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Abstract. In this paper, we investigate generalized variational comparison

results aimed to study the stability properties in terms of two measures for so-
lutions of Set Differential Equations (SDEs) involving causal operators, taking

into consideration the difference in initial conditions. Next, we employ these

comparison results in proving the theorems that give sufficient conditions for
equi-boundedness, equi-attractiveness in the large, and Lagrange stability in

terms of two measures with initial time difference for the solutions of perturbed

SDEs involving causal operators in regard to their unperturbed ones.

1. Introduction

Many researchers were interested in studying set differential equations (SDEs) in
the recent decades [2,3,5,8–10,13,14,18,20,23,36,47] due to their unifying properties.
Lakshmikantham et al. highlighted these properties in one of the most important
resources on this topic [23]. The comprehensiveness of the SDEs is driven from
the fact that they encompass the conventional differential and integral equations
when the Hukuhara difference and integrals defined on the SDEs are restricted to
R; whereas they give us vector differential equations when the restriction is done
to Rn [4, 19,26].

On the other hand, many well-known differential equations such as integro differ-
ential equations [28], impulsive differential equations [22], and differential equations
with delay [35], are examples of differential equations involving causal operators.
Many research papers dealt with those types of equations. [1, 7–10,21,43]
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SDEs with causal operators unifies the fundamental theory of SDEs, including
various corresponding dynamical systems. Some relevant works can be found in
[5, 8–14,47]

Although it is never feasible to know the exact solutions of all dynamical systems
in practice, their attributes may be determined through a variety of qualitative
studies such as stability analysis [2–5,15,19,20,24,36], initial time difference (ITD)
stability analysis [6, 29, 30, 33, 34, 37, 38, 41–47], practical stability analysis [17, 31,
40,46], boundedness [2, 6, 11,16,32,37,38,40–42], etc.

Many techniques have been used in this process, including the Lyapunov second
method [19, 24, 33, 43, 44], variation of parameters [25, 32, 33], ”in terms of two
measures” methodology [5, 18,27,32,38,42,45,46], and so on.

In this manuscript, we develop generalized variational comparison results aimed
to assess a combination of two concepts of stability and other qualitative aspects for
SDEs with causal operators that unifies the conceptual framework behind SDEs.
Furthermore, we give adequate criteria for equi-boundedness, equi-attractiveness
in the large, and Lagrange stability in terms of two measures with ITD for the
solutions of the perturbed forms of these types equations in comparison to their
un-perturbed counterparts.

2. Preliminaries

In what follows, we denote the set of all compact non-empty subsets of Rn by
K (Rn), and the set of all compact and convex non-empty subsets of Rn by Kc (Rn).

The Hausdorff metric between any bounded sets A and B in Rn is defined as

D (A,B)=max

[
sup
x∈B

d (x,A) , sup
y∈A

d (y,B)

]
(1)

where
d (x,A)=inf {d (x, y) : y∈A} (2)

Each of (K (Rn) , D) and (Kc (Rn) , D) forms a complete metric space. The
space Kc (Rn) equipped with the natural addition and non-negative scalar multi-
plication becomes a semi-linear metric space which can be embedded as a cone into
a corresponding Banach space.

The Hausdorff metric satisfies the following properties:

(1) D (A,B) = D (B,A)

(2) D (A+ C,B + C) = D(A,B)

(3) D (kA, kB) = k D (A,B)

(4) D (A,B) ≤ D (A,C) +D (C,B)

(3)

for any A,B,C∈Kc (Rn) and k∈R+, where Minkowski addition of any two non-
empty subsets A and B of Rn is defined by A+B= {a+b : a∈A, b∈B} and where
scalar multiplication of a value k∈R and a non-empty subset A of Rn is defined by
kA= {ka :a∈A}. If k= −1, we get −A=(−1)A= {−a :a∈A}.
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In general, A+(−A) ̸= {0} (unless A= {a} is a singleton). To overcome with this
implication of Minkowski difference, i.e.

A−B = A+ (−1)B = {a− b : a ∈ A, b ∈ B} (4)

Hukuhara difference between two sets A,B∈Kc (Rn) is defined as follows:

If there exists a set C∈Kc (Rn) such that C+B=A, then Hukuhara difference ex-
ists and we denote it by A⊖B, or simply A−B when there is no confusion with
Minkowski difference. i.e. A⊖B=C ⇔C+B=A.

An important property of Hukuhara difference is A−A= {0} for A∈Kc (Rn) .

Let U :I→Kc (Rn) be a given multifunction, where I is an interval of real numbers.
U is said to be Hukuhara differentiable at a point t0∈I, if there exists an element
DHU (t0)∈Kc (Rn) such that the limits

lim
h→0+

U (t0 + h)− U (t0)

h
and lim

h→0+

U (t0)− U (t0 − h)

h
(5)

both exist in the topology of Kc (Rn) and are equal to DHU (t0) .

It is implicit in the definition of DHU (t0) the exitance of the two differences
U (t0+h)−U (t0) and U (t0)−U (t0−h) , for sufficiently small h> 0.

By embedding Kc (Rn) as a complete cone in a corresponding Banach space and
taking into account the result on differentiation of Bochner integral, we find that if

G (t) = G (t0) +

∫ t

t0

F (s) ds, t ∈ I (6)

where F :I→ Kc (Rn) is integrable in the sense of Bochner, then G is Hukuhara
differentiable, i. e. DHG (t) exits, and the equality DHG (t)=F (t), a. e. on I,
holds.

