

Embedded Projective Curves over a Finite Field and Homma Constant D(q)

Edoardo BALLICO 🔎

Abstract

We consider the existence of smooth projective curves embedded over a fixed finite field \mathbb{F}_q and such that their ratio $\#X(\mathbb{F}_q)/\deg(X)$ is large. We discuss the geometry of curves computing the lihara constants A(q) and $A^-(q)$ and relate it to upper and lower bound of the Homma constants D(q) and $D^-(q)$.

Keywords and 2020 Mathematics Subject Classification Keywords: Finite field — curve over a finite field— curves in projective spaces MSC: 14H50, 14N05, 12E20

University of Trento, Dept. of Mathematics, via Sommarive 14, 38123 Trento (TN), Italy edoardo.ballico@unitn.it Corresponding author: Edoardo BALLICO Article History: Received 8 February 2022; Accepted 6 May 2022

1. Introduction

Fix a prime power q. We recall the definition of the Iihara's constant A(q). For any $g \in \mathbb{N}$ let $N_q(g)$ be the maximum of all $\#X(\mathbb{F}_q)$, where X is a smooth curve of genus g. Set

$$A(q) := \limsup_{g \to +\infty} \frac{N_q(g)}{g}.$$

It is known that $0 < A(q) \le \sqrt{q} - 1$, that there is c > 0 such that $A(q) > c \log q$ and that $A(q) = \sqrt{q} - 1$ if q is a square ([1–5]). The books just quoted contain references for explicit examples of curves with high $\#X(\mathbb{F}_q)/g(X)$ and an effective way to get lower bounds for A(q) is the use of towers of curves. We propose the study of embeddings in projective spaces over \mathbb{F}_q of curves X with a very large ratio $\#X(\mathbb{F}_q)/g(X)$ to relate A(q) and $A^-(q)$ to the Homma constants D(q) and $D^-(q)$ which we will describe in the second part of the introduction.

Let *X* be a smooth and geometrically connected curve defined over \mathbb{F}_q . The *q*-embedding degree embdeg $(X)_q$ of *X* is the minimal degree of an embedding *f* of *X* into some projective space with *f* defined over \mathbb{F}_q . The *q*-injective degree injdeg $(X)_q$ is the minimal degree of a morphism *f* of *X* into some projective space defined over \mathbb{F}_q such that $f|_{X(\mathbb{F}_q)}$ is injective, with the convention injdeg $(X)_q = 0$ if $X(\mathbb{F}_q) = \emptyset$. The *q*-gonality gon $(X)_q$ is the minimal degree of a morphism $f : X \to \mathbb{P}^1$ defined over \mathbb{F}_q .

Theorem 1. Fix $g_0 \in \mathbb{N}$ and real numbers $\varepsilon > 0$, 0 < c < 2. Then there is an integer $g \ge g_0$ and a smooth genus g curve X defined over \mathbb{F}_q such that $A(q) - \varepsilon \le \#X(\mathbb{F}_q)/g \le A(q) + \varepsilon$ such that at least one of the following conditions is satisfied:

i. emdeg
$$(X)_q \ge cg$$
 and $\#X(\mathbb{F}_q)$ /embdeg $(X)_q \le (A(q) + \varepsilon)/c$;

ii.
$$gon(X)_q \leq cg and A(q) - \varepsilon \leq c(q+1).$$

Note that if $c < (A(q) - \varepsilon)/(q+1)$, then case ii. of Theorem 1 cannot occur and hence i. holds. However, in this case the upper bound in i. is not interesting ([6, Proposition 5.4], [7, part (1) of Theorem 1.5])). If $c \sim \frac{1}{\sqrt{q}}$ the upper bound in i. is not interesting for q a square, because $A(q) = \sqrt{q} - 1$ in this case, but it may still be non-trivial for q not a square.

