http://communications.science.ankara.edu.tr

Commun.Fac.Sci.Univ.Ank.Ser. A1 Math. Stat. Volume 71, Number 3, Pages 759–768 (2022) DOI:10.31801/cfsuasmas.1058586 ISSN 1303-5991 E-ISSN 2618-6470

Research Article; Received: January 16, 2022; Accepted: April 6, 2022

SOME HARDY-TYPE INTEGRAL INEQUALITIES WITH SHARP CONSTANT INVOLVING MONOTONE FUNCTIONS

Bendaoud ABED SID-AHMED¹, Bouharket BENAISSA², and Abdelkader SENOUCI³

¹Faculty of Science Economics and Commercial, Laboratory of Informatics and Mathematics, University of Tiaret, ALGERIA ²Faculty of Material Sciences, Laboratory of Informatics and Mathematics, University of Tiaret-ALGERIA ³Faculty of Mathematics and Informatics, Laboratory of Informatics and Mathematics, University of Tiaret-ALGERIA

ABSTRACT. In this work, we present some Hardy-type integral inequalities for 0 via a second parameter <math>q > 0 with sharp constant. These inequalities are new generalizations to the inequalities given below.

1. INTRODUCTION

It is well-known that for L^p spaces with 0 , the Hardy inequality isnot satisfied for arbitrary non-negative functions, but is satisfied for non-negativemonotone functions. Moreover the sharp constant was found in the Hardy typeinequality for non-negative monotone functions (see [4] for more details). Namelythe following statement was proved there.

Theorem 1. Let 0 :

 If -¹/_p < α < 1 - ¹/_p, then for all functions f non-negative and non-increasing on (0, +∞)

$$\|x^{\alpha}(Hf)(x)\|_{L^{p}(0,+\infty)} \leq \left(1 - \frac{1}{p} - \alpha\right)^{-\frac{1}{p}} \|x^{\alpha}f(x)\|_{L^{p}(0,+\infty)}.$$
 (1)

Keywords. Hardy-type inequality, monotone function, sharp constant.

©2022 Ankara University Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

²⁰²⁰ Mathematics Subject Classification. 26D10, 26D15.

²bendaoud@yahoo.fr; ⁰0000-0001-5123-9503

bouharket.benaissa@univ-tiaret.dz; 00000-0002-1195-6169

 $[\]square$ kamer295@yahoo.fr-Corresponding author; \square 00000-0002-3620-7455.

If α < -¹/_p, then for all functions f non-negative and non-decreasing on (0, +∞)

$$\|x^{\alpha}(Hf)(x)\|_{L^{p}(0,+\infty)} \leq (p\,\beta(p,-\alpha p))^{\frac{1}{p}} \,\|x^{\alpha}f(x)\|_{L^{p}(0,+\infty)} \,.$$
⁽²⁾

If α > 1 − ¹/_p, then for all functions f non-negative and non-increasing on (0, +∞)

$$\left\| x^{\alpha}(\widetilde{H}f)(x) \right\|_{L^{p}(0,+\infty)} \leq \left(p \,\beta(p,\alpha p+1-p) \right)^{\frac{1}{p}} \left\| x^{\alpha}f(x) \right\|_{L^{p}(0,+\infty)}.$$
(3)

Here

$$(Hf)(x) = \frac{1}{x} \int_0^x f(t)dt, \quad (\widetilde{H}f)(x) = \frac{1}{x} \int_x^\infty f(t)dt.$$

 $\beta(u,v) = \int_0^1 t^{u-1} (1-t)^{v-1} dt \text{ is the Euler -Beta function.}$ The constants in the inequalities (1), (2), (3) are sharp.

In 2012 W.T. Sulaiman [5] extended Hardy's integral inequality as follows.