Also, the Hukuhara integral∫
I

F (s)ds =

[∫
I

f (s)ds : f is a continuous selector of F

]
(7)

for any compact set I⊂R+.

Let E=C [[t0,∞) , Kc (Rn)] with norm

sup
t∈[t0,∞)

D [U (t) , θ]

h (t)
< ∞ (8)

where U∈E, θ is the zero element of Rn, which is regarded as a point set; and
h : [t0,∞)→R+ is a continuous map. E equipped with such a norm is a Banach
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space.

Let Q∈C [E,E] . Q is said to be a causal map if U (s)=V (s) , t0≤s≤t<∞, and
U, V ∈E then

(QU) (s) = (QV ) (s) , t0 ≤ s ≤ t < ∞. (9)

Let us consider the following differential equations

DHU = (QU) (t) , U (t0) = U0 for U0 ∈ Kc (Rn) and t ≥ t0 ≥ 0, (10)

DHU = (QU) (t) , U (τ0) = V0 for V0 ∈ Kc (Rn) and t ≥ τ0 ≥ 0 (11)

DHV = (PV ) (t) , V (τ0) = V0 for V0 ∈ Kc (Rn) and t ≥ τ0 (12)

DHW = (SW ) (t) , W (τ0) = V0 − U0 for W (τ0) = W0 ∈ Kc (Rn) and t ≥ τ0
(13)

where Q,P, S :E→E are causal operators, and satisfy a local Lipschitz condition
on R+ × Sρ where Sρ=

{
U∈Kc (Rn) :D

[
U, 0̃

]
<ρ<∞

}
.

It is clear that (10) and (11) are different in the initial time and position. More-
over, if (PV ) (t) in (12) is written as (PV ) (t) = (QV ) (t) + (RV ) (t); Then, we
consider (12) as the perturbed form corresponding to the unperturbed equation
(11) with the perturbation term (RV ) (t).

Assuming that
(
Q0̃

)
(t)≡0̃ for t≥0, and assuming the necessary smoothness of

P,Q andR to guarantee the existence and uniqueness of the solution U (t)=U (t, t0, U0)
of (10) through (t0, U0) for all t≥t0, and those of the solution V (t)=V (t, τ0, V0)
of (12) through (τ0, V0) for all t≥τ0, in addition to their continuous dependence on
the initial conditions.

If U ∈ C1 [ J1,Kc (Rn)] on J1 = [t0, t0 + T1] , then it is said to be a solution
of (10) on J1 if it satisfies (10) on J1. If U, V and W ∈ C1 [ J2,Kc (Rn)] on
J2 = [t0, t0 + T2] , then these are said to be solutions of (11), (12), (13) on J2
provided that they satisfy (11), (12), (13) on J2, respectively.

Now let us define a partial order in the metric space (Kc (Rn) , D). First, we
start by defining a cone in Kc (Rn).

Definition 1. The subfamily K ⊂ Kc (Rn) is said to be a cone in Kc (Rn) if it
consists of sets U ∈ Kc (Rn) such that any u ∈ U is a non-negative n-component
vector u = (u1, u2, . . . , un) satisfying ui ≥ 0 for i = 1 . . . n. The subfamily K0 ⊂
Kc (Rn), that consists of sets U ∈ Kc (Rn) such that any u ∈ U is a positive
n-component vector u = (u1, u2, . . . , un) satisfying ui > 0 for i = 1 . . . n, is the
nonempty interior of the cone K.

Definition 2. For any U, V ∈ Kc (Rn) , if there exists Z ∈ Kc (Rn) such that
Z ∈ K and U = V +Z then we say that U ≥ V or V ≤ U . Similarly, if there exists
Z ∈ Kc (Rn) such that Z ∈ K0 and U = V +Z then we say that U > V or V < U .

We present below some needed classes to develop the stability results in terms
of two measures.
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K = {a ∈ C [R+,R+] : a (u) is strictly increasing in u and a (0) = 0} (14)

L =
{
σ ∈ C [R+,R+] : σ (u) is strictly decreasing in u and lim

u→∞
σ (u) = 0

}
(15)

CK =

{
a ∈ C

[
R2

+,R+

]
: a (t, s) ∈ K for each t

and a (t, s) is continuous for each s

}
(16)

Γ =

{
h ∈ C [R+ ×Kc (Rn) ,R+] : inf

(t,U)
h (t, U) = 0

}
(17)

Γ0 =
{
h ∈ Γ : inf

U
h (t, U) = 0 , for each t ∈ R+

}
(18)

Next, to introduce a Lyapunov-like function, we present some definitions needed
in the qualitative analysis in terms of two measures.

Definition 3. Let L ∈ C [R+ ×Kc (Rn) ,R+] , then L is said to be
(i) h-positive definite if there exists a ρ > 0 and a b ∈ K such that

h (t, U) < ρ implies b (h (t, U)) ≤ L (t, U) (19)

(ii) h-decrescent if there exists a ρ > 0 and a function a ∈ K such that

h (t, U) < ρ implies L (t, U) ≤ a (h (t, U)) (20)

(iii) h-weakly decrescent if there exists a ρ > 0 and a function a ∈ CK such that

h (t, U) < ρ implies L (t, U) ≤ a (t, h (t, U)) (21)

Definition 4. Let h0, h ∈ Γ, then we say that h0 is finer than h if there exists a
ρ > 0 and a function ϕ ∈ CK such that

h0 (t, U) ≤ ρ implies h (t, U) ≤ ϕ (t, h0 (t, U)) (22)

h0 is uniformly finer than h if the function ϕ in the above definition is independent
of t.

