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Abstract. In this work, we present some Hardy-type integral inequalities

for 0 < p < 1 via a second parameter q > 0 with sharp constant. These
inequalities are new generalizations to the inequalities given bellow.

1. Introduction

It is well-known that for Lp spaces with 0 < p < 1, the Hardy inequality is
not satisfied for arbitrary non-negative functions, but is satisfied for non-negative
monotone functions. Moreover the sharp constant was found in the Hardy type-
inequality for non-negative monotone functions ( see [4] for more details). Namely
the following statement was proved there.

Theorem 1. Let 0 < p < 1:

• If − 1
p < α < 1− 1

p , then for all functions f non-negative and non-increasing

on (0,+∞)

∥xα(Hf)(x)∥Lp(0,+∞) ≤
(
1− 1

p
− α

)− 1
p

∥xαf(x)∥Lp(0,+∞) . (1)
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• If α < − 1
p , then for all functions f non-negative and non-decreasing on

(0,+∞)

∥xα(Hf)(x)∥Lp(0,+∞) ≤ (p β(p,−αp))
1
p ∥xαf(x)∥Lp(0,+∞) . (2)

• If α > 1 − 1
p , then for all functions f non-negative and non-increasing on

(0,+∞)∥∥∥xα(H̃f)(x)
∥∥∥
Lp(0,+∞)

≤ (p β(p, αp+ 1− p))
1
p ∥xαf(x)∥Lp(0,+∞) . (3)

Here

(Hf)(x) =
1

x

∫ x

0

f(t)dt, (H̃f)(x) =
1

x

∫ ∞

x

f(t)dt.

β(u, v) =

∫ 1

0

tu−1(1− t)v−1dt is the Euler -Beta function.

The constants in the inequalities (1), (2), (3) are sharp.

In 2012 W.T. Sulaiman [5] extended Hardy’s integral inequality as follows.

Theorem 2. If f ≥ 0, g > 0, x−1g(x) is non-decreasing p > 1, 0 < a < 1 and

F (x) =

∫ x

0

f(t)dt, then∫ ∞

0

(
F (x)

g(x)

)p

dx ≤ 1

a(p− 1)(1− a)p−1

∫ ∞

0

(
xf(x)

g(x)

)p

dx, (4)

in particular if a = 1
p , g(x) = x, we obtain Hardy’s inequality.

Moreover he proved the reverse inequality.

Theorem 3. If f ≥ 0, g > 0, x−1g(x) is non-increasing 0 < p < 1, a > 0 and

F (x) =

∫ x

0

f(t)dt, then∫ ∞

0

(
F (x)

g(x)

)p

dx ≥ 1

a(1− p)(1 + a)p−1

∫ ∞

0

(
xf(x)

g(x)

)p

dx. (5)

The following Lemmas were established in [4].

Lemma 1. Let 0 < p < 1, −∞ < a < b ≤ +∞ and f a non- negative non-
increasing function on (a, b), then(∫ b

a

f(x)dx

)p

≤ p

∫ b

a

fp(x)(x− a)p−1dx. (6)

Lemma 2. Let 0 < p < 1, −∞ ≤ a < b < +∞ and f a non- negative non-
decreasing function on (a, b), then(∫ b

a

f(x)dx

)p

≤ p

∫ b

a

fp(x)(b− x)p−1dx. (7)
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The factor p is the best possible in inequalities (6) and (7).
About the Hardy inequality, its history and some related results one can consult

[1], [2], [3], [6] and [7].
The aim of this work is includes two objectives, first the power weight func-

tion xα in Theorem 1 is replaced by g(x), where x−αg(x) is non-decreasing or
non-increasing function and we give a new some Hardy-type integral inequalities
with sharp constant. The second objective is to present some generalizations for
the weighted Hardy operator with 0 < p < 1. Moreover we introduce a second
parameter q > 0 for these generalizations.