Theorem 2. Fix $g_0 \in \mathbb{N}$ and real numbers $\varepsilon > 0$, 0 < c < 2. Then there is an integer $g \ge g_0$ and a smooth genus g curve defined over \mathbb{F}_q such that $A^-(q) - \varepsilon \le \# X(\mathbb{F}_q)/g \le A^-(q) + \varepsilon$ and at least one of the following conditions is satisfied:

- *i.* embdeg $(X)_q \ge cg$ and $\#X(\mathbb{F}_q)$ /embdeg $(X)_q \le (A^-(q) + \varepsilon)/c$;
- *ii.* $gon(X)_q \leq cg$ and $A^-(q) \varepsilon \leq c(q+1)$.

Remark 3. In Theorems 1 and 2 instead of i. we may take the similar statement with $injdeg(X)_q$ instead of $embdeg(X)_q$.

In [6, §5] M. Homma defined in the following real number D(q) (called Homma constant in [7,8]).

For any positive integer d let $M_q(d)$ denote the maximal cardinality of a set $X(\mathbb{F}_q) \subset \mathbb{P}^n(\mathbb{F}_q)$ for some n and some geometrically integral curve $X \subset \mathbb{P}^n$ defined over \mathbb{F}_q (we require that the inclusion $X \subset \mathbb{P}^n$ is defined over \mathbb{F}_q). Set

$$D(q) = \limsup_{d \to +\infty} \frac{M_q(d)}{d}.$$

By analogy with the Iihara's constant A(q) and its sibling $A^{-}(q)$ (see [3, p. 132]) it is reasonable to define in the following way the lower Homma constant $D^{-}(q)$. Set

$$D^-(q) = \liminf_{d \to +\infty} \frac{M_q(d)}{d}$$

We have $D(q) \ge A(q)/2$ ([6, Proposition 5.4]) and this lower bound was improved to $\frac{q-\sqrt{q}}{\sqrt{q+1}}$ in [7, Theorem 3.5 (3)]. In both lower bounds only smooth curves are used.

Remark 4. The proof of [6, Proposition 5.4] gives $D^-(q) \ge A^-(q)/2$.

There is a tension between the known upper bounds of D(q), say $D(q) \le q$, and the known lower bounds, which are of order A(q) (only a bit better if q is a square). Recall again that $A(q) \le \sqrt{q} - 1$. We think that the true upper bound of D(q) (and $D^{-}(q)$) should be nearer to A(q) (resp. $A^{-}(q)$) then to q). The problem is to get results on the q-injective degree of all curves with high $\#X(\mathbb{F}_q)/g(X)$ to get a better lower bound on D(q) (or $D^{-}(q)$) in terms of A(q) (or $A^{-}(q)$). The lower bound $D(q) \ge A(q)/2$ ([6, Proposition 5.4]) just uses that the canonical map of any non-hyperelliptic curve is an embedding and the 2 at the denominator would be substituted with the real number τ if one can prove that injdeg $(X)_q \le \tau g(X) + o(g(X))$ for enough curves (not all curves, but all curves with large ratio $\#X(\mathbb{F}_q)/g(X)$). The following result is much weaker.

Proposition 5. Let X be a smooth and geometrically connected curve defined over \mathbb{F}_q . Set g := g(X). Assume $g \ge 3$ and that X is not hyperelliptic. Set $z := gon(X)_q$, $x := \#X(\mathbb{F}_q)$ and $\delta := 2g + 1 + z$ and assume $x \ge z - 2$. Fix $S \subset X(\mathbb{F}_q)$ such that #S = z - 3. Then there is an integer $d \le \delta$ and a morphism $f : X \to \mathbb{P}^n$, n := g + 2 - z, defined over \mathbb{F}_q such that $\deg(f) \deg(f(X)) = d$ and $f_{|X(\mathbb{F}_q)|\setminus S}$ is injective.

