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Abstract
We consider the existence of smooth projective curves embedded over a fixed finite field Fq and such that their
ratio #X(Fq)/deg(X) is large. We discuss the geometry of curves computing the Iihara constants A(q) and A−(q)
and relate it to upper and lower bound of the Homma constants D(q) and D−(q) .
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1. Introduction
Fix a prime power q. We recall the definition of the Iihara’s constant A(q). For any g ∈ N let Nq(g) be the maximum of all
#X(Fq), where X is a smooth curve of genus g. Set

A(q) := limsup
g→+∞

Nq(g)
g

.

It is known that 0 < A(q)≤√
q−1, that there is c > 0 such that A(q)> c logq and that A(q) =

√
q−1 if q is a square ( [1–5]).

The books just quoted contain references for explicit examples of curves with high #X(Fq)/g(X) and an effective way to get
lower bounds for A(q) is the use of towers of curves. We propose the study of embeddings in projective spaces over Fq of
curves X with a very large ratio #X(Fq)/g(X) to relate A(q) and A−(q) to the Homma constants D(q) and D−(q) which we
will describe in the second part of the introduction.

Let X be a smooth and geometrically connected curve defined over Fq. The q-embedding degree embdeg(X)q of X is the
minimal degree of an embedding f of X into some projective space with f defined over Fq. The q-injective degree injdeg(X)q
is the minimal degree of a morphism f of X into some projective space defined over Fq such that f|X(Fq) is injective, with the
convention injdeg(X)q = 0 if X(Fq) = /0. The q-gonality gon(X)q is the minimal degree of a morphism f : X → P1 defined
over Fq.

Theorem 1. Fix g0 ∈ N and real numbers ε > 0, 0 < c < 2. Then there is an integer g ≥ g0 and a smooth genus g curve X
defined over Fq such that A(q)− ε ≤ #X(Fq)/g ≤ A(q)+ ε such that at least one of the following conditions is satisfied:

i. emdeg(X)q ≥ cg and #X(Fq)/embdeg(X)q ≤ (A(q)+ ε)/c;

ii. gon(X)q ≤ cg and A(q)− ε ≤ c(q+1).

Note that if c < (A(q)− ε)/(q+1), then case ii. of Theorem 1 cannot occur and hence i. holds. However, in this case the
upper bound in i. is not interesting ( [6, Proposition 5.4], [7, part (1) of Theorem 1.5])). If c ∼ 1√

q the upper bound in i. is not
interesting for q a square, because A(q) =

√
q−1 in this case, but it may still be non-trivial for q not a square.
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Theorem 2. Fix g0 ∈N and real numbers ε > 0, 0 < c < 2. Then there is an integer g ≥ g0 and a smooth genus g curve defined
over Fq such that A−(q)− ε ≤ #X(Fq)/g ≤ A−(q)+ ε and at least one of the following conditions is satisfied:

i. embdeg(X)q ≥ cg and #X(Fq)/embdeg(X)q ≤ (A−(q)+ ε)/c;

ii. gon(X)q ≤ cg and A−(q)− ε ≤ c(q+1).

Remark 3. In Theorems 1 and 2 instead of i. we may take the similar statement with injdeg(X)q instead of embdeg(X)q.

In [6, §5] M. Homma defined in the following real number D(q) (called Homma constant in [7, 8]).
For any positive integer d let Mq(d) denote the maximal cardinality of a set X(Fq) ⊂ Pn(Fq) for some n and some

geometrically integral curve X ⊂ Pn defined over Fq (we require that the inclusion X ⊂ Pn is defined over Fq). Set

D(q) = limsup
d→+∞

Mq(d)
d

.

By analogy with the Iihara’s constant A(q) and its sibling A−(q) (see [3, p. 132]) it is reasonable to define in the following way
the lower Homma constant D−(q). Set

D−(q) = liminf
d→+∞

Mq(d)
d

.

We have D(q)≥ A(q)/2 ( [6, Proposition 5.4]) and this lower bound was improved to q−√
q√

q+1 in [7, Theorem 3.5 (3)]. In
both lower bounds only smooth curves are used.