Now, let us introduce the definitions of generalized Dini-like derivatives of L.

Definition 5. We define the generalized derivative (Dini-like derivatives) for a
real-valued function L∈C [R+×Kc (Rn) ,R+] as follows:

D+
∗ L (t, s, U)

= lim
h→0+

sup
1

h

[
L
(
s+ h, V

(
t, s+ h, U + h

(
QŨ

)
(s)

))
− L (s, V (t, s, U))

]
(23)
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D∗−L (t, s, U)

= lim
h→0−

inf
1

h

[
L
(
s+ h, V

(
t, s+ h, U + h

(
QŨ

)
(s)

))
− L (s, V (t, s, U))

]
(24)

for t, s∈R+ and U∈Kc (Rn) .

Next, let us introduce the definitions of initial time difference (ITD) equi-boundedness,
equi-attractiveness in the large, and Lagrange stability in terms of two measures,
before proceeding with our main results.

Definition 6. Let U (t, t0, U0) be any solution of (10) for t ≥ t0 ≥ 0, and let

Ũ (t, τ0, U0) = U (t− η, t0, U0), for η = τ0 − t0. The solution V (t, τ0, V0) of (12)
for t ≥ τ0 is said to be

(i) ITD (h0, h)-equi-bounded with respect to the solution Ũ , if and only if given any
α > 0 and τ0 ∈ R+, there exists β = β (α, τ0) > 0 such that h0 (τ0, V0 − U0) < β
implies

h (t, V (t, τ0, V0)− U (t− η, t0, U0)) < α , t ≥ τ0 (25)

(ii) ITD (h0, h)-uniformly equi-bounded with respect to the solution Ũ if the previ-
ous implication in (i) holds for every τ0 ∈ R+, or in otherwords, β = β (α, τ0) > 0
is independent of τ0.

It is worth pointing out that if β in (ii) satisfy that β (·, τ0) ∈ K, then the solution

V (t, τ0, V0) of (12) is ITD (h0, h)-stable with respect to the solution Ũ . In fact, for
ε > 0 there exists a continuous function δ = δ (ε, τ0) > 0 in τ0, such that whenever
α < δ, we have β = β (α, τ0) < ε.

(iii) ITD (h0, h)-equi-attractive in the large with respect to the solution Ũ , if and
only if given any ε, α > 0 and τ0 ∈ R+, there exists a T = T (τ0, ε, α) > 0 such
that h0 (τ0, V0 − U0) < α implies

h (t, V (t, τ0, V0)− U (t− η, t0, U0)) < ε , t ≥ τ0 + T (τ0, ε, α) (26)

(iv) ITD (h0, h)-uniform equi-attractive in the large with respect to the solution

Ũ , if the previous implication in (iii) holds for every τ0 ∈ R+, or in otherwords,
T = T (τ0, ε, α) > 0 is independent of τ0.

(v) ITD (h0, h)-Lagrange stable with respect to the solution Ũ , if and only if it is
ITD (h0, h)-equi-bounded and ITD (h0, h)-equi-attractive in the large with respect

to the solution Ũ .

(vi) ITD (h0, h)-uniform Lagrange stable with respect to the solution Ũ , if and
only if it is ITD (h0, h)-Lagrange stable and both β = β (α, τ0) > 0 in (i) and
T = T (τ0, ε, α) > 0 in (iii) are independent of τ0.
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3. ITD Stability Results in Terms of Two Measures

3.1. ITD Variational Comparison Results. In what follows, let us present
generalized variational comparison results aimed to study the stability properties
in terms of two measures for solutions of SDEs involving causal operators, taking
into consideration the difference in the initial conditions.

Before that, in order to study the stability properties for the SDEs with causal
operators, let us assume that the solutions of the SDEs (10), (11), (12), and (13)
exist and that they are unique; additionally, that all the Hukuhara differences exist,
so the problem is well-posed.

Theorem 1. Assume that (i) Both L (t,Ω) ∈ C
[
R+ ×Kc (Rn) ,RN

+

]
and ∥W (t, s,Ω)∥

satisfy a local Lipschitz condition in Ω for any t, s; where W (t) = W (t, τ0, V0 − U0)

is the solution of (13) for t ≥ τ0, Ũ (t, τ0, U0) = U (t− η, t0, U0), for η = τ0 − t0,
U (t, t0, U0) is any solution of (10) for t ≥ t0, and V (t) = V (t, τ0, V0) is the solu-

tion of (12) for t ≥ τ0; and let Ω (t)=V (t)−Ũ (t).

(ii)
D∗−L (t, s,Ω) ≤ g (t, s, L (s,W (t, s,Ω))) (27)

where

D∗−L (t, s,Ω)

= lim
δ→0−

inf
1

δ

(
L
(
s+ δ,W

(
t, s+ δ,Ω+ δ

(
(PV ) (s)−

(
QŨ

)
(s)

)))
− L (s,W (t, s,Ω))

) (28)

(iii) g ∈ C
[
R+ × RN

+ ,RN
]
, g (t, s, u) is quasi-monotone non-decreasing in u for

any t, s; [i.e., if u ≤ v, ui = vi for some i such that 1 ≤ i ≤ N, then gi (t, s, u) ≤
gi (t, s, v) , for t, s ∈ R+ (In this context, the inequality symbol used in the vectorial
inequalities is understood to denote component-wise inequality [39])];

and r (t, s, τ0, V0) is the maximal solution of

du (s)

ds
= g (t, s, u (s)) , u (τ0) = u0 ≥ 0 (29)

existing for τ0 ≤ s ≤ t < ∞.

