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ABSTRACT

In this study, we give the parameterizations of the canal surfaces through a null quaternionic spine curve by using

the pseudo-spheres in ]R‘{. Besides, we give formulas for the Gauss and Mean curvatures and some corollaries
related to the Cartan curvatures of the null quaternionic curve.

Keywords- Canal Surfaces, Cartan Frame, Null Quaternionic Curve, Semi Real Quaternions, Spine Curve

0z

Bu calismada, IR‘} deki pseudo-kiireleri kullanarak, bir null kuaterniyonik omurga egrisi boyunca kanal yiizeylerin
parametrizasyonlar1 verilmistir. Ayrica, Gauss ve ortalama egrilikler hesaplanmig ve null kuaterniyonik egrinin
Cartan egrilikleri ile iliskili baz1 sonuglar elde edilmistir.
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I. INTRODUCTION

Hamilton first defined the quaternions in 1843 with the aim of generalizing the complex numbers. He
discovered that it is the best generalization if the real axis is left unchanged when the vector axis is appended by
adding two more axes [1]. After him, it has been made considerable studies on the quaternions in many fields of
science, for example, quaternions are used in robotic systems, video games, computer graphics, navigation systems
and in several computer programs as well as mathematics and physics. Also, they derive remarkable convenience
for the rotations in the three dimensional space. Many scientific studies exist on the representations of surfaces
(such as constant slope or canal surfaces) by the help of quaternions [2, 4, 5, 10]. Moreover, the semi-quaternions
are studied in [6, 7]. In these works, it is stated that the semi-quaternions algebra with a degenerate scalar product
has the dimension four semi-Euclidean space structure with rank 2 semi-metric.

In 1987, Bharathi and Nagaraj introduced the concept of smooth quaternionic curves which lie in the three
and four dimensional Euclidean spaces. They examined the Serret-Frenet formulas which are used to interpret the
geometric properties of quaternionic curves [8]. Also, the quaternonic curves are described in the semi-Euclidean
space by Coken and Tuna in [9] and remarkable studies are conducted by many researchers on the different kinds
of them, [10-15] are just to name a few.

On the other hand, there exist three families of curves called as spacelike, timelike or null (lightlike)
depending on their causal characters in the Minkowski spacetime. Many different situations appear in the case of
null curves compared to the non-null cases. The Frenet frame on a null curve was investigated and developed by
many authors in this field [16-18]. Besides, in the references [19-21], it is studied the differential geometry of null
quaternionic curves in semi-euclidean spaces and given the Frenet formula for null quaternionic curves by using
spatial quaternions. It is also defined the Cartan frame for a null quaternionic curve in the dimension four
Minkowski space in [22].

A canal surface associated to a space curve, is obtained by sweeping a family of spheres with varying
radius r(s) along a space curve and this curve is called as the spine curve. When we take the radius function as a
constant, then the canal surface is called a tubular (pipe) surface. The canal surfaces are rather studied in many
areas besides mathematics, such as CAGD, robotic path planning or shape reconstruction ( [23-26]). Moreover,
the canal surfaces are useful while visualising long and thin objects such as 3D fonts, poles, brass instruments or
internal organs of the body in solid surface modeling. One of the primary questions is whether the canal surface is
developable or not. One knows that, on a developable surface, the Gaussian curvature is identically zero at regular
points and a developable canal surface is either a cylinder or a cone in the Euclidean space [27]. Farther et al.
classified the canal surfaces in Minkowski-3 space in [28] and the tubular surfaces around a null curve is studied
in [30].

In this study, first we introduce the basic properties of the semi-real quaternions, null quaternionic curves
and canal surfaces in R3. Then we define the non degenerate canal surfaces trough a null quaternionic spine curve
by using the pseudo-spheres in the four dimensional Minkowski space. This process consists of three cases
depending on the type of the pseudo-spheres which foliate the canal surface. Each case is detailed according to the
casual character of the normal vector field X(s,0)-C(s) for describing the surface parameterization. Additionally,
we calculate the Gauss and Mean curvatures and give some related corollaries.

I1. PRELIMINARIES

We give some basic properties of the semi-real quaternions, null quaternionic curves and canal surfaces
in the following three subsections (for further information, see [6, 7, 19-21, 28, 29]).