Theorem 2. If
$$f \ge 0$$
, $g > 0$, $x^{-1}g(x)$ is non-decreasing $p > 1$, $0 < a < 1$ and $F(x) = \int_0^x f(t)dt$, then
$$\int_0^\infty \left(\frac{F(x)}{f(x)}\right)^p dx < \frac{1}{f(x)(x-1)(x-1)} \int_0^\infty \left(\frac{xf(x)}{f(x)}\right)^p dx, \qquad (4)$$

$$\int_0^\infty \left(\frac{F(x)}{g(x)}\right)^p dx \le \frac{1}{a(p-1)(1-a)^{p-1}} \int_0^\infty \left(\frac{xf(x)}{g(x)}\right)^p dx,\tag{4}$$

in particular if $a = \frac{1}{p}$, g(x) = x, we obtain Hardy's inequality.

Moreover he proved the reverse inequality.

Theorem 3. If $f \ge 0$, g > 0, $x^{-1}g(x)$ is non-increasing 0 , <math>a > 0 and $F(x) = \int_0^x f(t)dt$, then $\int_0^\infty \left(\frac{F(x)}{g(x)}\right)^p dx \ge \frac{1}{a(1-p)(1+a)^{p-1}} \int_0^\infty \left(\frac{xf(x)}{g(x)}\right)^p dx.$ (5)

The following Lemmas were established in [4].

Lemma 1. Let $0 , <math>-\infty < a < b \le +\infty$ and f a non-negative non-increasing function on (a,b), then

$$\left(\int_{a}^{b} f(x)dx\right)^{p} \le p \int_{a}^{b} f^{p}(x)(x-a)^{p-1}dx.$$
(6)

Lemma 2. Let $0 , <math>-\infty \leq a < b < +\infty$ and f a non-negative nondecreasing function on (a,b), then

$$\left(\int_{a}^{b} f(x)dx\right)^{p} \le p \int_{a}^{b} f^{p}(x)(b-x)^{p-1}dx.$$
(7)

The factor p is the best possible in inequalities (6) and (7).

About the Hardy inequality, its history and some related results one can consult [1], [2], [3], [6] and [7].

The aim of this work is includes two objectives, first the power weight function x^{α} in Theorem 1 is replaced by g(x), where $x^{-\alpha}g(x)$ is non-decreasing or non-increasing function and we give a new some Hardy-type integral inequalities with sharp constant. The second objective is to present some generalizations for the weighted Hardy operator with 0 . Moreover we introduce a secondparameter <math>q > 0 for these generalizations.

2. Main Results

In this section, we present our results. We assume that f and g are non-negative Lebesgue measurable functions on $(0, +\infty)$.

Theorem 4. Let 0 , <math>q > 0, g > 0 and the function $x^{\alpha}g(x)$ is non-decreasing for $-\frac{1}{q} < \alpha < \frac{p-1}{q}$, then for all non-negative non-increasing function f we have

$$\int_0^\infty \frac{(Hf)^p(x)}{g^q(x)} dx \le \frac{p}{p-\alpha q-1} \int_0^\infty \frac{f^p(x)}{g^q(x)} dx.$$
(8)

The constant in (8) is sharp.

Proof.

Since f is non-increasing, then by Lemma 1 we get

$$\begin{split} \int_{0}^{\infty} \frac{(Hf)^{p}(x)}{g^{q}(x)} dx &= \int_{0}^{\infty} x^{-p} g^{-q}(x) \left(\int_{0}^{x} f(t) dt \right)^{p} dx \\ &\leq p \int_{0}^{\infty} x^{-p} g^{-q}(x) \left(\int_{0}^{x} f^{p}(t) t^{p-1} dt \right) dx \\ &= p \int_{0}^{\infty} t^{p-1} f^{p}(t) \left(\int_{t}^{+\infty} x^{-p} g^{-q}(x) dx \right) dt \\ &\leq p \int_{0}^{\infty} t^{p-1} f^{p}(t) \left(\frac{t^{-\alpha}}{g(t)} \right)^{q} \left(\int_{t}^{+\infty} x^{-p+\alpha q} dx \right) dt \\ &= \frac{p}{p-\alpha q-1} \int_{0}^{\infty} t^{p-1} f^{p}(t) \frac{t^{-\alpha q}}{g^{q}(t)} t^{-p+\alpha q+1} dt \\ &= \frac{p}{p-\alpha q-1} \int_{0}^{\infty} \frac{f^{p}(t)}{g^{q}(t)} dt. \end{split}$$

