Embedded Projective Curves over a Finite Field and Homma Constant $D(q)$

Edoardo BALLICO

Abstract

We consider the existence of smooth projective curves embedded over a fixed finite field \mathbb{F}_{q} and such that their ratio $\# X\left(\mathbb{F}_{q}\right) / \operatorname{deg}(X)$ is large. We discuss the geometry of curves computing the lihara constants $A(q)$ and $A^{-}(q)$ and relate it to upper and lower bound of the Homma constants $D(q)$ and $D^{-}(q)$.

Keywords and $\mathbf{2 0 2 0}$ Mathematics Subject Classification
Keywords: Finite field - curve over a finite field- curves in projective spaces
MSC: 14H50, 14N05, 12E20
University of Trento, Dept. of Mathematics, via Sommarive 14, 38123 Trento (TN), Italy
凶edoardo.ballico@unitn.it
Corresponding author: Edoardo BALLICO
Article History: Received 8 February 2022; Accepted 6 May 2022

1. Introduction

Fix a prime power q. We recall the definition of the lihara's constant $A(q)$. For any $g \in \mathbb{N}$ let $N_{q}(g)$ be the maximum of all $\# X\left(\mathbb{F}_{q}\right)$, where X is a smooth curve of genus g. Set

$$
A(q):=\limsup _{g \rightarrow+\infty} \frac{N_{q}(g)}{g}
$$

It is known that $0<A(q) \leq \sqrt{q}-1$, that there is $c>0$ such that $A(q)>c \log q$ and that $A(q)=\sqrt{q}-1$ if q is a square ($[1-5]$). The books just quoted contain references for explicit examples of curves with high $\# X\left(\mathbb{F}_{q}\right) / g(X)$ and an effective way to get lower bounds for $A(q)$ is the use of towers of curves. We propose the study of embeddings in projective spaces over \mathbb{F}_{q} of curves X with a very large ratio $\# X\left(\mathbb{F}_{q}\right) / g(X)$ to relate $A(q)$ and $A^{-}(q)$ to the Homma constants $D(q)$ and $D^{-}(q)$ which we will describe in the second part of the introduction.

Let X be a smooth and geometrically connected curve defined over \mathbb{F}_{q}. The q-embedding degree embdeg $(X)_{q}$ of X is the minimal degree of an embedding f of X into some projective space with f defined over \mathbb{F}_{q}. The q-injective degree injdeg $(X)_{q}$ is the minimal degree of a morphism f of X into some projective space defined over \mathbb{F}_{q} such that $f_{\mid X\left(\mathbb{F}_{q}\right)}$ is injective, with the convention injdeg $(X)_{q}=0$ if $X\left(\mathbb{F}_{q}\right)=\emptyset$. The q-gonality gon $(X)_{q}$ is the minimal degree of a morphism $f: X \rightarrow \mathbb{P}^{1}$ defined over \mathbb{F}_{q}.
Theorem 1. Fix $g_{0} \in \mathbb{N}$ and real numbers $\varepsilon>0,0<c<2$. Then there is an integer $g \geq g_{0}$ and a smooth genus g curve X defined over \mathbb{F}_{q} such that $A(q)-\varepsilon \leq \# X\left(\mathbb{F}_{q}\right) / g \leq A(q)+\varepsilon$ such that at least one of the following conditions is satisfied:
i. emdeg $(X)_{q} \geq c g$ and $\# X\left(\mathbb{F}_{q}\right) / \mathrm{embdeg}(X)_{q} \leq(A(q)+\varepsilon) / c$;
ii. $\operatorname{gon}(X)_{q} \leq c g$ and $A(q)-\varepsilon \leq c(q+1)$.

Note that if $c<(A(q)-\varepsilon) /(q+1)$, then case ii. of Theorem 1 cannot occur and hence i. holds. However, in this case the upper bound in i. is not interesting ([6, Proposition 5.4], [7, part (1) of Theorem 1.5])). If $c \sim \frac{1}{\sqrt{q}}$ the upper bound in i. is not interesting for q a square, because $A(q)=\sqrt{q}-1$ in this case, but it may still be non-trivial for q not a square.

Theorem 2. Fix $g_{0} \in \mathbb{N}$ and real numbers $\varepsilon>0,0<c<2$. Then there is an integer $g \geq g_{0}$ and a smooth genus g curve defined over \mathbb{F}_{q} such that $A^{-}(q)-\varepsilon \leq \# X\left(\mathbb{F}_{q}\right) / g \leq A^{-}(q)+\varepsilon$ and at least one of the following conditions is satisfied:
i. $\operatorname{embdeg}(X)_{q} \geq c g$ and $\# X\left(\mathbb{F}_{q}\right) / \operatorname{embdeg}(X)_{q} \leq\left(A^{-}(q)+\varepsilon\right) / c$;
ii. $\operatorname{gon}(X)_{q} \leq c g$ and $A^{-}(q)-\varepsilon \leq c(q+1)$.

