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Abstract:	 Linear	 mixed‐effects	 models	 are	 very	 popular	 and	 powerful	 tools	 in
many	scientific	fields	such	as	zoology,	biology,	and	education.		Estimators	of	fixed
effects	do	not	only	depend	on	the	variances	of	error	terms	but	they	also	depend	on
random	 terms	 in	mixed‐effect	models.	When	 the	distributions	of	 random	effects	
are	unknown	or	enough	sample	size	cannot	be	obtained,	 standard	methods	may	
fail.	This	study	aims	to	determine	a	promising	confidence	interval	method	among
existing	 methods	 in	 terms	 of	 coverage	 probability	 of	 true	 value	 of	 parameter.
Standard	and	parametric	bootstrap‐based	confidence	interval	methods	for	nested
error	 regression	 model	 were	 compared	 in	 the	 simulation	 study	 under	 small
samples.	 It	 is	observed	 that	parametric	bootstrap‐based	method	provides	better
coverage	 rates	 for	 small	 intra‐correlation	 and	 profile	 likelihood	method	 usually
provides	better	results	for	moderate	and	strong	correlation.	
 

	
İç	İçe	Hata	Regresyon	Modelinde	Sabit	Etki	Parametresi	için	Güven	Aralığı	

Metodlarının	Karşılaştırılması	
	

	
Anahtar	Kelimeler	
Karışık	etki	modelleri,	
Güven	aralığı,	
Parametrik	bootstrap,	
Profil	olabilirlik.	
		

	
Özet:	Doğrusal	karışık	etki	modelleri,	zooloji,	biyoloji	ve	eğitim	gibi	bilimin	birçok
alanında	popüler	 ve	 güçlü	bir	 araçtır.	Bu	modellerde	 sabit	 etki	 parametrelerinin
tahminleri	 hata	 ve	 rasgele	 etki	 terimlerinin	 varyanslarına	 bağlıdır.	 Rasgele
etkilerin	 dağılımları	 bilinmediğinde	 veya	 yeterli	 sayıda	 örnek	 bulunamadığında	
standart	metodlar	doğru	sonuç	vermeyebilir.	Karışık	etki	modellerinin	özel	bir	hali
olan	 iç	 içe	 hata	 regresyon	 modelinin	 sabit	 etki	 parametresi	 için	 varolan	 güven
aralığı	 metodları	 arasında	 parametrenin	 gerçek	 değerini	 kapsama	 olasılığı	
bakımından	en	 iyi	olan	güven	aralığı	metodu	aranmıştır.	 Standart	ve	parametrik
bootstrap‐tabanlı	 güven	 aralığı	 metodları	 iç	 içe	 hata	 regresyon	 modeli	 için
simülasyon	 çalışmasında	 küçük	 örnek	 çaplarında	 karşılaştırılmıştır.	 Zayıf
korelasyonda	 parametrik‐bootstrap	 metodları	 daha	 iyi	 sonuçlar	 vemiştir.	 Profil
olabilirlik	metodu	orta	ve	güçlü	korelasyonlarda	daha	iyi	sonuçlar	sağlamıştır.	
   

	
1.	Introduction	
	
Linear	 mixed‐effects	 model	 is	 called	 with	 many	
names	 in	statistics	 literature.	As	Demidenko	 [1]	said	
in	 his	 book,	 “big	 ideas	 have	 many	 names	 and	
applications”.	These	names	are	such	as	mixed‐effects	
model,	 linear	 mixed	 model,	 mixed	 linear	 model,	
hierarchical	 model,	 linear	 mixed‐effects	 model,	
multilevel	model.		
	
Linear	 mixed‐effects	 model	 (LMM)	 is	 derived	 from	
the	 fact	 that	 these	 models	 are	 linear	 in	 terms	 of	
parameters	in	the	models	and	they	are	mixed	because	
these	models	 include	 independent	 terms	that	can	be	
random	 and	 fixed.	 Mixed	model	 as	 a	 terminological	

term	was	firstly	introduced	by	Eisenhart	[2],	random	
and	 fixed	 effect	 terms	 are	 formally	 distinguished	 in	
his	 study.	 LMMs	 do	 not	 require	 the	 assumption	 of	
independent	 and	 identically	 distributed	 sample	 as	
required	in	the	typical	statistics	models	such	as	linear	
regression.	More	complex	dataset	structures	such	as	
nested,	 hierarchical,	 multilevel	 can	 be	 handled	 with	
LMM.	Between	and	within	units	or	clusters	variations	
are	 included	 in	 LMM.	 In	 LMM,	 observations	 within	
each	 unit	 or	 cluster	 are	 dependent	 whereas	
observations	 between	 units	 or	 clusters	 are	
independent.	 This	 flexibility	 attribute	 gives	 LMMs	
appropriateness	 for	 using	 repeated	 measures,	
longitudinal,	 panel	 and	 spatial	 datasets.	 With	 the	
existence	of	random	effects	 in	 the	model,	 theoretical	
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approach	to	estimation	and	inference	of	 fixed	effects	
become	 more	 complicated	 than	 standard	 linear	
models.		
	
