~Z)η(~U)

+3λg(~Z,~U)η(~X)η(~Y )−3λg(~X ,~U)η(~Z)η(~Y )−3λg(~X ,~Z)η(~Y )η(~U)

+3λg(~X ,~Z)g(~Y ,~U)+3λg(~X ,~U)η(~Y )η(~Z)−3λg(~Y ,~U)η(~Y )η(~X)

+3λg(~X ,~Z)η(~Y )η(~U)−3λg(~X ,~Y )η(~Z)η(~U)] = 0.

(9.3)

For fix ~U=ξ in (9.3) and on simplification, we get

3λψ̆[g(~X ,~Z)η(~Y )−g(~X ,~Y )η(~Z)] = 0. (9.4)

This implies that either λ=0, or ψ̆=0. If λ=0, and ψ̆ 6= 0, then the Ricci soliton is steady. Whereas if λ 6= 0 and ψ̆=0, so from (1.3), we
obtain Q(~X ,~Y )~Z=~R(~X ,~Y )~Z. This complete the proof.

As per consequence if ψ̆= ~scal
3 then Q-curvature tensor reduces to concircular curvature tensor. Therefore in view of Theorem 9.1 and use of

(1.2), we have the following:

Corollary 9.2. A f -Kenmotsu 3-manifolds bearing Ricci soliton satisfying ((ξ ∧R̃ic
~X) ·C̃)=0 with the Schouten-van Kampen connection ∇̃

then either concircular curvature tensor is equal to the Riemannian curvature or Ricci soliton is steady.
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10. Examples

Example 10.1. We consider the 3-dimensional manifold ~M = {(u,v,w) ∈ℜ3,w 6= 0}, where (u,v,w) are the standard coordinate in ℜ3.
Let (~e1,~e2,~e3) be linearly independent vector fields at each point of ~M, given by

~e1 =
1
w

∂

∂u
, ~e2 =

1
w

∂

∂v
, ~e3 =−

∂

∂w

are linearly independent at each point of ~M. Let g be the Riemannian metric defined

g(~e1,~e2) = g(~e2,~e3) = g(~e1,~e3) = 0, g(~e1,~e1) = g(~e2,~e2) = g(~e3,~e3) = 1.

and given by

g = w2[du⊗du+dv⊗dv+
1

w2 dw⊗dw].

Let η be the 1-form have the significance

η(~U) = g(~U ,~e3)

for any ~U ∈ Γ(T ~M) and φ̆ be the (1,1)-tensor field defined by

φ̆~e1 =−~e2, φ̆~e2 =~e1, φ̆~e3 = 0.

Making use of the linearity of φ̆ and g we have

η(~e3) = 1, φ̆
2(~U) =−~U +η(~U)~e3, g(φ̆~U , φ̆~V ) = g(~U ,~V )−η(~U)η(~V ),

for any ~U , ~W ∈ Γ(T ~M). Now we can easily calculate

[~e1,~e2] = 0, [~e1,~e3] =−
1
w
~e2, [~e2,~e3] =−

1
w
~e1.

The Riemannian connection ~∇ of the metric tensor g is given by the Koszul’s formula, i. e.,

2g(~∇~U
~V , ~W ) = ~U(g(~V , ~W ))+~V (g(~W ,~X))− ~W (g(~U ,~V ))−g(~U , [~V , ~W ])−g(~V , [~U , ~W ])+g(~W , [~U ,~V ]).

Making use of Koszul’s formula we get the following:

~∇~e2~e3 =− 1
w~e2, ~∇~e2~e2 =

1
w~e3, ~∇~e2~e1 = 0,

~∇~e3~e3 = 0, ~∇~e3~e2 = 0, ~∇~e3~e1 = 0,
~∇~e1~e3 =− 1

w~e1, ~∇~e1~e2 = 0, ~∇~e1~e1 =
1
w~e3.

Consequently it is clear that ~M satisfies the condition ~∇~U ξ = f{~U −η(~U)ξ} for ~e3=ξ , where f =- 1
w . Thus we conclude that ~M leads to

f -Kenmotsu manifold. Also f 2 + ḟ = 2
w2 6= 0. That implies ~M is a regular f -Kenmotsu 3-manifold. Also the Schouten-van Kampen connection

∇̃ on ~M as follows

∇̃~e2~e3 =−( 1
w + f )~e2, ∇̃~e2~e2 = ( 1

w + f )~e3, ∇̃~e2~e1 = 0,
∇̃~e3~e3 = 0, ∇̃~e3~e2 = 0, ∇̃~e3~e1 = 0,
∇̃~e1~e3 =−( 1

w + f )~e1, ∇̃~e1~e2 = 0, ∇̃~e1~e1 = ( 1
w + f )~e3.

It is clear that for~e3=ξ and f =- 1
w , we get ∇̃~ei~e j=0 (1≤ i, j ≤ 3). So the manifold ~M is a f -Kenmotsu 3-manifold with the Schouten-van

Kampen connection ∇̃. Also one can seen that R̃=0. Thus the manifold ~M is a flat manifold with respect to the Schouten-van Kampen
connection ∇̃. Since a flat manifold is a Ricci-flat manifold with respect to the Schouten-van Kampen connection ∇̃. So from (3.4), we get
λ=0, that is Ricci solition is always steady on regular f -Kenmotsu 3-manifold with the Schouten-van Kampen connection ∇̃. In case of Ricci
soliton, from (3.4) it is sufficient to verify that

R̃ic(~ei,~ei) =−(λ + f )g(~ei,~ei)+ f η(~ei)η(~ei), i = 1,2,3. (10.1)

It is clear that λ=0, that is Ricci solition is always steady on regular f -Kenmotsu 3-manifold with the Schouten-van Kampen connection ∇̃.
Hence Proposition 3.2, Corollary 3.6 and Corollary 3.7 are hold.