Remark 3. In Theorems 1 and 2 instead of i. we may take the similar statement with $\operatorname{injdeg}(X)_{q}$ instead of $\operatorname{embdeg}(X)_{q}$.
In [6, §5] M. Homma defined in the following real number $D(q)$ (called Homma constant in [7, 8]).
For any positive integer d let $M_{q}(d)$ denote the maximal cardinality of a set $X\left(\mathbb{F}_{q}\right) \subset \mathbb{P}^{n}\left(\mathbb{F}_{q}\right)$ for some n and some geometrically integral curve $X \subset \mathbb{P}^{n}$ defined over \mathbb{F}_{q} (we require that the inclusion $X \subset \mathbb{P}^{n}$ is defined over \mathbb{F}_{q}). Set

$$
D(q)=\limsup _{d \rightarrow+\infty} \frac{M_{q}(d)}{d}
$$

By analogy with the Iihara's constant $A(q)$ and its sibling $A^{-}(q)$ (see [3, p. 132]) it is reasonable to define in the following way the lower Homma constant $D^{-}(q)$. Set

$$
D^{-}(q)=\liminf _{d \rightarrow+\infty} \frac{M_{q}(d)}{d}
$$

We have $D(q) \geq A(q) / 2\left(\left[6\right.\right.$, Proposition 5.4]) and this lower bound was improved to $\frac{q-\sqrt{q}}{\sqrt{q}+1}$ in [7, Theorem 3.5 (3)]. In both lower bounds only smooth curves are used.

Remark 4. The proof of [6, Proposition 5.4] gives $D^{-}(q) \geq A^{-}(q) / 2$.
There is a tension between the known upper bounds of $D(q)$, say $D(q) \leq q$, and the known lower bounds, which are of order $A(q)$ (only a bit better if q is a square). Recall again that $A(q) \leq \sqrt{q}-1$. We think that the true upper bound of $D(q)$ (and $D^{-}(q)$) should be nearer to $A(q)$ (resp. $A^{-}(q)$) then to q). The problem is to get results on the q-injective degree of all curves with high $\# X\left(\mathbb{F}_{q}\right) / g(X)$ to get a better lower bound on $D(q)$ (or $D^{-}(q)$) in terms of $A(q)$ (or $A^{-}(q)$). The lower bound $D(q) \geq A(q) / 2([6$, Proposition 5.4]) just uses that the canonical map of any non-hyperelliptic curve is an embedding and the 2 at the denominator would be substituted with the real number τ if one can prove that injdeg $(X)_{q} \leq \tau g(X)+o(g(X))$ for enough curves (not all curves, but all curves with large ratio $\# X\left(\mathbb{F}_{q}\right) / g(X)$). The following result is much weaker.

Proposition 5. Let X be a smooth and geometrically connected curve defined over \mathbb{F}_{q}. Set $g:=g(X)$. Assume $g \geq 3$ and that X is not hyperelliptic. Set $z:=\operatorname{gon}(X)_{q}, x:=\# X\left(\mathbb{F}_{q}\right)$ and $\delta:=2 g+1+z$ and assume $x \geq z-2$. Fix $S \subset X\left(\mathbb{F}_{q}\right)$ such that $\# S=z-3$. Then there is an integer $d \leq \delta$ and a morphism $f: X \rightarrow \mathbb{P}^{n}, n:=g+2-z$, defined over \mathbb{F}_{q} such that $\operatorname{deg}(f) \operatorname{deg}(f(X))=d$ and $f_{\mid X\left(\mathbb{F}_{q}\right) \backslash S}$ is injective.