Remark 4. The proof of [6, Proposition 5.4] gives D−(q)≥ A−(q)/2.

There is a tension between the known upper bounds of D(q), say D(q)≤ q, and the known lower bounds, which are of
order A(q) (only a bit better if q is a square). Recall again that A(q)≤√

q−1. We think that the true upper bound of D(q)
(and D−(q)) should be nearer to A(q) (resp. A−(q)) then to q). The problem is to get results on the q-injective degree of all
curves with high #X(Fq)/g(X) to get a better lower bound on D(q) (or D−(q)) in terms of A(q) (or A−(q)). The lower bound
D(q) ≥ A(q)/2 ( [6, Proposition 5.4]) just uses that the canonical map of any non-hyperelliptic curve is an embedding and
the 2 at the denominator would be substituted with the real number τ if one can prove that injdeg(X)q ≤ τg(X)+o(g(X)) for
enough curves (not all curves, but all curves with large ratio #X(Fq)/g(X)). The following result is much weaker.

Proposition 5. Let X be a smooth and geometrically connected curve defined over Fq. Set g := g(X). Assume g ≥ 3 and
that X is not hyperelliptic. Set z := gon(X)q, x := #X(Fq) and δ := 2g+ 1+ z and assume x ≥ z− 2. Fix S ⊂ X(Fq) such
that #S = z− 3. Then there is an integer d ≤ δ and a morphism f : X → Pn, n := g+ 2− z, defined over Fq such that
deg( f )deg( f (X)) = d and f|X(Fq)\S is injective.

2. The proofs

Proof of Theorem 1: Take a sequence of smooth curves {Xk}k∈N evincing A(q), i.e. such that lim#Xk(Fq)/g(Xk) = A(q). Thus
there is k0 ∈ N such that g(Xk)≥ g0 and A(q)− ε ≤ #Xk(Fq)/g(Xk)≤ A(q)+ ε for all k ≥ k0. Fix k ≥ k0 and set X := Xk and
g := g(Xk). Since embdeg(X)q ≥ gon(X)q, either embdeg(X)q ≥ cg or gon(X)q ≤ cg.

a. Assume gon(X)q ≤ cg. Thus #X(Fq)≤ cg(q+1). Since #X(Fq)≥ g(A(q)− ε), we get A(q)− ε ≤ c(q+1).
b. Assume embdeg(X)q ≥ cg. We get #X(Fq)/embdeg(X)q ≤ #X(Fq)/cg ≤ (A(q)+ ε)/c. ■

Proof of Theorem 2: By the definition of A−(q) there is an integer g ≥ g0 and a smooth genus g curve defined over Fq such
that A−(q)− ε ≤ #X(Fq)/g ≤ A−(q)− ε . Mimic the proof of Theorem 1. ■

Proof of Proposition 5: Since g ≥ 3, X is not hyperelliptic and the canonical line bundle of X is defined over Fq, we see (over
Fq) as a degree 2g−2 curve X ⊂ Pg−1. Since #S < z, the geometric form of Riemann-Roch gives dim⟨S⟩= z−1. Hence the
linear projection from the linear space ⟨S⟩ induces a morphism ℓ⟨S⟩ : Pg−1 → Pn defined over Fq. Set Z := ⟨Z⟩∩X , w := deg(Z)
and d := 2g− 2−w. Since X is smooth, the rational map ℓ⟨S⟩|X\Z → Pn extends to a morphism ℓ : X → Pn. Note that ℓ is
defined over Fq and that deg( f )deg( f (X)) = 2g−2−w. Since #S ≤ z−2, no point of X(Fq)\S is contained in ⟨S⟩. Since
#S ≤ z−3, ℓ(u) ̸= ℓ(v) for any u,v ∈ X(Fq)\S such that u ̸= v. ■
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3. Conclusions
We consider several remarks and proposition on the Homma constants D(q) and D(q)− over the finite field Fq. The next step
would be explicit sharper bounds on the ratio Mq(d)

d in the intermediate range for d and q.
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