Then, L (τ0,W (t, τ0, V0 − U0)) = u0 implies

L (t,Ω (t, τ0, V0 − U0)) ≤ r0 (t, τ0, L (τ0,W (t, τ0, V0 − U0))) (30)

where r0 (t, τ0, u0) = r (t, t, τ0, u0) .

Proof. Let us set

m (t, s) = L (s,W (t, s,Ω (s))) for τ0 ≤ s ≤ t. (31)
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Then, we have

m (t, τ0) = L (τ0,W (t, τ0,Ω (τ0))) = L
(
τ0,W

(
t, τ0, V (τ0)− Ũ (τ0)

))
= L (τ0,W (t, τ0, V0 − U0)) = u0

(32)

For a sufficiently small positive value δ, we have

m (t, s+ δ)−m (t, s)

= L (s+ δ,W (t, s+ δ,Ω (s+ δ)))− L (s,W (t, s,Ω (s)))

= L (s+ δ,W (t, s,Ω (s)) + δ (SW (t, s,Ω (s))) (s) + ε (δ))− L (s,W (t, s,Ω (s)))

(33)

where ε stands for error and limδ→0−
ε(δ)
δ = 0.

Taking into consideration the assumptions in (i) regarding the locally Lipschitz
property of L (t,Ω) and ∥W (t, s,Ω)∥ in Ω, it is seen that

m (t, s+ δ)−m (t, s) ≤ k (ε1 (δ)− ε2 (δ))

+ L
(
s+ δ,W

(
t, s, V (s)− Ũ (s)

)
+ δ

(
(PV ) (s)−

(
QŨ

)
(s)

))
− L

(
s,W

(
t, s, V (s)− Ũ (s)

))
(34)

where ε1, ε2 stand for errors, k stands for Lipschitz constant.

The inequality in the assumption (ii) gives us the following estimation regarding
the Dini derivative of m(t, s)

D∗−m (t, s)

≤ lim
δ→0−

inf
1

δ
K (ε1 (δ)− ε2 (δ))

+ lim
δ→0−

inf
1

δ
L
(
s+ δ,W

(
t, s, V (s)− Ũ (s)

)
+ δ

(
(PV ) (s)−

(
QŨ

)
(s)

))
− lim

δ→0−
inf

1

δ
L
(
s,W

(
t, s, V (s)− Ũ (s)

))
≤ g

(
t, s, L

(
s,W

(
t, s, V (s)− Ũ (s)

)))
= g (t, s, L (s,W (t, s,Ω (s)))) = g (t, s,m (t, s))

(35)

for τ0 ≤ s ≤ t < ∞.

A comparison result [Theorem 1.7.1] from [26] gives us the following inequality

m (t, s) ≤ r (t, s, τ0, L (τ0,W (t, τ0, V0 − U0))) for τ0 ≤ s ≤ t. (36)
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Choosing s = t in the right-hand side of the previous inequality, we get

m (t, s) ≤ r (t, t, τ0, L (τ0,W (t, τ0, V0 − U0)))

= r0 (t, τ0, L (τ0,W (t, τ0, V0 − U0)))
(37)

which yields the desired estimation in (30) completing the proof. □

Theorem 2. Under the assumptions of Theorem 1 with N = 1 and g (t, s, u) ≡ 0,
we have

L (t,Ω (t, τ0, V0 − U0)) ≤ L (τ0,W (t, τ0, V0 − U0)) , t ≥ τ0. (38)

Furthermore, we assume

D∗−L (t, s,Ω) ≤ −c (h (s,W (t, s,Ω))) , τ0 ≤ s ≤ t < ∞ (39)

where c ∈ K and h ∈ C [R+ ×Kc (Rn) ,R+] .

Then, for t ≥ τ0

L (t,Ω (t, τ0, V0 − U0)) ≤ L (τ0,W (t, τ0, V0 − U0))−
∫ t

τ0

c (h (s,W (t, s,Ω (s)))) ds.

(40)

Proof. Starting from the statement (35) in the proof of Theorem 1,

D∗−m (t, s) ≤ g (t, s,m (t, s)) for τ0 ≤ s ≤ t < ∞. (41)

Then, since g (t, s, u) ≡ 0, we get by integrating the two sides of the previous
inequality (41), for s ∈ [τ0, t] ,∫ t

τ0

D∗−m (t, s)ds = L (t,W (t, t,Ω (t)))− L (τ0,W (t, τ0,Ω (τ0))) ≤ 0. (42)

Hence, we have

L (t,Ω (t, τ0, V0 − U0)) ≤ L (τ0,W (t, τ0,V0 − U0)) for t ≥ τ0. (43)

Now, let us set

M(s,W (t, s,Ω(s))) ≡ L(s,W (t, s,Ω(s))) +

∫ s

τ0

c(h(ξ,W (t, ξ,Ω(ξ))))dξ. (44)

Then, by taking Dini derivatives of both sides and by assumption (39), we have

D∗−M (t, s,Ω (s)) = D∗−L (t, s,Ω (s)) + c (h (s,W (t, s,Ω (s))))

− c (h (τ0,W (t, τ0,Ω (τ0))))

≤ D∗−L (t, s,Ω (s)) + c (h (s,W (t, s,Ω (s))))

≤ −c (h (s,W (t, s,Ω (s)))) + c (h (s,W (t, s,Ω (s)))) = 0.