2. Main Results

In this section, we present our results. We assume that f and g are non-
negative Lebesgue measurable functions on (0,+∞).

Theorem 4. Let 0 < p < 1, q > 0, g > 0 and the function xαg(x) is non-decreasing
for − 1

q < α < p−1
q , then for all non-negative non-increasing function f we have∫ ∞

0

(Hf)p(x)

gq(x)
dx ≤ p

p− α q − 1

∫ ∞

0

fp(x)

gq(x)
dx. (8)

The constant in (8) is sharp.

Proof.
Since f is non-increasing, then by Lemma 1 we get∫ ∞

0

(Hf)p(x)

gq(x)
dx =

∫ ∞

0

x−pg−q(x)

(∫ x

0

f(t)dt

)p

dx

≤ p

∫ ∞

0

x−pg−q(x)

(∫ x

0

fp(t)tp−1dt

)
dx

= p

∫ ∞

0

tp−1fp(t)

(∫ +∞

t

x−pg−q(x)dx

)
dt

≤ p

∫ ∞

0

tp−1fp(t)

(
t−α

g(t)

)q (∫ +∞

t

x−p+αqdx

)
dt

=
p

p− αq − 1

∫ ∞

0

tp−1fp(t)
t−αq

gq(t)
t−p+αq+1dt

=
p

p− αq − 1

∫ ∞

0

fp(t)

gq(t)
dt.
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To proof that
p

p− αq − 1
is the best possible, we put g(x) = x−α and

f(x) =

 1 if x ∈ (0, ξ),

0 if x ∈ (ξ,+∞).

Let RHS and LHS respectively be the right hand side and the left hand side of the
inequality (8), then

RHS =

∫ ∞

0

xαq−p

(∫ x

0

f(t)dt

)p

dx

=
ξαq+1

αq + 1
,

and

LHS =
p

p− α q − 1

∫ ξ

0

xαqdx

=
p

p− α q − 1

ξαq+1

αq + 1
.

Using q = p in the Theorem 4, we get the following Corollary.

Corollary 1. Let 0 < p < 1, g > 0 and the function xαg(x) is non-decreasing for
− 1

p < α < p−1
p , then for all non-negative non-increasing function f we have

∥∥∥∥ (Hf)(x)

g(x)

∥∥∥∥
Lp(0,+∞)

≤
(
1− α− 1

p

)− 1
p
∥∥∥∥f(x)g(x)

∥∥∥∥
Lp(0,+∞)

. (9)

The constant
(
1− α− 1

p

)− 1
p

is sharp.

Remark 1. If we take g(x) = x−α in the inequality (9), we obtain the inequality
(1).

Theorem 5. Let 0 < p < 1, q > 0, g > 0 and the function xαg(x) is non-decreasing
for α < − 1

q , then for all non-negative non-decreasing function f we have∫ ∞

0

(Hf)p(x)

gq(x)
dx ≤ p β(p, −α q)

∫ ∞

0

fp(x)

gq(x)
dx, (10)

where β is the Euler-Beta function. The constant in (10) is sharp.
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Proof.
By using the Lemma 2, we get∫ ∞

0

(Hf)p(x)

gq(x)
dx =

∫ ∞

0

x−pg−q(x)

(∫ x

0

f(t)dt

)p

dx

≤ p

∫ ∞

0

x−pg−q(x)

(∫ x

0

fp(t)(x− t)p−1dt

)
dx

= p

∫ ∞

0

fp(t)

(∫ +∞

t

x−pg−q(x)(x− t)p−1dx

)
dt

≤ p

∫ ∞

0

fp(t)

(
t−α

g(t)

)q (∫ +∞

t

xαq−p(x− t)p−1dx

)
dt.