To proof that $\frac{p}{p-\alpha q-1}$ is the best possible, we put $g(x) = x^{-\alpha}$ and

$$f(x) = \begin{cases} 1 & \text{if } x \in (0,\xi), \\ \\ 0 & \text{if } x \in (\xi, +\infty). \end{cases}$$

Let RHS and LHS respectively be the right hand side and the left hand side of the inequality (8), then

$$RHS = \int_0^\infty x^{\alpha q - p} \left(\int_0^x f(t) dt \right)^p dx$$
$$= \frac{\xi^{\alpha q + 1}}{\alpha q + 1},$$

and

$$LHS = \frac{p}{p - \alpha q - 1} \int_0^{\xi} x^{\alpha q} dx$$
$$= \frac{p}{p - \alpha q - 1} \frac{\xi^{\alpha q + 1}}{\alpha q + 1}.$$

Using q = p in the Theorem 4, we get the following Corollary.

Corollary 1. Let 0 , <math>g > 0 and the function $x^{\alpha}g(x)$ is non-decreasing for $-\frac{1}{p} < \alpha < \frac{p-1}{p}$, then for all non-negative non-increasing function f we have

$$\left\|\frac{(Hf)(x)}{g(x)}\right\|_{L^{p}(0,+\infty)} \leq \left(1-\alpha-\frac{1}{p}\right)^{-\frac{1}{p}} \left\|\frac{f(x)}{g(x)}\right\|_{L^{p}(0,+\infty)}.$$
(9)

The constant $\left(1-\alpha-\frac{1}{p}\right)^{-\frac{1}{p}}$ is sharp.

Remark 1. If we take $g(x) = x^{-\alpha}$ in the inequality (9), we obtain the inequality (1).

Theorem 5. Let 0 , <math>q > 0, g > 0 and the function $x^{\alpha}g(x)$ is non-decreasing for $\alpha < -\frac{1}{q}$, then for all non-negative non-decreasing function f we have

$$\int_0^\infty \frac{(Hf)^p(x)}{g^q(x)} dx \le p\,\beta(p, -\alpha\,q) \int_0^\infty \frac{f^p(x)}{g^q(x)} dx,\tag{10}$$

where β is the Euler-Beta function. The constant in (10) is sharp.

Proof.

By using the Lemma 2, we get

$$\begin{split} \int_0^\infty \frac{(Hf)^p(x)}{g^q(x)} dx &= \int_0^\infty x^{-p} g^{-q}(x) \left(\int_0^x f(t) dt \right)^p dx \\ &\leq p \int_0^\infty x^{-p} g^{-q}(x) \left(\int_0^x f^p(t) (x-t)^{p-1} dt \right) dx \\ &= p \int_0^\infty f^p(t) \left(\int_t^{+\infty} x^{-p} g^{-q}(x) (x-t)^{p-1} dx \right) dt \\ &\leq p \int_0^\infty f^p(t) \left(\frac{t^{-\alpha}}{g(t)} \right)^q \left(\int_t^{+\infty} x^{\alpha q-p} (x-t)^{p-1} dx \right) dt. \end{split}$$

Using the change of variable $z = \frac{t}{x}$, then

$$\begin{split} \int_{t}^{+\infty} x^{\alpha q-p} (x-t)^{p-1} dx &= \int_{0}^{1} \left(\frac{t}{z}\right)^{\alpha q-p} \left(\frac{t}{z}-t\right)^{p-1} \frac{t}{z^{2}} dz \\ &= t^{\alpha q} \int_{0}^{1} z^{-\alpha q-1} (1-z)^{p-1} dz \\ &= t^{\alpha q} \beta(p, -\alpha q), \end{split}$$

therefore

$$\int_0^\infty \frac{(Hf)^p(x)}{g^q(x)} dx \le p\beta(p, -\alpha q) \int_0^\infty \left(\frac{f^p(t)}{g^q(t)}\right) dt.$$