In	order	to	make	inference	for	fixed	effect	parameters	
of	 LMM,	 several	 confidence	 interval	 methods	 are	
suggested	 by	 researchers	 in	 statistics	 literature.	
Before	constructing	confidence	 interval,	estimator	of	
fixed	effect	and	variance	estimation	of	random	effects	
must	be	 found.	 For	 variance	 estimation,	best	known	
methods	are	ANOVA,	maximum	likelihood	(ML),	and	
restricted	 (or	 residual)	maximum	 likelihood	 (REML)	
methods.	 For	 LMM,	 REML	 estimation	 method	 was	
first	 introduced	 by	 Patterson	 and	 Thompson	 [3].	
Theoretical	explanation	of	these	methods	are	broadly	
shown	in	Searle	et	al	[4].		
	
For	 a	 good	 performance	 of	 confidence	 interval,	 a	
researcher	 needs	 to	 have	 a	 good	 estimator	 of	 fixed	
effect	 that	 has	 a	 small	 mean	 square	 error	 (MSE)	 .	
After	 a	 careful	 determination	 of	 these	 estimators,	
pivot	 and	 its	 distribution	 must	 be	 found	 to	 obtain	
percentiles	to	construct	a	confidence	interval.	Kackar	
and	 Harville	 [5]	 proposed	 MSE	 estimators	 of	 fixed	
and	 random	 effects	 in	 LMM.	 They	 indicated	 that	 if	
true	 values	 of	 variances	 of	 fixed	 and	 random	effects	
are	 replaced	 by	 estimated	 values,	 the	 MSEs	 of	
estimators	 of	 fixed	 and	 random	 effects	 increase	 in	
size.	 Kenward	 and	 Roger	 [6]	 also	 proposed	 MSE	
estimator	 by	 combining	 Kackar	 and	 Harville	
approximations	 and	 their	 method	 to	 avoid	 bias	 in	
small	 samples	 for	 restricted	 maximum	 likelihood	
estimator	of	fixed	effect	in	LMMs.		
	
Harville	 and	 Fenech	 [7]	 investigated	 confidence	
interval	methods	 for	 a	 variance	 ratio	 in	 unbalanced	
mixed	 linear	 models.	 Savin	 [8]	 constructed	
confidence	 interval	 for	 common	 mean	 in	 one‐way	
classification	 model.	 Hall	 and	 Maiti	 [9]	 studied	
parametric	 bootstrap	 methods	 to	 construct	
confidence	 interval	 in	 mixed‐effects	 model.	 Staggs	
[10]	 proposed	 parametric	 bootstrap	 approach	 to	
construct	 confidence	 intervals	 for	 fixed	 effect	
parameters	 of	 several	 mixed‐effects	 models.	 Burch	
[11]	 constructed	 confidence	 intervals	 for	 variance	
components	 in	 unbalanced	 one‐way	 random	 effects	
model	 using	 non‐normal	 distributions.	 Liu	 [12]	
compared	 some	 confidence	 interval	 methods	 for	
function	 of	 parameters	 in	 repeated	 measures	
degradation	 model.	 Even	 though,	 there	 are	 several	
comparison	studies	 for	confidence	 interval	methods,	
our	 study	attempts	 to	cover	all	 existing	methods	 for	
fixed	effect	of	LMM.	
	
In	 this	 paper,	 main	 focus	 is	 to	 be	 nested	 error	
regression	 model	 which	 is	 a	 special	 form	 of	 LMMs,	
given	by	
	

ij ij i ijY X u e   	 (1)	

	

A	canonical	form	of	nested	error	regression	model	is	
shown	as	follows		
	

0 1 ,     1,..., ,     1,...,ij ij i ijY x u i n j m        	 (2)	

	 	

ijY is	a	response	for	 j 	of	unit	 i 	 ,	 n 	denotes	the	total	

number	 of	 experimental	 units	 or	 clusters,	 and	 m is	
the	 number	 of	 replications	 or	 observations	 within	
each	 unit	 or	 cluster.	 0 is	 common	mean, 1 denotes	
the	 fixed	 effect	 parameter	 related	 with	 fixed	
regressor ijx .	 iu is	normally	distributed	random	effect	

corresponding	 to	 unit	 i .	 2
u ,

2
 ,  	 terms	 can	 be	

parameterized	 for	 the	 variance	 components	 of	 the	

model.
	

2
u 	
is	variance	of	 the	random	effect	 iu ,	

2
 	
is	

variance	 of	 the	 error	 term	 ij ,	 and	  is	 intra‐class	

correlation	 coefficient.	  is	 defined	 as	
2

2 2( )
u

u 

  


.	 General	 form	 of	 mixed‐effects	

model	 for	a	particular	experimental	unit	 i 	 is	shown	
in	Eq.(3).	
	