Using the change of variable z = t
x , then∫ +∞

t

xαq−p(x− t)p−1dx =

∫ 1

0

(
t

z

)αq−p(
t

z
− t

)p−1
t

z2
dz

= tαq
∫ 1

0

z−αq−1(1− z)p−1dz

= tαqβ(p, −αq),

therefore ∫ ∞

0

(Hf)p(x)

gq(x)
dx ≤ pβ(p, −αq)

∫ ∞

0

(
fp(t)

gq(t)

)
dt.

To proof that p β(p, −α q) is the best possible, we put g(x) = x−α and

f(x) =

 0 if x ∈ (0, ξ),

1 if x ∈ (ξ,+∞).

Let RHS and LHS respectively be the right side and the left side of the inequality
(10), then

RHS =

∫ ∞

ξ

xαq−p

(∫ x

ξ

f(t)dt

)p

dx

=

∫ ∞

ξ

xαq−p (x− ξ)
p
dx,
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let µ = ξ
x , then we get

RHS = ξαq+1

∫ 1

0

µ−αq−2(1− µ)pdµ

= ξαq+1β(p+ 1, −αq − 1)

= p
|αq+1|ξ

αq+1β(p, −αq).

On another side

LHS = p β(p, −α q)

∫ +∞

ξ

xαqdx

= p β(p, −α q) 1
|αq+1|ξ

αq+1.

If we set q = p in the Theorem 5, we get the following Corollary.

Corollary 2. Let 0 < p < 1, g > 0 and the function xαg(x) is non-decreasing for
α < − 1

q , then for all non-negative non-decreasing function f we have

∥∥∥∥ (Hf)(x)

g(x)

∥∥∥∥
Lp(0,+∞)

≤ (p β(p, −αp))
1
p

∥∥∥∥f(x)g(x)

∥∥∥∥
Lp(0,+∞)

. (11)

The constant (p β(p, −αp))
1
p is sharp.

Remark 2. If we take g(x) = x−α in the inequality (11), we obtain the inequality
(2).

Theorem 6. Let 0 < p < 1, q > 0, g > 0 and the function xαg(x) is non-increasing
for α > p−1

q , then for all non-negative non-increasing function f we have

∫ ∞

0

(H̃f)p(x)

gq(x)
dx ≤ p β(p, α q + 1− p)

∫ ∞

0

fp(x)

gq(x)
dx, (12)

the constant in (12) is sharp.
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Proof.
By applying the Lemma 1, we obtain∫ ∞

0

(H̃f)p(x)

gq(x)
dx =

∫ ∞

0

x−pg−q(x)

(∫ ∞

x

f(t)dt

)p

dx

≤ p

∫ ∞

0

x−pg−q(x)

(∫ ∞

x

fp(t)(t− x)p−1dt

)
dx

= p

∫ ∞

0

fp(t)

(∫ t

0

x−pg−q(x)(t− x)p−1dx

)
dt

≤ p

∫ ∞

0

fp(t)

(
t−α

g(t)

)q (∫ t

0

xαq−p(t− x)p−1dx

)
dt.

Using the change of variable ν = t−x
t , then∫ t

0

xαq−p(t− x)p−1dx =

∫ 1

0

[(1− ν)t]
αq−p

(νt)
p−1

tdν

= tαq
∫ 1

0

νp−1(1− ν)αq−pdν

= tαqβ(p, αq − p+ 1),

thus ∫ ∞

0

(H̃f)p(x)

gq(x)
dx ≤ pβ(p, αq − p+ 1)

∫ ∞

0

(
fp(t)

gq(t)

)
dt.

The proof that p β(p, αq− p+1) is sharp, is similar to that of Theorem 5 with the
function f defined as follows

f(x) =

 1 if x ∈ (0, ξ),

0 if x ∈ (ξ,+∞).

If we put q = p in the Theorem 6, we have the following Corollary.