(45)

Thus, D∗−M (t, s,Ω (s))≤0, in view of (43), gives us for t ≥ τ0,

M (t,Ω (t, τ0, V0 − U0)) ≤ M (τ0,W (t, τ0, V0 − U0)) . (46)
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By the definition of M , this implies, for t ≥ τ0,

L (t,Ω (t, τ0, V0 − U0)) +

∫ t

τ0

c (h (ξ,W (t, ξ,Ω (ξ)))) dξ

≤ L (τ0,W (t, τ0, V0 − U0)) +

∫ τ0

τ0

c (h (ξ,W (t, ξ,Ω (ξ)))) dξ

(47)

L (t,Ω (t, τ0, V0 − U0)) +

∫ t

τ0

c (h (ξ,W (t, ξ,Ω (ξ)))) dξ ≤ L (τ0,W (t, τ0, V0 − U0)) .

(48)
Moving the integral term to the right-hand side gives us the desired estimation (40)
and this completes the proof. □

3.2. Main ITD Stability Results in Terms of Two Measures. Now, let us
employ the comparison results in section 3.1 to prove the following theorems giv-
ing sufficient conditions for equi-boundedness, equi-attractiveness in the large, and
Lagrange stability in terms of two measures for the solutions of perturbed SDEs
involving causal operators in regard to their unperturbed ones.

The next theorem gives sufficient conditions to the ITD (h0, h)-equi-boundedness
of the solution V (t, τ0, V0) of (12) through (τ0, V0) for t ≥ τ0 with respect to the

solution Ũ (t, τ0, U0) = U (t− η, t0, U0) , for η = τ0−t0, where U (t) = U (t, t0, U0)
is the solution of (10) through (t0, U0) for t ≥ t0; providing that the solution

V (t, τ0, V0) of (12) is ITD (h0, h0)-equi-bounded with respect to Ũ .

Theorem 3. Assume that

(i) Both L (t,Ω) ∈ C [R+ ×Kc (Rn) ,R+] and ∥W (t, s,Ω)∥ satisfy a local Lipschitz
condition in Ω for any t, s; where W (t) = W (t, τ0, V0 − U0) is the solution of (13)
for t ≥ τ0 and

Ω (t, τ0, V0 − U0) = V (t)− Ũ (t) for t ≥ τ0 (49)

(ii)

D∗−L (t, s,Ω) ≤ −c (h (s,W (t, s,Ω (s)))) in S (h,M) (50)

where

S (h,M) = {(t,Ω) : h (t,Ω) < M for some h ∈ Γ and M > 0} (51)

and

D∗−L (t, s,Ω)

= lim
δ→0−

inf
1

δ

(
L
(
s+ δ,W

(
t, s+ δ,Ω+ δ

(
(PV ) (s)−

(
QŨ

)
(s)

)))
− L (s,W (t, s,Ω))

) (52)
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(iii) For b ∈ K and a1, a0 ∈ CK,

b (h (t,Ω)) +

∫ t

τ0

c (h (s,W (t, s,Ω (s)))) ds ≤ L (t,Ω) in S (h,M) and

L (t,Ω) ≤ a1 (t, h (t,Ω)) + a0 (t, h0 (t,Ω)) in S (h,M) ∩ S (h0,M)

(53)

(iv) h0 is finer that h, that is, there exists a function ϕ ∈ K such that

h0 (t,Ω) ≤ M0 implies h (t,Ω) ≤ ϕ (h0 (t,Ω)) (54)

for some M0 with ϕ (M0) ≤ M ;
(v) The solution V (t, τ0, V0) of (12) for t ≥ τ0 is ITD (h0, h0)-equi-bounded with

respect to the solution Ũ (t, τ0, U0) = U (t− η, t0, U0) , for η = τ0 − t0.

Then, this implies the ITD (h0, h)-equi-boundedness of the solution V (t, τ0, V0) of

(12) for t ≥ τ0, with respect to the solution Ũ

Proof. We shall show that the solution V (t, τ0, V0) of (12) for t ≥ τ0 is ITD (h0, h)-

equi-bounded with respect to the solution Ũ , that is, given any α > 0 and for some
τ0 ∈ R+, there exists β = β (α, τ0) > 0 such that h0 (τ0, V0 − U0) < β implies

h (t, V (t, τ0, V0)− U (t− η, t0, U0)) < α for t ≥ τ0 (55)

Assume that (55) is not true, then there exist solutions Ũ (t) = U (t− η, t0, U0),
where U (t, t0, U0) is the solution of (10) for t ≥ t0; and V (t) = V (t, τ0, V0) of (12)
for t ≥ τ0, and t1 > τ0 such that

h0 (τ0, V0 − U0) < β, h (t1,Ω (t1)) = α and h (t,Ω (t)) ≤ α, for τ0 ≤ t ≤ t1 (56)

where Ω (t) = V (t)− Ũ (t) for t ≥ τ0.

By Theorem 2, we have, for τ0 ≤ t ≤ t1,

L (t,Ω (t)) ≤ L (τ0,W (t, τ0, V0 − U0))−
∫ t

τ0

c (h (s,W (t, s,Ω (s)))) ds (57)
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Then, using the assumptions (iii), (56) and (57), we obtain when t = t1,

b (α) +

∫ t1

τ0

c (h (s,W (t1, s,Ω (s)))) ds

= b (h (t1,Ω(t1))) +

∫ t1

τ0

c (h (s,W (t1, s,Ω (s)))) ds ≤ L (t1,Ω (t1))

≤ L (τ0,W (t1, τ0, V0 − U0))−
∫ t1

τ0

c (h (s,W (t1, s,Ω (s)))) ds

≤ L (τ0,W (t1, τ0, V0 − U0)) +

∫ t1

τ0

c (h (s,W (t1, s,Ω (s)))) ds

≤ a1 (τ0, h (τ0,W (t1, τ0, V0 − U0))) + a0 (τ0, h0 (τ0,W (t1, τ0, V0 − U0)))

+

∫ t1

τ0

c (h (s,W (t1, s,Ω (s)))) ds

(58)

We aim to reach a contradiction to conclude the proof of the theorem. We will use
the assumption (v) for this purpose.