,    u (0, ),    (0, )i i i i i i sub i iY X Z u N D N R     	
(3)	

iR with	 the	 dimension	   m x m 	 and	 subD 	 with	 the	
dimension	   q x q 	 are	 covariance	 matrices	 of	
respectively	 error	 terms	 and	 random	
effects. p and q are	respectively	number	of	fixed	effect	

and	 random	effect	 terms	 in	 LMMs.	 iX 	 is	 the	 design	
matrix	for	fixed	effects	and	has	the	dimension	   m x p 	

for	 experimental	 unit	 i .	 It	 specifies	 values	 of	 fixed	
effects	 corresponding	 to	 each	 parameter	 for	 each	
observation.	 When	 fixed	 effect	 is	 categorical	 effect,	
the	 values	 of	 zero	 and	 one	 are	 used	 to	 denote	 the	
absence	 and	 presence	 of	 effect	 categories.	 For	
covariate	 effects,	 the	 variable	 values	 themselves	 are	
used	 in	 iX .	 Similarly,	 iZ 	 is	 the	 design	 matrix	 for	
random	 effects	 with	 the	 dimension	 of	   qm x 	 for	

experimental	 unit	 i .	 iu 	 is	   1q x 	 vector	 of	 random	

effects	 for	 experimental	 unit	 i 	 with	 zero	mean	 and	
covariance	 matrix	 subD .	 i 	 is	   1m x vector	 of	 error	

terms	 for	 experimental	 unit	 i 	 with	 zero	 mean	 and	
covariance	matrix	 iR .	
	
In	 addition,	 we	 assume	 that	 cov( , ) 0i iu  .The	
assumptions	 of	 LMM	 above	 imply	 that,	 marginally	

~ ( , ),i i iY N X V where	 'i i sub i iV Z D Z R  .	
	
In	small	area	models,	nested	error	regression	model	
is	 used	 to	 involve	 unit‐level	 predictors.	 The	 main	
purpose	of	this	paper	is	to	compare	performances	of	
several	 confidence	 interval	 methods	 for	 fixed	 effect	
parameter	 of	 nested	 error	 regression	 model	 under	
the	situations	of	small	samples.		
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2.	Confidence	 Interval	Methods	of	Fixed	Effect	 in	
Nested	Error	Regression	Model	
	
In	many	 applications,	 researchers	 usually	 take	 fixed	
effect	 into	 focus	 in	 mixed‐effects	 model.	 Many	
researchers	 suggest	constructing	confidence	 interval	
(CI)	for	making	inference	of	fixed	effect	parameters	in	
LMMs.	In	order	to	perform	statistical	inference	in	this	
paper,	we	used	 three	 common	maximum	 likelihood‐
based	 asymptotic	 statistics;	 they	 are	 Wald‐type	
statistics	 and	 likelihood	 ratio	 statistics.	Neyman	and	
Pearson	 introduced	 likelihood	 ratio	 statistics	 [13].	
Wald	statistic	was	 firstly	proposed	by	Wald	 [14].	All	
these	 statistics	 are	 known	 as	 the	 first‐order	
asymptotic	statistics.	They	are	derived	from	functions	
of	 maximum	 likelihood	 estimators,	 Fisher	
information	matrix	(FIM),	or	a	consistent	estimator	of	
FIM.	 These	 statistics	 and	 their	 application	 to	
confidence	 intervals	 are	 described	 in	 the	 next	
chapters.	 Most	 common	method	 among	 them	 is	 the	
Wald‐type	methods	of	confidence	interval.		
	
2.1.	 Likelihood	 ratio	 test‐based	 confidence	
interval	method	
	
Likelihood	 Ratio	 Test‐based	 confidence	 interval	 is	
also	 known	 as	 profile	 likelihood	 confidence	 interval	
(PLCI)	 in	statistics	 literature.	Since	profile	 likelihood	
confidence	 interval	 method	 does	 not	 require	
asymptotic	 normality	 of	 the	 estimator,	 they	 usually	
perform	 better	 than	Wald‐type	 confidence	 intervals	
for	small	to	moderate	sample	sizes.	Even	though	they	
do	 not	 require	 normality	 assumption	 of	 the	
estimators,	 they	 still	 depend	 on	 an	 asymptotic	
approximation	of	likelihood	ratio	test	statistic	that	is	
believed	 to	 have	 chi‐square	 distribution.	 Likelihood	
function	of	linear	mixed	model	in	Eq.	(3)	is	written	as	
below	
	

   1

1 1

1 1
log '

2 2

n n

i i i i i i
i i

L C R Y X R Y X 

 

     
	

	
where	 C 	 is	 a	 constant	 that	 does	 not	 depend	 on	
model	 parameters.	 This	 likelihood	 function	
expression	of	linear	mixed	model	is	given	in	detail	by	
Pinheiro	 and	 Bates	 [15].	 The	 model	 of	 interest	 is	
nested	 error	 regression	 model	 in	 this	 study.	
Parameter	 vector	 of	 this	 model	 is	

 † 2 2
0 1, , , ,i uu      .	  2 2

0 , , ,i uu    
	
is	 an	

additional	parameter	vector	for	the	model.	 1( , )L   is	
the	 likelihood	 function	 and	 then	 profile	 likelihood	
function	for	 1 	is	 1 1 1( ) max ( , )L L


   	.	 1 1( )L 

	
is	the	

maximum	 likelihood	 function	 over	 the	 remaining	
parameters	for	each	fixed	value	of	 1 1(0)  .	In	order	

to	 obtain	 PLCI	 for	 parameter	 of	 interest,	 the	
likelihood	ratio	test	of	a	two‐sided	hypothesis	should	
be	 inverted.	 For	 a	 two‐sided	 test	 of	 null	 hypothesis																																																						