To proof that $p \,\beta(p, \, -\alpha \, q)$ is the best possible, we put $g(x) = x^{-\alpha}$ and

$$f(x) = \begin{cases} 0 & \text{if } x \in (0, \xi), \\ 1 & \text{if } x \in (\xi, +\infty). \end{cases}$$

Let RHS and LHS respectively be the right side and the left side of the inequality $(10),\,{\rm then}$

$$RHS = \int_{\xi}^{\infty} x^{\alpha q - p} \left(\int_{\xi}^{x} f(t) dt \right)^{p} dx$$
$$= \int_{\xi}^{\infty} x^{\alpha q - p} (x - \xi)^{p} dx,$$

let $\mu = \frac{\xi}{x}$, then we get

$$RHS = \xi^{\alpha q+1} \int_0^1 \mu^{-\alpha q-2} (1-\mu)^p d\mu$$
$$= \xi^{\alpha q+1} \beta (p+1, -\alpha q-1)$$
$$= \frac{p}{|\alpha q+1|} \xi^{\alpha q+1} \beta (p, -\alpha q).$$

On another side

$$LHS = p \beta(p, -\alpha q) \int_{\xi}^{+\infty} x^{\alpha q} dx$$
$$= p \beta(p, -\alpha q) \frac{1}{|\alpha q+1|} \xi^{\alpha q+1}.$$

If we set q = p in the Theorem 5, we get the following Corollary.

Corollary 2. Let 0 , <math>g > 0 and the function $x^{\alpha}g(x)$ is non-decreasing for $\alpha < -\frac{1}{q}$, then for all non-negative non-decreasing function f we have

$$\left\|\frac{(Hf)(x)}{g(x)}\right\|_{L^{p}(0,+\infty)} \leq (p\,\beta(p,-\alpha\,p))^{\frac{1}{p}} \left\|\frac{f(x)}{g(x)}\right\|_{L^{p}(0,+\infty)}.$$
(11)

The constant $(p \beta(p, -\alpha p))^{\frac{1}{p}}$ is sharp.

Remark 2. If we take $g(x) = x^{-\alpha}$ in the inequality (11), we obtain the inequality (2).

Theorem 6. Let 0 , <math>q > 0, g > 0 and the function $x^{\alpha}g(x)$ is non-increasing for $\alpha > \frac{p-1}{q}$, then for all non-negative non-increasing function f we have

$$\int_0^\infty \frac{(\widetilde{Hf})^p(x)}{g^q(x)} dx \le p\,\beta(p,\,\alpha\,q+1-p)\int_0^\infty \frac{f^p(x)}{g^q(x)} dx,\tag{12}$$

the constant in (12) is sharp.

Proof.

By applying the Lemma 1, we obtain

$$\int_0^\infty \frac{(\widetilde{Hf})^p(x)}{g^q(x)} dx = \int_0^\infty x^{-p} g^{-q}(x) \left(\int_x^\infty f(t) dt\right)^p dx$$
$$\leq p \int_0^\infty x^{-p} g^{-q}(x) \left(\int_x^\infty f^p(t) (t-x)^{p-1} dt\right) dx$$
$$= p \int_0^\infty f^p(t) \left(\int_0^t x^{-p} g^{-q}(x) (t-x)^{p-1} dx\right) dt$$
$$\leq p \int_0^\infty f^p(t) \left(\frac{t^{-\alpha}}{g(t)}\right)^q \left(\int_0^t x^{\alpha q-p} (t-x)^{p-1} dx\right) dt$$