Given 0 < α < M and that there exists a M0 with ϕ (M0) ≤ M.

Choosing N1 = N1 (τ0, α) such that 0 < N1 (τ0, α) < M0, and

h0 (t,Ω (t)) < N1 implies a0 (t, h0 (t,Ω (t))) <
b (α)

2
for t ≥ τ0 (59)

By assumption (v), corresponding to this N1, there exists a β1 = β1 (τ0, N1) > 0
such that

h0 (τ0, V0 − U0) < β1 implies h0 (t,Ω (t)) < N1 for t ≥ τ0 (60)

Thus (59) and (60) give us

h0 (τ0, V0 − U0) < β1 implies a0 (t, h0 (t,Ω (t))) <
b (α)

2
for t ≥ τ0 (61)

Similarly, we choose N2 = N2 (τ0, α) such that 0 < N2 (τ0, α) < M0 and

h (t,Ω (t)) < N2 implies a1 (t, h (t,Ω (t))) <
b (α)

2
for t ≥ τ0 (62)

By the assumptions (iv) and (v) also, corresponding to ϕ−1 (N2), there exists a
β2 = β2 (τ0, N2) > 0 such that

h0 (τ0, V0 − U0) < β2 implies h0 (t,Ω (t)) < ϕ−1 (N2) for t ≥ τ0 (63)

Since ϕ ∈ K is strictly monotone increasing; then, we have by taking the com-
position of ϕ of both sides of the inequality h0 (t,Ω (t)) < ϕ−1 (N2) in (63), with



96 C. YAKAR, H. TALAB

considering (54),

h0 (τ0, V0 − U0) < β2 implies

h (t,Ω (t)) ≤ ϕ (h0 (t,Ω (t))) < ϕ
(
ϕ−1 (N2)

)
= N2 for t ≥ τ0

(64)

So, (62) and (64) give us, for t ≥ τ0,

h0 (τ0, V0 − U0) < β2 implies a1 (t, h (t,Ω (t))) <
b (α)

2
(65)

Let β = min {β1, β2}, then with this β the following statement holds.

h0 (τ0, V0 − U0) < β implies

a0 (t, h0 (t,Ω (t))) <
b (α)

2
and a1 (t, h (t,Ω (t))) <

b (α)

2
for t ≥ τ0

(66)

Hence, when t = t1, using (66), the statement (58) can be written as

b (α) +

∫ t1

τ0

c (h (s,W (t1, s,Ω (s)))) ds

= b (h (t1,Ω(t1))) +

∫ t1

τ0

c (h (s,W (t1, s,Ω (s)))) ds ≤ L (t1,Ω (t1))

≤ L (τ0,W (t1, τ0, V0 − U0))−
∫ t1

τ0

c (h (s,W (t1, s,Ω (s)))) ds

≤ L (τ0,W (t1, τ0, V0 − U0)) +

∫ t1

τ0

c (h (s,W (t1, s,Ω (s)))) ds

≤ a1 (τ0, h (τ0,W (t1, τ0, V0 − U0))) + a0 (τ0, h0 (τ0,W (t1, τ0, V0 − U0)))

+

∫ t1

τ0

c (h (s,W (t1, s,Ω (s)))) ds

<
b (α)

2
+

b (α)

2
+

∫ t1

τ0

c (h (s,W (t1, s,Ω (s)))) ds

= b (α) +

∫ t1

τ0

c (h (s,W (t1, s,Ω (s)))) ds

(67)

This contradiction proves that the solution V (t, τ0, V0) of (12) through (τ0, V0) for

t ≥ τ0 is ITD (h0, h)-equi-bounded with respect to the solution Ũ .
□

The next theorem gives sufficient conditions to the ITD equi-attractiveness in
the large of the solution V (t, τ0, V0) of (12) through (τ0, V0) for t ≥ τ0 with respect

to the solution Ũ (t, τ0, U0) = U (t− η, t0, U0) , for η = τ0 − t0, where U (t) =
U (t, t0, U0) is the solution of (10) through (t0, U0) for t ≥ t0; providing that the
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solution V (t, τ0, V0) of (12) is ITD (h0, h0)- equi-attractive in the large with respect

to Ũ .

Theorem 4. Assume that

(i) Both L (t,Ω) ∈ C [R+ ×Kc (Rn) ,R+] and ∥W (t, s,Ω)∥ satisfy a local Lipschitz
condition in Ω for any t, s; where W (t) = W (t, τ0, V0 − U0) is the solution of (13)
for t ≥ τ0 and

Ω (t, τ0, V0 − U0) = V (t)− Ũ (t) for t ≥ τ0 (68)

(ii)
D∗−L (t, s,Ω) ≤ −c (h (s,W (t, s,Ω (s)))) in S (h,M) (69)

where

S (h,M) = {(t,Ω) : h (t,Ω) < M for some h ∈ Γ and M > 0} (70)

and

D∗−L (t, s,Ω)

= lim
δ→0−

inf
1

δ

(
L
(
s+ δ,W

(
t, s+ δ,Ω+ δ

(
(PV ) (s)−

(
QŨ

)
(s)