0 1 1(0):H   ,	 the	 likelihood	ratio	test	statistic	 is	 the	

difference	 between	 log‐likelihood	 of	 full	 model	 and	
reduced	model:	
	

1 1(0) 0
ˆ ˆ ˆ ˆ2[log ( , ) log ( , )]L L    	,	

	 	
where 1̂ 	and	 ̂ 	are	the	MLEs	for	the	full	model	and	

0̂ 	 is	 the	 MLE	 of	  	 for	 the	 reduced	 model	 with	

1 1(0)  .	Hence,	a	100(1 )% 		CI	for	 1 	includes	the	

values	of	 1(0) 	where	the	test	is	non‐significant	at	the	

 	level	as	shown	below	in	the	inequalities:		
	

2
1 1(0) 0 1 ,1

ˆ ˆ ˆ ˆ2[log ( , ) log ( , )]L L       
	

	

	
or	
	

2
1 ,1

1(0) 0 1
ˆ ˆ ˆ ˆlog ( , ) log ( , )

2
L L 
      ,	

	
where 2

1 ,1  	is	the	 (1 ) 	quantile	of	 2 	distribution	

with	one	degree	of	freedom.	
	
2.2.	Wald‐type	confidence	interval	methods	
	
In	 appropriate	 settings	 where	 the	 assumptions	 of	
mixed	model	are	valid,	Wald‐type	confidence	interval	
is	 preferred	 for	 fixed	 effect	 parameter.	 This	 test	 is	
called	 Wald	 Test	 based	 on	 the	 large	 sample	 theory	
and	 maximum	 likelihood	 theory	 [14].	 MLEs	 have	
useful	properties	such	as	consistency	and	asymptotic	
normality.	 These	 properties	 are	 valid	 if	 certain	
conditions	defined	by	Lehmann	are	hold	[16].	If	these	
conditions	 are	hold,	Wald‐type	 statistics	 are	 reliable	
to	construct	confidence	interval.	For	sufficiently	large	
n 	under	these	conditions,		
	

.
† † † 1ˆ ( , ( ( )) )N I    	

(4)	

	
equation	(4)	indicates	that	 †̂ 	is	consistent	estimator	

of	 † 	 and	 †̂ 	 is	 “approximately	 distributed	 as	
normal”	 for	 sufficiently	 large	 n .	 Another	 crucial	

result	 is	 that	
 †

†
† †'

ln ( )
( )

L
I E




 

 
  

   
	which	 is	 FIM.	

By	 using	 this	 result,	 covariance	 matrix	 of	 MLEs	 is	
calculated.	 Usually,	 observed	 information	 matrix	 is	
used	because	obtaining	expected	 information	matrix	
may	not	be	possible.	Observed	 information	matrix	 is	
shown	as	below,	
	

 †

0 †
† †'

ln ( )
( )

L
I




 

 
  

    	
				

(5)

	

	
Wald	statistic	is	from	Eq.(4)	for	sufficiently	large	 n ,	
	

 † † † † † 2ˆ ˆ ˆ( ) ' ( ) pW I          	 (6)	
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with	 p 	 degrees	 of	 freedom,	
2
p 	 is	 chi‐squared	

distribution	and	  †ˆI 
	
is	 †( )I  	evaluated	at	the	MLE	

†̂ .W is	used	to	construct	approximate	100(1 )% 	
confidence	 regions	 by	 replacing	 values	 of	 † 	 that	

satisfy	  † † † † † 2ˆ ˆ ˆ( ) ' ( ) pW I          ,	 where	

2
1 , p  	 is	 the	 (1 ) 	 percentile	 of	 2

p .	 In	 order	 to	

construct	 Wald	 confidence	 interval,	 approximate	

percentile	of	the	pivot:	
† †

†

ˆ

ˆ( )SE

 



	needs	to	be	obtained.	

Based	 on	 asymptotic	 normality	 of	 the	 maximum	
likelihood	estimator,	the	distribution	of	the	pivot	has	
asymptotically	 standard	normal	distribution	 in	 large	
sample	sizes	and	its	percentiles	can	be	obtained	from	
standard	normal	distribution	percentiles.	
	
In	 linear	 mixed	 model	 context,	 FIM	 is	 written	 as	
negative	expectation	of	the	Hessian	matrix.	It	is	used	
for	 obtaining	 standard	 error	 of	 the	 MLE	 † 	 of	 †̂ .	
Hessian	matrix	is	given	below:	
	

2 2

2 2

V

V VV

l l
H H V

H
H H l l

V V V

 



  



  
               
     	

	
where	 l 	is	the	log	likelihood	, 0 1( , )   is	the	vector	

of	 fixed	 effect	 parameters	 and	 	 2 2( , , )uV    is	 the	
vector	 of	 variance	 component	 parameters	 for	 the	
model	in	Eq.(2).	
	
Since	we	only	take 1 	fixed	effect	parameter	of	nested	
error	 regression	 model	 into	 consideration,	 Wald	
confidence	 region	 is	 a	 CI	 for 1 ,	 an	 approximate	

(1 ) 	 Wald	 confidence	 interval	 written	 as	

1 1

2

ˆ ˆ( )z SE  ,	 where	
2

z is	 the (1 )
2


 	 percentile	 of	

standard	normal	distribution.	
	