A. Semi-real quaternions

Let Q be a vector space with dimension four over the field H of characteristic grater than 2. If e;(1 < i < 4) is
a basis for the vector space, then set of all the semi-real quaternions can be given by

QH = {qlq = ael + bez + Ce3 + d! a, bl Cld € Rf elleZJ e3 € R?lh(eilei) = E(ei), 1 S l S 3}

where
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e;Xe =—¢(e) 1<i<3
e; x e =e(e)e(e), ep € RS

Here (ijk) is an even permutation of (123). The multiplication of two semi real quaternions is defined by
P X q=SpSq + SV +SgVp + h(Vy, V) + V, AV,
for every p, q € Qy by using the dot and cross products in R3.

The conjugate of q is defined by aq = —ae; — be, — ce; + d for a semi real quaternion g = ae; +
be, + ce; + d € Qy. Now we define a semi-Riemannian metric h as follows:

h:Qy XQy » R

1
h(p, @) =5 [e(P)e(aq)(p x aq) + e(q)e(ap)(q X ap)]
where the semi-real quaternion inner product is defined by,
h(q,q) = a?s(e;) + b?s(ey) + c?e(e3) + d?

The vector product of two semi real quaternions p = a,e, + b,e, + c,e; +d, and q = ae; + be, +
ce; + d is given as

WAV, = e(ez)e(es)(bic — bey)ey — e(eq)e(es)(asc — acyde, + e(ey)e(ey)(arh — aby ey

Also, the norm of a semi real quaternion is defined by
Il g I°= |h(q, q)| = |a®c(e;) + b%e(ey) + c?s(e3) + d?|
and q is called a spatial or temporal quaternion iff g + aq = 0 or ¢ — aq = 0, respectively.
B. Null Quaternionic Curves in R}

Without loss of generality, we choose e, as a timelike vector. Then {e,, e,, e5, e, = 1} is an orthonormal
basis of Rf. Let R¥ be endowed with the quaternionic metric h. The dimension four semi-Euclidean space can
be identified with the space of null spatial quaternionic curves in an obvious manner and we define a null
quaternionic curve as,

C:IcR-Qy
C(s) = vi(s)er +v2(s)e; +y3(s)es +ya(s)e,
where the tangent L(s) = Y1-, ¥/ (s)e; has zero length for a distinguished parameter s.

We consider a Cartan null quaternionic curve f in the dimension four Minkowski space (R$, h) with a
Cartan frame {L, N, U, W } with respect to a pseudo-arc parameter s together with the Cartan curvatures p and .
Then the Cartan equations are;

L'=W,N' =({p-1t)U+pW
U=p-1t)LW =pL+N

or

L'=W,N'"=@+p)U+pW
U=@+p)L,W =pL+N

where

h(L,L) = h(N,N) = h(L,U) = h(N,U) = h(W,U) = h(N,W) = h(L,W) = 0
h(U,U) = h(W,W) = +1,h(L,N) = —1.
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C. Canal surfaces in R3

A canal surface is described by the envelope of a one parameter family of spheres which are centered at
a spine curve C(s) with a radius given by the function r(s) in the Euclidean space. In the case of r(s) is
constant, it is called a tubular surface. When we take the spine curve as a straight line, it is actually the surface of
revolution. The great circles of a canal surface lie in the normal plane of the spine curve at every point.

Similar to the Euclidean case, in the Minkowski space R3, canal surfaces are formed as the envelopes of
a family of pseudo spheres such as de-Sitter space, hyperbolic sphere or null cone ( SZ, H? or Q?, respectively).

Assume that C(s) is a space curve in R3. Then the canal surface X (s, 8) admitting C(s) as the spine
curve which can be given in the following form:

X(5,0) =C(s) + A(s,0)a(s) + u(s,0)B(s) + w(s, 0)y(s)

where {a(s), B(s),y(s)} is the attached orthonormal frame on C(s) and {4, u, w} are second order differentiable
functions on s and 6. The following equation is satisfied;

I X(s,0) — C(s) I>= er(s)?
where e = +1 or 0.
When C(s) is a null curve, it arises three cases depending on the type of the pseudo spheres. The cases are;
» The canal surface X (s, 8) is foliated by SZ (i.e. e = 1)
* The canal surface X (s, 8) is foliated by HZ (i.e. € = —1)
» The canal surface X (s, 8) is foliated by Q2 (i.e. ¢ = 0)
I11. CANAL SURFACES THROUGH A NULL QUATERNIONIC SPINE CURVE

We construct the canal surfaces by using a null quaternionic curve as the spine curve and have three
cases depending on the type of the foliating pseudo-spheres.