2. The proofs

Proof of Theorem 1: Take a sequence of smooth curves $\{X_k\}_{k\in\mathbb{N}}$ evincing A(q), i.e. such that $\lim \#X_k(\mathbb{F}_q)/g(X_k) = A(q)$. Thus there is $k_0 \in \mathbb{N}$ such that $g(X_k) \ge g_0$ and $A(q) - \varepsilon \le \#X_k(\mathbb{F}_q)/g(X_k) \le A(q) + \varepsilon$ for all $k \ge k_0$. Fix $k \ge k_0$ and set $X := X_k$ and $g := g(X_k)$. Since embdeg $(X)_q \ge \operatorname{gon}(X)_q$, either embdeg $(X)_q \ge cg$ or $\operatorname{gon}(X)_q \le cg$.

a. Assume $gon(X)_q \le cg$. Thus $\#X(\mathbb{F}_q) \le cg(q+1)$. Since $\#X(\mathbb{F}_q) \ge g(A(q) - \varepsilon)$, we get $A(q) - \varepsilon \le c(q+1)$. b. Assume $embdeg(X)_q \ge cg$. We get $\#X(\mathbb{F}_q)/embdeg(X)_q \le \#X(\mathbb{F}_q)/cg \le (A(q) + \varepsilon)/c$.

Proof of Theorem 2: By the definition of $A^-(q)$ there is an integer $g \ge g_0$ and a smooth genus g curve defined over \mathbb{F}_q such that $A^-(q) - \varepsilon \le \# X(\mathbb{F}_q)/g \le A^-(q) - \varepsilon$. Mimic the proof of Theorem 1.

Proof of Proposition 5: Since $g \ge 3$, X is not hyperelliptic and the canonical line bundle of X is defined over \mathbb{F}_q , we see (over \mathbb{F}_q) as a degree 2g - 2 curve $X \subset \mathbb{P}^{g-1}$. Since #S < z, the geometric form of Riemann-Roch gives $\dim \langle S \rangle = z - 1$. Hence the linear projection from the linear space $\langle S \rangle$ induces a morphism $\ell_{\langle S \rangle} : \mathbb{P}^{g-1} \to \mathbb{P}^n$ defined over \mathbb{F}_q . Set $Z := \langle Z \rangle \cap X$, $w := \deg(Z)$ and d := 2g - 2 - w. Since X is smooth, the rational map $\ell_{\langle S \rangle | X \setminus Z} \to \mathbb{P}^n$ extends to a morphism $\ell : X \to \mathbb{P}^n$. Note that ℓ is defined over \mathbb{F}_q and that $\deg(f) \deg(f(X)) = 2g - 2 - w$. Since $\#S \le z - 2$, no point of $X(\mathbb{F}_q) \setminus S$ is contained in $\langle S \rangle$. Since $\#S \le z - 3$, $\ell(u) \neq \ell(v)$ for any $u, v \in X(\mathbb{F}_q) \setminus S$ such that $u \neq v$.

3. Conclusions

We consider several remarks and proposition on the Homma constants D(q) and $D(q)^-$ over the finite field \mathbb{F}_q . The next step would be explicit sharper bounds on the ratio $\frac{M_q(d)}{d}$ in the intermediate range for *d* and *q*.

References

- [1] Niederreiter, H., & Xing, C. (2001). Rational points on curves over finite fields: theory and applications, Cambridge University Press, Cambridge.
- ^[2] Niederreiter, H., & Xing, C. (2009). Algebraic Geometry in Coding Theory and Cryptography, Princeton University Press, Princeton, NJ.
- ^[3] Serre, J. P., Howe, E. W., Oesterlé, J., & Ritzenthaler, C. (2020). Rational points on curves over finite fields, Documents Mathématiques, 18, Société Mathématique de France, Paris.
- ^[4] Stichtenoth, H. (2009). Algebraic function fields and codes, Second Edition. Springer-Verlag.
- ^[5] Tsfasman, M., Vlădut, S., & Nogin, D. (2007). Algebraic Geometric Codes: Basic Notions, Mathematical Surveys and Monographs, 139.
- ^[6] Homma, M. (2012). A bound on the number of points of a curve in a projective space over a finite field, Theory and Applications of Finite Fields, 597, 103-110.
- [7] Beelen, P., Montanucci, M., & Vicino, L. (2022). On the constant D(q) defined by Homma. arXiv:2201.00602; accepted in Proceedings of the 18th Conference on Arithmetic, Geometry, Cryptography, and Coding Theory in the AMS book series Contemporary Mathematics (CONM).
- [8] Beelen, P., & Montanucci, M. (2020). A bound for the number of points of space curves over finite fields. arXiv:2008.05748.