2.2.1.	t‐Naive	confidence	interval	method	

	
t‐Naive	 confidence	 interval	 is	 a	 Wald‐type	 method	
used	 for	 small	 sample	 sizes	 under	 the	 situation	 that	
asymptotic	 distribution	 of	 maximum	 likelihood	
estimator	 is	not	 converged.	 In	practice,	 the	 variance	
of	maximum	likelihood	estimator	of	fixed	effects	from	
FIM	is	usually	obtained.	Hence,	when	the	variance	of	
the	estimator	is	unknown,	it	 is	 ideal	to	use	Student‐t	
distribution	 percentiles	 for	 pivot	 percentiles	
explained	above.	Given	the	degrees	of	freedom	for	the	
pivot	 statistic,	 an	 approximate	 (1 ) 	 t‐Naive	
confidence	 interval	 can	 be	 constructed	 using	 the	
formula 1 1

1
2

ˆ ˆ( )t SE 


 	where
1

2

t 

	 is	 a	 t 	 distribution	

cutoff	 [17].	 Demidenko	 [1]	 indicated	 that	 one	 can	
compute	confidence	 interval	under	 this	approach	by	
taking	variance	estimator	of	 fixed	effect	as	 the	naïve	
approximation	 and	 taking	 n p degrees	 of	 freedom	
(where	 p is	 number	 of	 fixed	 effect	 terms	 in	 the	
model)	for	the	approximating	 t 	distribution.	
	
2.3.	Parametric	bootstrap	method	
	
Bootstrap	is	a	statistical	concept	firstly	introduced	by	
Efron	 [18].	 Diccio	 and	 Romano	 approached	 the	
bootstrap	 for	 constructing	 confidence	 interval	 [19,	
20].	 In	 order	 to	 obtain	 confidence	 interval	 and	
standard	 error	 of	 estimates	 for	 multilevel	 linear	
model,	 Goldstein	 [21]	 used	 bootstrap	 technique.	
Zeger	 and	 Liang	 [22]	 provided	 an	 example	 of	
parametric	 bootstrap	 using	 generalized	 estimating	
equations.	 Very	 broad	 bootstrap	 literature	 can	 be	
found	by	Chernick	[23].	Efron’s	idea	about	bootstrap	
is	that	he	considers	the	original	bootstrap	method	as	
a	 maximum	 likelihood	 approach	 in	 nonparametric	
framework.	If		 F 	was	assumed	to	have		a	parametric	
form	 such	 as	 Gaussian	 distribution,	 estimator	 of	 F 	
would	 be	 Gaussian	 distribution	 with	 the	 MLE	
of  and	 2 	 used	 for	 the	 respective	 unknown	
parameter	 of F .	 According	 to	 Fisher’s	 MLE	 theory,	
resampling	 with	 replacement	 from	 parametric	
estimates	of	 F 	provides	bootstrap	estimates	that	are	
also	ML	estimates.			
	
In	 this	paper,	 one	of	 the	most	 important	parametric	
bootstrap	 confidence	 interval	 methods	 called	 as	
Bootstrap‐t	 introduced	 by	 Efron	 in	 his	 monograph	
was	used	[24].		
	
Among	 available	 bootstrap	 confidence	 interval	
methods,	 bootstrap‐t	 usually	 provides	 the	 best	
balance	 between	 performance	 and	 cost	 when	
standard	 error	 of	 the	 estimate	 is	 convenient	 and	
accurate	[10].	Therefore,	this	method	was	taken	into	
consideration	 to	 obtain	 parametric	 bootstrap	
confidence	 interval	 for	 fixed	 effect	 parameter	 of	
nested	 error	 regression	 model.	 Two	 parametric	
bootstrap	confidence	intervals	were	constructed:	one	
of	 them	 is	 based	 on	 Kenward	 &	 Roger	 MSE	
approximation	 [6]	 and	 the	 other	 is	 based	 on	
conventional	MSE	obtained	by	FIM	to	see	the	effect	of	
MSEs	on	the	coverage	rates	of	the	same	method.	
	
	2.3.1.	Bootstrap	‐t	confidence	interval	method	
	
Bootstrap‐t	 interval	 [25]	 is	 derived	 from	 bootstrap	
estimate	 of	 the	 sampling	 distribution	 of	 the	 pivot	

1 1

1

ˆ

ˆ( )SE

 



.	  * * *
1 1 1

ˆ ˆ ˆ/ ( )q SE    denotes	the	bootstrap	

pivot	approximation	and	 *q  	denotes	the cutoff	for	

the	 bootstrap	 distribution	 of	 *q .	 The	 probability	
approximation	is	shown	below:	
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An	approximate	bootstrap‐t	confidence	interval	for 1 	
is	given	by	the	interval	below:		

	

* * * *
1 1 / 2 1 1 / 2 1

ˆ ˆ ˆ ˆ( ), ( )q SE q SE    
    .	