Let {L, N, W, U} be the Cartan frame attached to the null quaternionic curve C(s). Then the canal surface can be
defined as

X(5,0) =C(s)+a(s,0)L(s) + B(s,0)N(s) +y(s,0)W(s) + u(s,0)U(s) 1)
Case 1.

Let the canal surface X (s, 8) be foliated by the pseudo sphere S3. Since X(s, 8) — C(s) is a normal vector to the
surface, we have

h(X(s,0) = C(s),Xs) = 0 )

h(X(s,0) — C(s),Xg) =0 (3)
so that X, and X, are tangent to the pseudo sphere S3 [29]. Since € = 1,

Il X(s,8) = C(s) I?=1%(s) (4)
Then we have following two equations by using the equation (1):

v +u?—2af =r1? (5)

VYs + lis — asf — afs =17’ (6)
On the other hand, we differentiate the equation (1) with respect to s and use the equation (6) to obtain

rr'=p @)

Since X (s, 8) — C(s) is the normal vector it can be parallel to N or perpendicular to L hence it is a
lightlike or spacelike vector, respectively.
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i. Suppose that the normal vector is lightlike, i.e. parallel to N. Then we have
h(X(s,0) —C(s),N)=—a =0 (8)
h(X(s,0) —C(s),L) = —B = —1 9)
Using the equations (7), (8) and (9), we calculate
r2(s) =2(s + k)

where K is a constant number. If we substitute the last equation in (5), we get
y(s,0) = /2(s + k)cosb
u(s,8) =./2(s + k)sinf

where 8 € [0,2r]. Therefore, we obtain the parameterization of the surface as:

X(s,0) = C(s) + N(s) +/2(s £ k)cosdW (s) + /2(s * k)sinfU(s) (10)
ii. Now suppose that the normal vector is spacelike. Then we have

h(X(s,0)—C(s),L)=—B =0 (11)

h(X(s,0) —C(s),N)=a=0 (12)
Hence we find r as a constant. It means X (s, 8) is a tubular surface and in the following form:

X(s,0) = C(s) + rcosOW (s) + rsinBU(s) (13)

Theorem 3.1 The tubular surface defined in the equation (13) is a surface of revolution.
Proof. Since X(s,0) — C(s) 1 L and r is constant, we have § = 0 and
=0
crr'—ay+ay=0
& —afs —Pas—ay +ay +yys + ups — B = h(X(s,6) —C(s),Xs) =0
The last equation implies p = t = 0, hence C(s) is a straight line.
Case 2.
Suppose that the canal surface X (s, ) is foliated by the pseudo sphere H3. Since e = —1. Then we have
I X(s,0) — C(s) I>= —12(s)
h(X(s,0) — C(s),X;) =0
h(X(s,0) — C(s),Xg) =0
so that X, and X, are tangent to the pseudo sphere H3. Following similar steps we obtain rr' = . Then we find
r2(s) = 2(-s t k)
where k is a constant number and a = 0.
i. If the normal vector is lightlike, then we have the canal surface which can be written in the following form:
X(s5,0) =C(s)+ N(s) + MCOSHW + MSinHU (14)
ii. Now suppose that the normal vector is spacelike, since y2 + u? = —r2, this is a contradiction.
Case 3.
If the canal surface X (s, 8) is foliated by the pseudo sphere @3, we have following subcases:

i. Let the normal vector be parallel to N. Then @ = 0 and 8 = 1 hence y = u = 0. We obtain
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X(s,0) =C(s) + N(s) (15)
However, the equation (15) does not imply a surface.
ii. Once we choose the normal vector as spacelike, we get y = u = 0. Hence it does not construct a surface.

Theorem 3.2 Canal surface defined in the equation (10) has singularities if the principal curvatures p and 7 of
the curve C(s) satisfy one of the following equations:

1
(s) = 2sin(0)2(s+k)

(+4 J ((M + 220 2) V25 + 2k + (—p(s)cos(6)? + (—sin(8) + 1)p(s) + s + k)cos(B)(s + k) (s)cos(8) (s + k)2

2
+V2s + Zksin(6) + 4 (-2 “’”“9)2 + (B 4 ket 5) cos(8) +E2) (s + k)

1

) = @0

(i4\/<<— cosé@)z sz(e) )\/25 T2k + (=p(s)cos(0)? + (=sin(0) + )p(s) + s + k)cos(8) (s + k)) cos(0) (s + k)2

+k+ s) cos(8) — (—)) (s+ k))

p(s)cos(6)? N (_p(s)sin(@)