Using the change of variable $\nu = \frac{t-x}{t}$, then

$$\int_{0}^{t} x^{\alpha q-p} (t-x)^{p-1} dx = \int_{0}^{1} \left[(1-\nu)t \right]^{\alpha q-p} (\nu t)^{p-1} t d\nu$$
$$= t^{\alpha q} \int_{0}^{1} \nu^{p-1} (1-\nu)^{\alpha q-p} d\nu$$
$$= t^{\alpha q} \beta(p, \, \alpha q - p + 1),$$

 thus

$$\int_0^\infty \frac{(\widetilde{Hf})^p(x)}{g^q(x)} dx \quad \leq p\beta(p, \, \alpha q - p + 1) \int_0^\infty \left(\frac{f^p(t)}{g^q(t)}\right) dt$$

The proof that $p \beta(p, \alpha q - p + 1)$ is sharp, is similar to that of Theorem 5 with the function f defined as follows

$$f(x) = \begin{cases} 1 & \text{if } x \in (0, \xi), \\ 0 & \text{if } x \in (\xi, +\infty) \end{cases}$$

If we put q = p in the Theorem 6, we have the following Corollary.

Corollary 3. Let 0 , <math>g > 0 and the function $x^{\alpha}g(x)$ is non-increasing for $\alpha < -\frac{1}{q}$, then for all non-negative non-increasing function f we have

$$\left\|\frac{(\widetilde{Hf})(x)}{g(x)}\right\|_{L^p(0,+\infty)} \le (p\,\beta(p,\,\alpha p+1-p))^{\frac{1}{p}} \left\|\frac{f(x)}{g(x)}\right\|_{L^p(0,+\infty)}.$$
(13)

The constant $(p \beta(p, \alpha p + 1 - p))^{\frac{1}{p}}$ is sharp.

Remark 3. If we take $g(x) = x^{-\alpha}$ in the inequality (13), we obtain the inequality (3).

In the second part of this work, we consider Theorems 2 and 3 for weighted Lebesgue space. Let $0 , the weighted Lebesgue space <math>L^p_w(0,\infty)$ is the space of all Lebesgue measurable functions f such that

$$||f||_{L^{p}_{w}(0,\infty)} = \left(\int_{0}^{\infty} |f(t)|^{p} w(t) dt\right)^{\frac{1}{p}} < \infty,$$
(14)

where w is the weight function (Lebesgue measurable and positive on $(0, \infty)$).

Theorem 7. Let $f \ge 0$, g > 0, $0 , <math>0 < \alpha < 1$. If the function $\frac{w(x)}{g^p(x)}$ is non-increasing, then

$$\left\|\frac{(Hf)(x)}{g(x)}\right\|_{L^{p}_{w}(0,\infty)} \le C_{1} \left\|\frac{f(x)}{g(x)}\right\|_{L^{p}_{w}(0,\infty)},$$
(15)

where the constant $C_1 = \frac{1}{1-\alpha}$ is sharp.

Proof.

By using Holder's inequality, we have

$$\begin{split} \left\| \frac{(Hf)(x)}{g(x)} \right\|_{L_w^p(0,\infty)}^p &= \int_0^\infty \frac{(Hf)^p(x)}{g^p(x)} w(x) dx \\ &= \int_0^\infty \frac{g^{-p}(x)}{x^p} \left(\int_0^x f(t) t^{\alpha(1-\frac{1}{p})} t^{\alpha(\frac{1}{p}-1)} dt \right)^p w(x) dx \\ &\leq \int_0^\infty \frac{g^{-p}(x)}{x^p} w(x) \left(\int_0^x t^{\alpha(p-1)} f^p(t) dt \right) \left(\int_0^x t^{-\alpha} dt \right)^p dx \\ &= \left(\frac{1}{1-\alpha} \right)^{p-1} \int_0^\infty \frac{x^{\alpha(p-1)-1}}{g^p(x)} w(x) \left(\int_0^x t^{\alpha(p-1)} f^p(t) dt \right) dx \\ &= \left(\frac{1}{1-\alpha} \right)^{p-1} \int_0^\infty t^{\alpha(p-1)} f^p(t) \left(\int_t^\infty \frac{x^{\alpha(p-1)-1}}{g^p(x)} w(x) dx \right) dt \\ &= \left(\frac{1}{1-\alpha} \right)^{p-1} \int_0^\infty \frac{f^p(t)}{g^p(t)} w(t) K(t) dt, \end{split}$$

where

$$K(t) = \left[\frac{t^{\alpha(p-1)}g^p(t)}{w(t)} \left(\int_t^\infty \frac{x^{\alpha(p-1)-1}}{g^p(x)}w(x)dx\right)\right].$$