Because	double	bootstrap	is	quite	time	consuming	to	
obtain	 standard	 error	 of 1̂ 	 as	 a	 second	 layer	 of	
bootstrap,	 two	 different	 analytic	 approximations	 of	
standard	 error	 were	 used.	 One	 of	 them	 is	
conventional	 standard	 error	 obtained	 by	 FIM	
explained	in	Section	2.1	and	this	bootstrap	interval	is	
called	 as	 BS‐t	 in	 the	 simulation	 study.	 The	 other	 is	
adjusted	estimator	of	the	variance	covariance	matrix	
of	 the	 fixed	 effect	 estimators.	 This	 is	 known	 as	
Kenward‐	Roger	approximation	(BS‐t‐KR)	and	is	less	
biased	 than	 the	 conventional	 estimator	 for	 small	 or	
moderate	 number	 of	 experimental	 units	 [6].	 The	
confidence	 interval	 based	 on	 Kenward‐	 Roger	
approximation	of	standard	error	[6]	with	bootstrap‐t	
procedure	is	shown	below:	
	
3.	Simulation	Study	

	
Confidence	 interval	methods	 are	 compared	 in	 terms	
of	coverage	probability	of	 true	parameter	value.	The	
datasets	 generated	 from	 one‐way	 random	 effect	
ANOVA	model, 0ij i ijY u   

	
,	 are	 	 fitted	 to	 nested	

error	regression	model,	 0 1ij ij i ijY x u      .	

	
Scores	 for	 a	 fixed	 predictor	 ijx 	

are	 simulated	 from	

normal	 distribution,	 (0,100)N .	 It	 is	 important	 to	
indicate	 that	 the	 datasets	 were	 generated	
independently	 of	 the ijx ,	 and	 the	 value	 of	 1 	 in	 the	

generating	 model	 (one‐way	 random	 effect	 ANOVA	
model)	 was	 taken	 as	 zero.	 For	 each	 dataset,	 three	
analytic	 confidence	 intervals	 for	 1 	 at	 %95 	
confidence	 level	 were	 constructed	 based	 on	 Section	
2.1	 and	 2.2.	 Wald	 confidence	 interval,	 maximum	
likelihood	 estimator	 of	 fixed	 effect	 and	 its	 standard	
error	 based	 on	 FIM	 were	 obtained	 by	 performing	
lme4	 package	 [27]	 in	 R.	 All	 simulation	 procedures	
were	 implemented	 in	 R	 3.1.1.	 Kenward‐	 Roger	MSE	
approximation	 was	 obtained	 by	 using	 pbkrtest	
package	 [26]	 in	 R	 for	 constructing	 parametric	
bootstrap	 CI	 (BS‐t‐KR).	 There	 can	 be	 several	 factors	
that	 are	 expected	 to	 affect	 coverage	 properties	 of	
interval	 estimation	 methods	 for	 the	 fixed	 effect	
parameter 1 	 in	 nested	 error	 regression	model.	 The	
design	of	simulation	study	to	compare	the	five	types	
of	interval	methods	given	in	Section	2.1,	2.2,	2.3	were	
determined.	 Simulation	 outline	 is	 given	 in	 the	
following:		

The	 number	 of	 experimental	 unit	 or	 cluster	 was	
denoted	by	 n and	number	of	observation	within	each	
cluster	 or	 unit	 was	 denoted	 by	 m .	 In	 order	 to	
investigate	 the	 effects	 of	 these	 two	 factors,	 all	 the	
combinations	of	levels	of	 n ( 2, 4,6,8,10,12,16)n  and	

m ( 3,9,15)m  were	taken	into	consideration.	
	
Table	 1.	 Parameter	 values	 selection	 summary	 for	
simulation	design.	

2,  4,  6,  8,  10,  12,  16,  20     3,  9,  15n m   

 

0 ( 10,10)U   
(0,100)ijx N

 
(0,3)N  

0.25    0.5    0.75   

(0,1)u N  

 

(0,3)u N  

 

(0,9)u N  

 

	
The	 values	 in	 the	 parameter	 vector 2 2( , , )u    	 were	
chosen	 differently	 to	 examine	 their	 effects	 on	 the	
coverage	probability.	The	summaries	of	 these	values	
are	given	in	Table	1.	
	
3.1.			Simulation	algorithm	
	
The	 two‐sided	 %95 	 confidence	 interval	 methods	
described	in	Section	2.1,	2.2,	2.3	were	examined.	For	
each	method,	 combination	of	 ( , , )n m  ,	 the	 coverage	
probabilities	 were	 obtained	 by	 the	 following	 steps	
below:	
	
1.	 Simulate	 a	 dataset	 for	 each	 combination	 of	
factors	from	the	simulation	design.	
Construct	 Wald‐type,	 profile	 likelihood	 and	
parametric	 bootstrap	 confidence	 intervals	 given	 in	
Section	2.1,	2.2,	2.3.	
	
2.	 Using	 the	 one‐way	 random	 effect	 model,	
parametric	 bootstrap	 samples	 were	 generated.	
Using	 the	 generated	 samples,	 bootstrap‐t,	
bootstrap‐t	 based	 on	 Kenward‐Roger	 MSE	
approximation	confidence	intervals	given	in	Section	
2.4	 were	 constructed.	 The	 number	 of	 bootstrap	
samples	 generated	 in	 the	 simulation	 study	 was	
chosen	 as	 2000B  	 as	 Efron	 and	 Tibshirani	 [25]	
suggested.	
	