2s + 2ksin(6) —4
+4/25 + 2ksin(0) < > >

Proof. Using the equation (10) we calculate the partial derivatives X and X,. Then we have

E =h(X,,X;) = —242(s £ k)cosO(1 ++/2(s £ k)(p(s) —1(s) + p(s)cosh)) + (p(s) +

cos6 2 sin@ )2

Tooin +(p(s) —t(s) + NoeT)
G = h(Xg, Xg) = 2(s + k)

sin@

F =h(X;,Xe) = —/2(s £ k)(sinf(p(s) + Jz(—+k) —cosf(p(s) —t(s) + \/2(5—+k))

We obtain the mentioned cases in the Theorem3.2 for EG — F? = 0 by using a symbolic programming language.

Corollary 3.1 If the spine curve is a planar null quaternionic one, then the corresponding canal surface has
singularities for:

1
4 (cos(®)sin(0) + ) (s+k)

p(s)

(i4\/cos(9) <(—% + (@ 1) 0s(8) — Sm(e) >\/2s F 2k + cos(8)(cos(0) + 1)2(s + k)? ) (s + k)2
—(cos(8) + sin(8))V2s + 2k + 4cos(8) (s + k)?(cos(0) + 1))
Now assume that the canal surface is regular. We can give following theorems:
Theorem 3.3 Gauss curvature of the canal surface defined in equation (10) is
(6)

K= (((COS(Q) 2s + 2k(p(s) — t(s)) + ip(S) - iv(s) L IO 2)2 + (1 +V2s + 2k(p(s) — 7(s) + p(s)cos(0)) + V2s + 2kcos(6)p(s) + ip(s) - (Z;fzsk)s(z))z

(25+2k)3/"

sin(8) 2cos(8)

- (00D 4 TR (Lp(s) — L) + (Ep(0)) cos(8)) + (p(0) + 2L ) p(e) + (p(t) - £(8) + Mk) GOk t(s))) (R +rw))
((25 + 2k)sin(8)? + cos(6)%(2s + 2k) — ( (1 +V2s + 2k(p(s) — t(s) + p(s)cos(8)) + V2s + 2kcos(0)p(s) + — p(s) e +zk)2 )cos(H)\/Zs + 2k
— (cos(8)V2z T 2k (p(s) — u(s)) + 2 p(s) - L t(s) — =0 ) V27 + 2ksin(6) ) )/((( 4k — 4z + 2p(s))cos(8) + 2sin(8) (p(s) — 2(s)))VZz + 2k — 3((k + ¢t

(2x+2kd3),

—5) p(s) + 28 2 ) (s + k)cos(8)? — s(p(s) = 1(5)) (= B2 4 ke 4 5) (s + k)cos(8) + (25 + 2k)p(s)? — 4m(s)(s + )p(s) + 1 + (25 + 2K)T(s)”)

where p(s) and z(s) are the curvature and torsion of the null quaternionic spine curve, respectively.
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Theorem 3.4 Mean curvature of the canal surface defined in equation (10) is

7(s)? (s)

) (s + k)%cos(8)® + (s + k)?sin(9) (—— +p(s)? )cos(@)2 +

= (32(5 +k) ((— (p(s)z —2p(s)T(s) +

SO SOC LI SO (%566) + (pes)s +107(0(5) = r5D)05(0)” -+ 07sin(@)(p(5) =) (5)s(0)? = ) = D + 17 () ~3)cos) +

(s + k)?p(s)? 1 1(s)(s+k)? sin(6) (s + k)?p(s)*
( 2 -( 2 ) cos(8) - 2

(s) + )(s+k)2 ©)+5+

sin(6)(s + k)zp(s)2

3
k+5—2) (s + p(s)?
—”(S)(Z—J'k)z - @)( () + (5 + 192 (p() - Q) (s)c0s(8)° + p()sin(8) (s + k)? (p(s) — 7(s))cos(6) + ( M G+i(k+s+ Q + 1)p(s) + ( +2)e(sy

() = T())(s + k) (( £in(6) 1) p(s)+h+s+ 5‘“(8))
P

2

)\/25 + 2k — 16(s + k)* (gp(s)) +16(s + k)* (cos(g)2 + S‘r(s) + cos(0) — 1) (gp(s)) —8(s

1 k? X s? o
+§+7+s +? cos(6)

(s + k)*cos(8)®

2 ) )
+h? (gr(s)) — 16c0s(8)(s + K)* (gr(s)) — 64p()P(5)? — 4p(S)T(5) + 20(5)2)(s + k) cos(8)* + 128(p(s) — 7(5)) (sin(a)p(s)2 + I(S)(S'"(Gz) *+pE) ’(5)2(5'1(9) + 1))

s 7(s)? (Zsk +s2+k2— %)
+64(s + k)? | sin(8)(s + k)*p(s)® — 2 (§ +7(s)(sin(8) + 1)) (s +k)?p(s)? + ((s +k)2(sin(8) + 1)7(s)? + (sk +os?+ o k - 7) (s) + +Z 5 + —+ sk) p(s) — e E— cos(8)?