Example 10.2. We consider the 3-dimensional manifold ~M={(u,v,w) ∈ℜ3,w 6= 0}, where (u,v,w) are the standard coordinate in ℜ3. Let
(~e1,~e2,~e3) be linearly independent vector fields at each point of ~M, given by

~e1 = sin2 w
∂

∂u
, ~e2 = sin2 w

∂

∂v
, ~e3 = sinw

∂

∂w
.

are linearly independent at each point of ~M. Let g be the Riemannian metric defined

g(~e1,~e2) = g(~e2,~e3) = g(~e1,~e3) = 0, g(~e1,~e1) = g(~e2,~e2) = g(~e3,~e3) = 1.
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and given by

g = sin4 w [du⊗du+dv⊗dv+
1

sin2 w
dw⊗dw].

Let η be the 1-form have the significance

η(~U) = g(~U ,~e3)

for any ~U ∈ Γ(T M) and φ̆ be the (1,1)-tensor field defined by

φ̆~e1 =−~e2, φ̆~e2 =~e1, φ̆~e3 = 0.

Making use of the linearity of φ̆ and g we have

η(~e3) = 1, φ̆
2(~U) =−~U +η(~U)~e3, g(φ̆~U , φ̆~V ) = g(~U ,~V )−η(~U)η(~V ),

for any ~U , ~W ∈ Γ(T ~M). Now we can easily calculate

[~e1,~e2] = 0, [~e1,~e3] =−2cosw~e2, [~e2,~e3] =−2cosw~e1.

The Riemannian connection ~∇ of the metric tensor g is given by the Koszul’s formula, that is.,

2g(∇~U
~V , ~W ) = ~U(g(~V , ~W ))+~V (g(~W ,~X))− ~W (g(~U ,~V ))−g(~U , [~V , ~W ])−g(~V , [~U , ~W ])+g(~W , [~U ,~V ]).

Making use Koszul’s formula we get the following:

~∇~e2~e3 =−2cosw~e2, ~∇~e2~e2 = 2cosw~e3, ~∇~e2~e1 = 0,
~∇~e3~e3 = 0, ~∇~e3~e2 = 0, ~∇~e3~e1 = 0,
~∇~e1~e3 =−2cosw~e1, ~∇~e1~e2 = 0, ~∇~e1~e1 = 2cosw~e3.

Consequently it is clear that ~M satisfies the condition ~∇U ξ = f{~U−η(~U)ξ} for~e3 =ξ , where f =-2cosw. Thus we conclude that ~M leads
to f -Kenmotsu manifold. Also f 2 + ḟ =2cosw(2cosw+ tanw) 6= 0, which implies that ~M is a regular f -Kenmotsu 3-manifold
It is known that

~R(~X ,~Y )~Z = ~∇~X
~∇~Y

~Z−~∇~Y
~∇~X

~Z−~∇[~X ,~Y ]
~Z.

Therefore, we find the component of curvature tensor as follows

~R(~e2,~e3)~e3 =−2(sinw+2cos2 w)~e2, ~R(~e3,~e2)~e2 =−2(sinw+2cos2 w)~e3,
~R(~e1,~e3)~e3 =−2(sinw+2cos2 w)~e1, ~R(~e3,~e1)~e1 =−2(sinw+2cos2 w)~e2,
~R(~e3,~e1)~e2 = 0, ~R(~e1,~e2)~e2 =−4cos2 w~e1, ~R(~e1,~e2)~e3 = 0,
~R(~e2,~e3)~e1 = 0, ~R(~e2,~e1)~e1 = 4cos2 w~e3.

The Schouten-van Kampen connection ∇̃ on ~M is given by

∇̃~e2~e3 = (−2cosw− f )~e2, ∇̃~e2~e2 = (−2cosw− f )~e3, ∇̃~e2~e1 = 0,
∇̃~e3~e3 = 0, ∇̃~e3~e2 = 0, ∇̃~e3~e1 = 0,
∇̃~e1~e3 = (−2cosw− f )~e1, ∇̃~e1~e2 = 0, ∇̃~e1~e1 = (−2cosw− f )~e3.

It is clear that for ~e3=ξ and f = −2cosw, we get ∇̃~ei~e j=0 (1 ≤ i, j ≤ 3). So the manifold ~M is a f -Kenmotsu 3-manifold with the
Schouten-van Kampen connection ∇̃. Also from above curvature component one can be seen that R̃=0. Thus the manifold ~M is a flat manifold
with respect to the Schouten-van Kampen connection ∇̃. Since a flat manifold is a Ricci-flat manifold with respect to the Schouten-van
Kampen connection ∇̃.
In case of Ricci soliton, from (3.4) it is sufficient to verify that

R̃ic(~ei,~ei) =−(λ + f )g(~ei,~ei)+ f η(~ei)η(~ei), i = 1,2,3. (10.2)

It is clear that λ=0, that is Ricci solition is always steady on regular f -Kenmotsu 3-manifold with the Schouten-van Kampen connection ∇̃.
Hence Proposition 3.2, Corollary 3.6 and Corollary 3.7 are hold.

11. Conclusion

In this study, we examine certain new curvature conditions of Q-curvature tensor on f -Kenmotsu 3-manifold admitting the Schouten-van
Kampen connection ∇̃ and deduce some geometrical results. Also we explore the nature of Ricci soliton.
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