3.	 In	 step	 2	 and	 step	 3,	 check	 the	 confidence	
intervals	 obtained	 if	 	 the	 true	 value	 of 1 	 was	
included,	 assign	 an	 indicator	 a	 value	 of	 1;	 if	 	 not	
included,	and		then	assign	an	indicator	a	value	of	0.	
	
4.	Repeat	Step	1	to	4	for	a	total	of	 2000N  	 times	
and	compute	the	proportion	of	confidence	intervals	
which	contain	the	true	value	of	 1 0  .		

	
3.2.	Simulation	results	
	
Coverage	 rates	 of	 confidence	 interval	 methods	 are	
summarized	in	Figure	1	to	3	for	each	combination	of	
( , , )n m  .	
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For	the	combination	of	 0.25  	and	 3m  	 for	all	 n 	
values,	 it	 is	 observed	 that	 parametric	 bootstrap‐
based	 confidence	 intervals	 methods	 provide	 the	
highest	 coverage	 rate	 among	 five	 interval	 methods	
and	close	to	nominal	level	of	alpha.	BS‐t‐KR	provides	
the	 highest	 coverage	 rate	 for	 small	 and	 moderate	
n values	 as	 seen	 in	 Figures	 1(a),	 1(b),	 1(c).	 For	
combination	of	 0.25  and	 9m  	the	same	result	is	
valid	 for	 all	 n 	 values	 stated	 above.	 Especially	 for	
small	 n 	 values,	 BS‐t‐KR	 has	 the	 highest	 coverage	
rate.	 For	 combination	of	 0.25  	 and	 15m  	 it	 can	
be	 said	 that	 t‐naïve	method	 provides	 usually	 better	
coverage	 rates	 among	 the	 other	methods	 as	 seen	 in	
Figure	1(c).	
	

 
Figure	1(a).	Coverage	rate	of	confidence	interval	methods	
for	 the	 combination	 of	 3   &  0.25m   	 for	

different n values.	
 

  
Figure	1(b).	Coverage	rate	of	confidence	interval	methods	
for	 the	 combination	 of	 9   &  0.25m   	 for	

different n values.	
	

	
Figure	1(c).	Coverage	rate	of	confidence	interval	methods	
for	 the	 combination	 of	 15   &  0.25m   	 for	

different n values.	
	

	
Figure	2(a).	Coverage	rate	of	confidence	interval	methods	
for	 the	 combination	 of	 	 3  &  0.5m   	 for	

different n values.	
	

	
Figure	2(b).	Coverage	rate	of	confidence	interval	methods	
for	 the	 combination	 of	 	 9  &  0.5m   	 for	

different n values.	
	



H.	T.	K.	Akdur	vd.	/	A	Comparison	of	Confidence	Interval	Methods	of	Fixed	Effect	in	Nested	Error	Regression	Model 

173 

 

	
Figure	2(c).	Coverage	rate	of	confidence	interval	methods	
for	 the	 combination	 of	 	 15  &  0.5m   	 for	

different n values.	
	

	
Figure	3(a).	Coverage	rate	of	confidence	interval	methods	
for	 the	 combination	 of	 3   &  0.75m   	 for	

different n values.	
 

	
Figure	3(b).	Coverage	rate	of	confidence	interval	methods	
for	 the	 combination	 of	 9   &  0.75m   	 for	

different n values.	
	

 
Figure	3(c).	Coverage	rate	of	confidence	interval	methods	
for	 the	 combination	 of	 15   &  0.75m   	 for	

different n values.	
	
Parametric	 bootstrap‐based	 CI	methods	 provide	 the	
highest	 coverage	 rates	 for	 small	 sample	 size	
combinations	 2,4n  	and	 3m  with	 0.5  .	Under	
the	 combination	 6,8,10,12,16,20n  	 and	 3m  	with	

0.5  ,	it	can	be	reported	that	parametric	bootstrap‐
based	CI	and	PLCI	methods	provide	similar	results	to	
each	 other,	 but	 PLCI	 method	 has	 slightly	 better	
coverage	rates.		
	
For	 the	 combination	 9,15m  	 of	 0.5  ,	 PLCI	
method	 yields	 slightly	 the	 highest	 coverage	 rates	
among	all	other	methods	
	
For	 the	 combination	 of	 0.75  	 and	 3,9,15m  	
except	 for	 2n  	 and	 3m  	 combination,	 profile	
likelihood	 method	 provides	 the	 highest	 coverage	
rates	among	five	methods.	Bootstrap‐based	methods	
provide	 similar	 results	 to	 each	 other	 and	 nominal	
level	of	alpha.	In	addition,	they	provide	better	results	
than	 Wald‐type	 intervals	 for	 small	 sample	 sizes	 as	
shown	in	Figure	3.	
 