32 ((s +2(sin(0) + Dp(s)? + (Zkz +dsk+ 252 + @) () — k2 — 25k — 57 @ - 1) (P(s) — 7(5))(s + k)?cos(8) + 16(s + K)*p(s)? — 16(s + k)2((s + )T(s) + i + (25 + Dk +s2 +5
——) p(s)? +32 (k +s +L) + 1) (s +k)3t(s)p(s) — 16(s + k)* (k +s+ )'t(s)2 —8k® + (—24s — 4)k? + (—24s? — 8s)k — 8s® — 4s% — l)/<64- <<( ?+ ; + k) cos(0)

w)w/23+21 +(s+k)<(k+s—ﬁ)p( )+(—))cos(9)2 +((s) — r(s))(s+k)( wwm)cos(en(—%—%)p(s)uw—%Jr(—%
—Z)-r(s)z) (s+k)2)
where p(s) and 7(s) are the curvature and torsion of the null quaternionic spine curve, respectively.
Theorem 3.5 Tubular surface defined in the equation (13) has singularities if the principal curvatures p(s) and
7(s) of the curve C(s) satisfy the following equation:

1

)
P() =~ e

2rcos6

Suppose that the tubular surface in (13) is regular. Then we can give the following theorems:

Theorem 3.6 Gauss curvature of the tubular surface defined in equation (13) is

K= — ! ( 1+8 <p(s) ) )p(s)r c0s(8)* + 6(p(s)sin(8)r — 7(s)sin(O)r + 1) (p(s) - (—)) ros(6)?
4 <7 +7r (p(s) - T(Z—S)) cos(S)) cos(O)r

+(=9p(s)2r? + (6721(s) + 2rsin(@))p(s) — 7(5)2r% — 22(s)sin(O)r + 1)cos(6)? — <p(s) - Q) rcos(e))
Theorem 3.7 Mean curvature of the tubular surface defined in equation (13) is

2
—-1- 10(T(S) +(—‘LPT(S)+§)T(S)+p(s)2 —Zp—(s))rzcos(e)2 —6(p (s) —%S)—é)rcos(B)

8(%+T(p(5 T(S))cos(ﬂ))cos(e)r

H =

Corollary 3.2 The tubular surface defined in equation (13) is minimal if the following relation holds for the
curvature and torsion of the null quaternionic spine curve:

2rcos(8)t(s) rcos(d) 3 J—4r(s)2cos(9)2r2—4r(s)cos(9)2r2+4r2cos(9)2—4rcos(9)r(s)+8rcos(9)—1

— 5 T s 10— 10
p(s) - cos(O)r

Proof. We solve the equation H = 0 for the mean curvature given in Theorem 3.7 by using a symbolic
programming language such as Maple.

Corollary 3.3 The tubular surface defined in equation (13) is developable if

1 . 7 .

7) = Gy (4rsin(@)p(s) £ 21— sin(@)rsin(6)*p(s) -
5rsin(8)2p(s) + 2/1 — sin(8)2rsin(8)p(s) + sin(8)3 + /1 — sin(9)%sin(6)? +
rp(s) — sin(6))

where p(s) and t(s) are the curvature and torsion of the null quaternionic spine curve, respectively.
IV. DISCUSSION AND CONCLUSION

The semi real quaternions and null quaternionic curves are developing subjects and attract attention of
many scientists. Hence, in this work, we introduce the canal surfaces that admit the spine curve as a null
quaternionic curve. It is obtained two kinds of canal surfaces that one is actually a tubular surface. We give the
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singularity conditions for that kind of a surfaces by using a symbolic programming language. When we assume
that the surface is regular, we can interpret the Gauss and Mean curvatures by the means of the Cartan curvatures
of the null quaternionic spine curve. Lastly, we give the relations between the Cartan curvatures of the spine
curve for the pre-defined tubular surface to be a minimal or developable one.
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