Now we proof that K(t) is finite for all t > 0. From the assumption $\frac{w(x)}{g^p(x)}$ is non-increasing, we deduce that

$$\begin{split} \int_t^\infty \frac{x^{\alpha(p-1)-1}}{g^p(x)} w(x) dx &\leq \frac{w(t)}{g^p(t)} \int_t^\infty x^{\alpha(p-1)-1} dx \\ &= \frac{w(t)}{g^p(t)} \frac{t^{\alpha(p-1)}}{\alpha(1-p)}, \end{split}$$

hence

for all
$$t > 0$$
, $K(t) < \infty$.

Thus

$$\left\| \frac{(Hf)(x)}{g(x)} \right\|_{L^{p}_{w}(0,\infty)}^{p} \leq \frac{\sup_{t>0} K(t)}{(1-\alpha)^{p-1}} \left\| \frac{f(x)}{g(x)} \right\|_{L^{p}_{w}(0,\infty)}$$
$$= C^{p} \left\| \frac{f(x)}{g(x)} \right\|_{L^{p}(0,\infty)}^{p} \cdot \cdot$$

To proof that
$$C_1 = \left(\frac{1}{1-\alpha}\right)$$
 is the best possible, taking $f(x) = x^{-\alpha}$, this gives us

$$(Hf)(x) = \frac{1}{1-\alpha} x^{-\alpha} \text{ and}$$

$$\left\| \frac{(Hf)(x)}{g(x)} \right\|_{L^p_w(0,\infty)}^p = \frac{1}{(1-\alpha)^p} \int_0^\infty \left(\frac{1}{x^\alpha g(x)}\right)^p w(x) dx,$$

$$\left\| \frac{f(x)}{g(x)} \right\|_{L^p_w(0,\infty)}^p = \int_0^\infty \left(\frac{1}{x^\alpha g(x)}\right)^p w(x) dx.$$

Author Contribution Statements All authors contributed equally to design and implementation of the research.

Declaration of Competing Interests The authors declare that they have no competing interest.

Acknowledgements The authors thank the anonymous referees for their valuable comments and suggestions that led to the final version of this article. They would also like to thank the Directorate General for Scientific Research and Technological Development (DGRSDT) - Algeria for supporting this research.

References

- Benaissa, B., Budak, H., On Hardy-type integral inequalities with negative parameter, *Turkish Journal of Inequalities*, 5(2) (2021), 42-47.
- [2] Benaissa, B., Sarikaya, M. Z., Senouci, A., On some new Hardy-type inequalities, J. Math. Meth. Appl. Sci., 43 (2020), 8488-8495. https/doi.org/10.1002/mma.6503
- [3] Yang, B., On a new Hardy type integral inequalities, Int. Math. Forum., 67(2) (2007), 3317– 3322.

- [4] Burenkov, V. I., On the best constant in Hardy's inequality with 0 for monotone functions,*Proc. Steklov Inst. Math.*, 194 (1993), 59-63.
- [5] Sulaiman, W. T., Some Hardy type integral inequalities, Appl. Math. Lett, 25 (2012), 520-525. https://doi.org/10.1016/j.aml.2011.09.050
- [6] Kufner, A., Maligranda, L., Person, L. E., The Hardy Inequality: About Its History and Some Related Results, Vydavatelsky Servis Publishing House, Pilsen, 2007.
- [7] Banyat, S., More on some Hardy type integral inequalities, J. Math. Inequal., 8(3) (2014), 497–501.