3. 	Discussion	and	Conclusion	
	
Even	with	small	sample	sizes	of	experimental	unit	or	
cluster,	 the	 parametric	 bootstrap	 interval	 method	
demonstrates	 a	 crucial	 alternative	 to	 standard	
methods	 of	 inference	 for	 fixed	 effects	 in	 the	 mixed	
model	 especially	 for	 small	 intra‐class	 correlation	
coefficient.	 The	 bootstrap‐t	 method	 based	 on	
Kenward‐Roger	 MSE	 approximation	 represents	 the	
best	coverage	rates	for	small	experimental	unit	sizes	
despite	 of	 its	 dependency	 of	 standard	 error	
estimates.			
	
When	 the	 intra‐class	 correlation	 coefficient	 is	
increased	 to	 0.5,0.75  ,	 profile	 likelihood	method	
generally	provides	 the	highest	 coverage	 rates	 for	 all	
combinations	 of	  n and	 m .	 For	 this	 reason,	 it	 is	 the	
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most	conservative	method	among	the	others	in	terms	
of	type	1	error.	The	highest	coverage	rates	of	profile	
likelihood	method	may	be	the	result	of	wide	length	of	
confidence	intervals.	Since	average	expected	length	of	
confidence	 interval	methods	were	not	 reported,	 it	 is	
not	 ideal	 to	 state	 that	 profile	 likelihood	 method	
among	 them	 as	 the	 best	 method	 without	 the	
knowledge	of	average	expected	lengths	for	moderate	
and	strong	intra‐correlation	coefficients.		
	
As	 a	 suggestion	 and	 future	 direction	 of	 this	 study,	
investigating	 and	 comparing	 nonparametric	 and	
parametric	bootstrap	interval	approaches	in	terms	of	
coverage	 probability	 rate	 and	 average	 expected	
length	 for	 different	 linear	 mixed	 models	 especially	
when	normality	assumption	of	random	effects	of	the	
model	cannot	be	verified	can	be	the	main	focus.	 It	 is	
known	 that	 parametric	 bootstrap	 is	 limited	 to	 the	
normality	assumption	of	random	effects	in	the	linear	
mixed	model.	 For	 this	 situation,	 finding	 a	 promising	
confidence	 interval	 method	 as	 an	 alternative	 to	
standard	 methods	 of	 inference	 will	 be	 the	 main	
attention	for	the	authors	of	the	paper.		
Furthermore,	 a	 two‐sided,	 5% 	 level	 test	 of	
hypothesis	 0 1: 0H   	 can	 be	 carried	 out	 by	

constructing	 a	 1  confidence	 interval	 for	 1 	 and	

0H is	 rejected	 if	 the	 interval	 does	 not	 include	 zero.	
Since	 the	 dataset	 of	 the	 simulation	 design	 is	
generated	 with	 1 0  ,	 false	 rejection	 rate	 of	 null	
hypothesis	 can	 be	 obtained	 by	 the	 proportion	 of	
confidence	 intervals	 that	 do	 not	 include	 zero,	 or	 by	
one	minus	the	observed	coverage	probability	rate	of	
the	confidence	intervals,	equivalently.	
	
Among	five	interval	methods,	Wald‐type	methods	are	
the	 fastest.	 The	 profile	 likelihood	 is	 a	 more	 time	
consuming	 method	 than	 Wald‐type	 methods.	
However,	 the	most	 computation	 time	 is	 required	 by	
bootstrap‐based	 methods	 which	 are	 the	 only	
disadvantage	 of	 this	method.	 However,	 they	 are	 the	
most	 accurate	 methods	 for	 especially	 small	 to	
moderate	sample	sizes	of	small	intra‐class	correlation	
coefficient.	 Even	 though	Wald‐type	methods	 are	 the	
fastest,	 for	 the	 small	 sample	 sizes	 they	 may	 not	
provide	accurate	results	of	coverage	rates.	Also,	it	can	
be	 stated	 that	 as	 the	 number	 of	 observation	 within	
unit	 and	 the	 number	 of	 experimental	 unit	 are	
increased,	 Wald‐type	 methods	 improve	 their	
coverage	rates	for	all	simulation	settings.	
	
	All	 combination	 factors	 have	 a	 quiet	 effect	 on	 the	
coverage	 probability	 of	 the	 methods	 and	 especially	
sample	 sizes	 have	 a	 great	 impact	 on	 coverage	
probability	 rate	 of	 the	 interval	 methods.	 Our	 study	
focused	on	confidence	interval	methods	of	fixed	effect	
in	 nested	 error	 regression	 model	 under	 small	
samples.	 	Similar	results	in	a	linear	mixed	model	are	
expected;	however,	this	is	too	early	to	generalize	the	
comment	 obtained	 through	 this	 study	 for	 all	
situations	 of	 linear	 mixed	 model.	 In	 order	 to	 make	

more	 generalized	 suggestions,	 the	 present	 study	
requires	more	 careful	 attention	 and	 simulation	 as	 a	
future	 research.	 The	 goal	 of	 the	 next	 study	 is	 to	
present	 a	 method	 that	 performs	 well	 in	 a	 broad	
variety	 of	 settings	 and	 is	 easier	 to	 implement.	 The	
authors	can	supply	a	document	containing	R	code	to	
show	 and	 obtain	 these	 confidence	 interval	methods	
reported	in	this	article.	
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