)))
− L (s,W (t, s,Ω))

) (71)

(iii) For b ∈ K and a1, a0 ∈ CK,

b (h (t,Ω)) +

∫ t

τ0

c (h (s,W (t, s,Ω (s)))) ds ≤ L (t,Ω) in S (h,M) and

L (t,Ω) ≤ a1 (t, h (t,Ω)) + a0 (t, h0 (t,Ω)) in S (h,M) ∩ S (h0,M)

(72)

(iv) h0 is finer that h, that is, there exists a function ϕ ∈ K such that

h0 (t,Ω) ≤ M0 implies h (t,Ω) ≤ ϕ (h0 (t,Ω)) (73)

for some M0 with ϕ (M0) ≤ M ;

(v) The solution V (t, τ0, V0) of (12) for t ≥ τ0 is ITD (h0, h0)-equi-attractive in the

large with respect to the solution Ũ (t, τ0, U0) = U (t− η, t0, U0) , for η = τ0 − t0.

Then, this implies the ITD (h0, h)-equi-attractiveness in the large of the solution

V (t, τ0, V0) of (12) with respect to the solution Ũ .

Proof. We shall show that the solution V (t, τ0, V0) of (12) for t ≥ τ0 is ITD (h0, h)-

equi-attractive in the large with respect to the solution Ũ , that is, given any ε, α > 0
and τ0 ∈ R+, there exists a T = T (τ0, ε, α) > 0 such that h0 (τ0, V0 − U0) < α
implies

h (t, V (t, τ0, V0)− U (t− η, t0, U0)) < ε , t ≥ τ0 + T (τ0, ε, α) (74)
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Assume that (74) is not true, then there exist solutions Ũ (t) = U (t− η, t0, U0),
where U (t, t0, U0) is the solution of (10) for t ≥ t0; and V (t) = V (t, τ0, V0) of (12)
for t ≥ τ0, and a sequence {tk} , tk ≥ τ0 + T and limk→∞ tk = ∞ such that

h0 (τ0, V0 − U0) < α, h (tk,Ω (tk)) ≥ ε for tk ≥ τ0 + T (75)

where Ω (t) = V (t)− Ũ (t) for t ≥ τ0.

By Theorem 2, we have, for t ≥ τ0,

L (t,Ω (t)) ≤ L (τ0,W (t, τ0, V0 − U0))−
∫ t

τ0

c (h (s,W (t, s,Ω (s)))) ds (76)

Then, using the assumptions (iii), (75) and (76), we obtain

b (ε) +

∫ t

τ0

c (h (s,W (tk, s,Ω (s)))) ds

≤ b (h (tk,Ω (tk))) +

∫ t

τ0

c (h (s,W (tk, s,Ω (s)))) ds ≤ L (tk,Ω (tk))

≤ L (τ0,W (tk, τ0, V0 − U0))−
∫ t

τ0

c (h (s,W (tk, s,Ω (s)))) ds

≤ L (τ0,W (tk, τ0, V0 − U0)) +

∫ t

τ0

c (h (s,W (tk, s,Ω (s)))) ds

≤ a1 (τ0, h (τ0,W (tk, τ0, V0 − U0))) + a0 (τ0, h0 (τ0,W (tk, τ0, V0 − U0)))

+

∫ t

τ0

c (h (s,W (tk, s,Ω (s)))) ds

(77)

We aim to reach a contradiction to conclude the proof of the theorem. We will use
the assumption (v) for this purpose.

Given 0 < ε < M and that there exists a M0 with ϕ (M0) ≤ M.

Choosing N1 = N1 (τ0, ε) such that 0 < N1 (τ0, ε) < M0, and

h0 (t,Ω (t)) < N1 implies a0 (t, h0 (t,Ω (t))) <
b (ε)

2
for t ≥ τ0 (78)

By assumption (v), corresponding to this N1, there exists a α1 and a
T1 = T1 (τ0, N1, α1) > 0 such that

h0 (τ0, V0 − U0) < α1 implies h0 (t,Ω (t)) < N1 for t ≥ τ0 + T1 (79)

Thus (78) and (79) give us

h0 (τ0, V0 − U0) < α1 implies a0 (t, h0 (t,Ω (t))) <
b (ε)

2
for t ≥ τ0 + T1 (80)
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Similarly, we choose N2 = N2 (τ0, ε) such that 0 < N2 (τ0, ε) < M0 and

h (t,Ω (t)) < N2 implies a1 (t, h (t,Ω (t))) <
b (ε)

2
for t ≥ τ0 (81)

By the assumptions (iv) and (v) also, corresponding to ϕ−1 (N2), there exists a α2

and a T2 = T2 (τ0, N2, α2) > 0 such that

h0 (τ0, V0 − U0) < α2 implies h0 (t,Ω (t)) < ϕ−1 (N2) for t ≥ τ0 + T2 (82)

Since ϕ ∈ K is strictly monotone increasing; then, we have by taking the com-
position of ϕ of both sides of the inequality h0 (t,Ω (t)) < ϕ−1 (N2) in (82), with
considering (73),

h0 (τ0, V0 − U0) < α2 implies

h (t,Ω (t)) ≤ ϕ (h0 (t,Ω (t))) < ϕ
(
ϕ−1 (N2)

)
= N2 for t ≥ τ0 + T2

(83)

So, (81) and (83) give us, for t ≥ τ0 + T2,

h0 (τ0, V0 − U0) < α2 implies a1 (t, h (t,Ω (t))) <
b (ε)