2. The proofs

Proof of Theorem 1: Take a sequence of smooth curves $\left\{X_{k}\right\}_{k \in \mathbb{N}}$ evincing $A(q)$, i.e. such that $\lim \# X_{k}\left(\mathbb{F}_{q}\right) / g\left(X_{k}\right)=A(q)$. Thus there is $k_{0} \in \mathbb{N}$ such that $g\left(X_{k}\right) \geq g_{0}$ and $A(q)-\varepsilon \leq \# X_{k}\left(\mathbb{F}_{q}\right) / g\left(X_{k}\right) \leq A(q)+\varepsilon$ for all $k \geq k_{0}$. Fix $k \geq k_{0}$ and set $X:=X_{k}$ and $g:=g\left(X_{k}\right)$. Since embdeg $(X)_{q} \geq \operatorname{gon}(X)_{q}$, either embdeg $(X)_{q} \geq c g$ or $\operatorname{gon}(X)_{q} \leq c g$.
a. Assume gon $(X)_{q} \leq c g$. Thus $\# X\left(\mathbb{F}_{q}\right) \leq c g(q+1)$. Since $\# X\left(\mathbb{F}_{q}\right) \geq g(A(q)-\varepsilon)$, we get $A(q)-\varepsilon \leq c(q+1)$.
b. Assume $\operatorname{embdeg}(X)_{q} \geq c g$. We get $\# X\left(\mathbb{F}_{q}\right) / \operatorname{embdeg}(X)_{q} \leq \# X\left(\mathbb{F}_{q}\right) / c g \leq(A(q)+\varepsilon) / c$.

Proof of Theorem 2: By the definition of $A^{-}(q)$ there is an integer $g \geq g_{0}$ and a smooth genus g curve defined over \mathbb{F}_{q} such that $A^{-}(q)-\varepsilon \leq \# X\left(\mathbb{F}_{q}\right) / g \leq A^{-}(q)-\varepsilon$. Mimic the proof of Theorem 1 .

Proof of Proposition 5: Since $g \geq 3, X$ is not hyperelliptic and the canonical line bundle of X is defined over \mathbb{F}_{q}, we see (over \mathbb{F}_{q}) as a degree $2 g-2$ curve $X \subset \mathbb{P}^{g-1}$. Since $\# S<z$, the geometric form of Riemann-Roch gives $\operatorname{dim}\langle S\rangle=z-1$. Hence the linear projection from the linear space $\langle S\rangle$ induces a morphism $\ell_{\langle S\rangle}: \mathbb{P}^{g-1} \rightarrow \mathbb{P}^{n}$ defined over \mathbb{F}_{q}. Set $Z:=\langle Z\rangle \cap X, w:=\operatorname{deg}(Z)$ and $d:=2 g-2-w$. Since X is smooth, the rational map $\ell_{\langle S\rangle \mid X \backslash Z} \rightarrow \mathbb{P}^{n}$ extends to a morphism $\ell: X \rightarrow \mathbb{P}^{n}$. Note that ℓ is defined over \mathbb{F}_{q} and that $\operatorname{deg}(f) \operatorname{deg}(f(X))=2 g-2-w$. Since $\# S \leq z-2$, no point of $X\left(\mathbb{F}_{q}\right) \backslash S$ is contained in $\langle S\rangle$. Since $\# S \leq z-3, \ell(u) \neq \ell(v)$ for any $u, v \in X\left(\mathbb{F}_{q}\right) \backslash S$ such that $u \neq v$.

3. Conclusions

We consider several remarks and proposition on the Homma constants $D(q)$ and $D(q)^{-}$over the finite field \mathbb{F}_{q}. The next step would be explicit sharper bounds on the ratio $\frac{M_{q}(d)}{d}$ in the intermediate range for d and q.

References

${ }^{\text {[1] }}$ Niederreiter, H., \& Xing, C. (2001). Rational points on curves over finite fields: theory and applications, Cambridge University Press, Cambridge.
${ }^{[2]}$ Niederreiter, H., \& Xing, C. (2009). Algebraic Geometry in Coding Theory and Cryptography, Princeton University Press, Princeton, NJ.
${ }^{[3]}$ Serre, J. P., Howe, E. W., Oesterlé, J., \& Ritzenthaler, C. (2020). Rational points on curves over finite fields, Documents Mathématiques, 18, Société Mathématique de France, Paris.
${ }^{[4]}$ Stichtenoth, H. (2009). Algebraic function fields and codes, Second Edition. Springer-Verlag.
${ }^{[5]}$ Tsfasman, M., Vlădut, S., \& Nogin, D. (2007). Algebraic Geometric Codes: Basic Notions, Mathematical Surveys and Monographs, 139.
${ }^{\text {[6] }}$ Homma, M. (2012). A bound on the number of points of a curve in a projective space over a finite field, Theory and Applications of Finite Fields, 597, 103-110.
${ }^{[7]}$ Beelen, P., Montanucci, M., \& Vicino, L. (2022). On the constant $D(q)$ defined by Homma. arXiv:2201.00602; accepted in Proceedings of the 18th Conference on Arithmetic, Geometry, Cryptography, and Coding Theory in the AMS book series Contemporary Mathematics (CONM).
${ }^{[8]}$ Beelen, P., \& Montanucci, M. (2020). A bound for the number of points of space curves over finite fields. arXiv:2008.05748.