Corollary 3. Let 0 < p < 1, g > 0 and the function xαg(x) is non-increasing for
α < − 1

q , then for all non-negative non-increasing function f we have∥∥∥∥∥ (H̃f)(x)

g(x)

∥∥∥∥∥
Lp(0,+∞)

≤ (p β(p, αp+ 1− p))
1
p

∥∥∥∥f(x)g(x)

∥∥∥∥
Lp(0,+∞)

. (13)

The constant (p β(p, αp+ 1− p))
1
p is sharp.

Remark 3. If we take g(x) = x−α in the inequality (13), we obtain the inequality
(3).
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In the second part of this work, we consider Theorems 2 and 3 for weighted
Lebesgue space. Let 0 < p < ∞, the weighted Lebesgue space Lp

w(0,∞) is the
space of all Lebesgue measurable functions f such that

∥f∥Lp
w(0,∞) =

(∫ ∞

0

|f(t)|p w(t)dt
) 1

p

< ∞, (14)

where w is the weight function (Lebesgue measurable and positive on (0,∞)).

Theorem 7. Let f ≥ 0, g > 0, 0 < p < 1, 0 < α < 1. If the function w(x)
gp(x) is

non-increasing, then ∥∥∥∥ (Hf)(x)

g(x)

∥∥∥∥
Lp

w(0,∞)

≤ C1

∥∥∥∥f(x)g(x)

∥∥∥∥
Lp

w(0,∞)

, (15)

where the constant C1 = 1
1−α is sharp.

Proof.
By using Holder’s inequality, we have∥∥∥ (Hf)(x)

g(x)

∥∥∥p
Lp

w(0,∞)
=

∫ ∞

0

(Hf)p(x)

gp(x)
w(x)dx

=

∫ ∞

0

g−p(x)

xp

(∫ x

0

f(t)tα(1−
1
p )tα(

1
p−1)dt

)p

w(x)dx

≤
∫ ∞

0

g−p(x)

xp
w(x)

(∫ x

0

tα(p−1)fp(t)dt

)(∫ x

0

t−αdt

)p

dx

=

(
1

1− α

)p−1 ∫ ∞

0

xα(p−1)−1

gp(x)
w(x)

(∫ x

0

tα(p−1)fp(t)dt

)
dx

=

(
1

1− α

)p−1 ∫ ∞

0

tα(p−1)fp(t)

(∫ ∞

t

xα(p−1)−1

gp(x)
w(x)dx

)
dt

=

(
1

1− α

)p−1 ∫ ∞

0

fp(t)

gp(t)
w(t)K(t)dt,

where

K(t) =

[
tα(p−1)gp(t)

w(t)

(∫ ∞

t

xα(p−1)−1

gp(x)
w(x)dx

)]
.
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Now we proof that K(t) is finite for all t > 0. From the assumption w(x)
gp(x) is

non-increasing, we deduce that∫ ∞

t

xα(p−1)−1

gp(x)
w(x)dx ≤ w(t)

gp(t)

∫ ∞

t

xα(p−1)−1dx

=
w(t)

gp(t)

tα(p−1)

α(1− p)
,

hence
for all t > 0, K(t) < ∞.

Thus ∥∥∥ (Hf)(x)
g(x)

∥∥∥p
Lp

w(0,∞)
≤

sup
t>0

K(t)

(1− α)p−1

∥∥∥∥f(x)g(x)

∥∥∥∥
Lp

w(0,∞)

= Cp
∥∥∥ f(x)

g(x)

∥∥∥p
Lp(0,+∞)

.

To proof that C1 =
(

1
1−α

)
is the best possible, taking f(x) = x−α, this gives us

(Hf)(x) = 1
1−αx

−α and∥∥∥ (Hf)(x)
g(x)

∥∥∥p
Lp

w(0,∞)
= 1

(1−α)p

∫ ∞

0

(
1

xαg(x)

)p

w(x)dx,

∥∥∥ f(x)
g(x)

∥∥∥p
Lp

w(0,∞)
=

∫ ∞

0

(
1

xαg(x)

)p

w(x)dx.
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