2
(84)

Let α = min {α1, α2} , and T = max {T1, T2} , then,

T=T (T1, T2) = T (τ0, N1, α1, N2, α2) = T (τ0, ε, α) (85)

Therefore, with these α, T the following statement holds.

h0 (τ0, V0 − U0) < α implies

a0 (t, h0 (t,Ω (t))) <
b (ε)

2
and a1 (t, h (t,Ω (t))) <

b (ε)

2
for t ≥ τ0 + T

(86)
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Hence, when t = t1, using (86), the statement (77) can be written as

b (ε) +

∫ t1

τ0

c (h (s,W (tk, s,Ω (s)))) ds

≤ b (h (tk,Ω (tk))) +

∫ t1

τ0

c (h (s,W (tk, s,Ω (s)))) ds ≤ L (tk,Ω (tk))

≤ L (τ0,W (tk, τ0, V0 − U0))−
∫ t1

τ0

c (h (s,W (tk, s,Ω (s)))) ds

≤ L (τ0,W (tk, τ0, V0 − U0)) +

∫ t1

τ0

c (h (s,W (tk, s,Ω (s)))) ds

≤ a1 (τ0, h (τ0,W (tk, τ0, V0 − U0))) + a0 (τ0, h0 (τ0,W (tk, τ0, V0 − U0)))

+

∫ t1

τ0

c (h (s,W (tk, s,Ω (s)))) ds

<
b (ε)

2
+

b (ε)

2
+

∫ t1

τ0

c (h (s,W (tk, s,Ω (s)))) ds

= b (ε) +

∫ t1

τ0

c (h (s,W (tk, s,Ω (s)))) ds

(87)

This contradiction proves the ITD (h0, h)-equi-attractiveness in the large of the
solution V (t, τ0, V0) of (12) for t ≥ τ0 + T (τ0, ε, α) with respect to the solution

Ũ . □

The next theorem gives sufficient conditions to the ITD (h0, h)-Lagrange stability
of the solution V (t, τ0, V0) of (12) through (τ0, V0) for t ≥ τ0 with respect to the

solution Ũ (t, τ0, U0) = U (t− η, t0, U0) , for η = τ0−t0, where U (t) = U (t, t0, U0)
is the solution of (10) through (t0, U0) for t ≥ t0; providing that the solution

V (t, τ0, V0) of (12) is ITD (h0, h0)- Lagrange stable with respect to Ũ .

Theorem 5. Assume that

(i) Both L (t,Ω) ∈ C [R+ ×Kc (Rn) ,R+] and ∥W (t, s,Ω)∥ satisfy a local Lipschitz
condition in Ω for any t, s; where W (t) = W (t, τ0, V0 − U0) is the solution of (13)
for t ≥ τ0 and

Ω (t, τ0, V0 − U0) = V (t)− Ũ (t) for t ≥ τ0 (88)

(ii)

D∗−L (t, s,Ω) ≤ −c (h (s,W (t, s,Ω (s)))) in S (h,M) (89)

where

S (h,M) = {(t,Ω) : h (t,Ω) < M for some h ∈ Γ and M > 0} (90)
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and

D∗−L (t, s,Ω)

= lim
δ→0−

inf
1

δ

(
L
(
s+ δ,W

(
t, s+ δ,Ω+ δ

(
(PV ) (s)−

(
QŨ

)
(s)

)))
− L (s,W (t, s,Ω))

) (91)

(iii) For b ∈ K and a1, a0 ∈ CK,

b (h (t,Ω)) +

∫ t

τ0

c (h (s,W (t, s,Ω (s)))) ds ≤ L (t,Ω) in S (h,M) and

L (t,Ω) ≤ a1 (t, h (t,Ω)) + a0 (t, h0 (t,Ω)) in S (h,M) ∩ S (h0,M)

(92)

(iv) h0 is finer that h, that is, there exists a function ϕ ∈ K such that

h0 (t,Ω) ≤ M0 implies h (t,Ω) ≤ ϕ (h0 (t,Ω)) (93)

for some M0 with ϕ (M0) ≤ M ;

(v) The solution V (t, τ0, V0) of (12) for t ≥ τ0 is ITD (h0, h0)-Lagrange stable with

respect to the solution Ũ (t, τ0, U0) = U (t− η, t0, U0) , for η = τ0 − t0.

Then, this implies the ITD (h0, h)-Lagrange stability of the solution V (t, τ0, V0) of

(12) for t ≥ τ0 with respect to the solution Ũ .

Proof. The ITD (h0, h0)-Lagrange stability of the solution V (t, τ0, V0) of (12) for

t ≥ τ0 with respect to the solution Ũ gives us by definition the ITD (h0, h0)-equi-
boundedness and the ITD (h0, h0)-equi-attractiveness in the large of the solution

V (t, τ0, V0) of (12) for t ≥ τ0 with respect to the solution Ũ . Hence, by applying
Theorem 3 and Theorem 4 respectively, we obtain the ITD (h0, h)-equi-boundedness
and the ITD (h0, h)-equi-attractiveness in the large of the solution V (t, τ0, V0) of

(12) with respect to the solution Ũ . That is to say it is ITD (h0, h)-Lagrange stable

with respect to the solution Ũ , by definition. □

4. Conclusions

In this manuscript, we have presented sufficient conditions for ITD equibound-
edness, equi-attractiveness in the large, and Lagrange stability in terms of two
measures for the solutions of perturbed SDEs involving causal operators in regard
to their unperturbed ones, and proved the sufficiency of these conditions using ITD
variational comparison results.
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