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Abstract

In this study, we have given necessary and sufficient conditions to be of spacelike,
timelike and null curve of the two different hyperbolic cylindrical Tzitzeica curve
in Minkowski 3-Space. Here, hyperbolic cylindrical curves satisfying Tzitzeica
condition are obtained via the solution of the harmonic equation
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Ozet

Bu ¢alismada, Minkowski 3-uzayinda iki farkli hiperbolik silindirik Tzitzeica
egrisinin, spacelike, timelike ve null olmast icin gerek ve yeter sartlart verdik.
Burada, Tzitzeica sartimi saglayan  hiperbolik silindirik egriler, harmonik
denklemlerin ¢oziimii yoluyla elde edilir.

Anahtar Kelimeler: Tzitzeica Egrisi, Hiperbolik Silindirik Egri,Minkowski 3-Uzay1.
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1. Introduction

The Minkowski 3-space E; is the Euclidean 3-space E’ provided with the Lorentzian
inner product

<an’>L =XV T XY, T XY,

where x=(x.,x,,x,) y=(»,¥,,¥;). An arbitrary vector x=(x,,x,,x,) in E;
can have one of three Lorentzian causal characters: it is spacelike if <x, x>L >0 or
x=0, timelike if (x,x) <Oand null (lightlike) if (x,x) =0and x=#0.

Similarly, an arbitrary curve a =a(s) in E; is locally spacelike, timelike or
null (lightlike), if all of its velocity vectors (tangents) a'(s) =T(s) are spacelike,
timelike or null, respectively, for each s €/ < R. Lorentzian vectoral product
of x and y is defined

by
XN Y= (x2y3 = X3V X3V X1 V35 X0 _x1y2)'

Recall that the pseudo-norm of an arbitrary vector x € E; is given by

||x||L = Kx, x>L‘ [2]. If the curve « is non-unit speed, then
ey OO, detle@,a" @0 0)
v ), o @) @@
(1. 1)
If the curve « is unit speed, then
k(s) =|a"()|,, (s)=[B'(s)], -
(1.2)

[4].

In this paper, we have interested in hyperbolic cylindrical Tzitzeica curves in
Minkowski 3-Space, more precisely we ask in what conditions a cylindrical curve is
(1)
d* (1)
from origin to the osculating plane of curve. The Tzitzeica condition yields a third-
order ODE which in our framework admits a direct integration. Therefore the final
answer of main problem is given via a second order ODE which in the Hyperbolic
case is exactly the equation of a forced harmonic oscillator. In this case, the
solution depends of four real constants: one defining the Tzitzeica condition and other

three obtained by integration.

a Tzitzeica one, namely the function ¢ — constant, where d(¢) is the distance

2. HYPERBOLIC CYLINDRICAL TZITZEICA CURVES

Proposition 2. 1. Let a(¢f)be a hyperbolic cylindrical curve in Minkowski 3-space.
Then the curve «a(¢) is Tzitzeica curve if and only if
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£(t) = f(0)cosht + f'(0)sinht + jG(u)sinh(u —t)du

7(t) = f(0)cosht + f'(O)sinht+jsm};gl—:LtW
u-rc

0

where £(0), '(0),K # 0 and ¢ are real constants.

Proof. Letin E; acurve C given in vectorial form C:a = a(¢) . This curve is called
hyperbolic cylindrical if has the expression a(t)z(cosht,sinh t, f (t)) for some

f € C”.Thetorsion function is

_ det(a'(t), " (), " (1)) aall

le' @~y @@ S

(1)

Then the distance from origin to the osculating plane is
-7

Let us suppose that the curve is Tzitzeica with the constant K # 0, because the
curve is not contained in a plane

d(t) =

T e e
d*(t)  fP-f"+1 |f”_f|2
IALOEIAON

(@ - o)

Integration gives
1

SO =S ==

(2.2)
where c is a real constant. Then the Laplace transform gives

|s2Y(5) - 57 (0) = £ (0) |+ Y(5) = L{G(0)} = g(s)

where Y(s) andG(s) denote the Laplace transform of f(¢) and g(¢)

respectively, /(0) and f'(0) are arbitrary constants. Hence

s 1 |
+ '(0 +
s?—1 A )s2—1 57 —1
s 1 1
+ '(0 +
s? =1 7O -1 s*-1

Y(s)=f(0)

L{G@®))

= f(0) g(s)

s 2
and therefore

f()= f(0)cosht+ f'(0)sinhz + G(¢) *sinh¢,
where the function denoted by G(¢) *sinh¢ and defined as
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G(t)*sinht = jG(u) sinh(u — ¢)du

is called the convolution of the functions sinh¢ and G(¢) or

£(t) = f(O)cosht + f'(0)sinh + jG(u) sinh(u — ¢)du

Theorem 2. 2. If hyperbolic cylindirical Tzitzeica curve is taken as
a(t) = (cosht,sinh¢, f(¢)) in Minkowski 3- space, than the curve is spacelike

Proof. The tangent of  the curve L(¢) = (sinh¢,cosht, f(¢))is
T(t)=(cosht,sinht, f'(¢)). Since the tangent vector field of the curve «(t) is
(T,T), =1+(f"(®))’ > 0. For the all value of f"(t), the curve a(r) is always spacelike

curve. Another hyperbolic cylindirical Tzitzeica curve be A(¢) = (sinh t,cosht, f (t)).
Straightforward computation gives

_ S
T(t)_ f12_f112+1’

d(t) :ﬁ.

‘fnZ _f|2+1‘
For a hyperbolic Tzitzeica curve

_ ) _ fO-S'O
@ (f'o-roy

And integration gives

1
Kt+c

A O RNAGE S
Using the same Formula (2. 3) and the identity

£ (t) = f(0)cosht+ f'(0) sinht+jw
u-r+c

0

it results as required.

Theorem 2. 3. A hyperbolic cylindirical Tzitzeica curve is given as
P(t) =(sinht,cosht, f(¢)) in Minkowski 3-space, than the curve is spacelike, timelike

or null curve if and only if " (0) <1, "> (0)>1 and f'*(0) =1, respectively.

Proof. Since the curve ﬂ(t)=(sinht,cosht,f(t)), the tangent of the curve is

T(t)= (cosht,sinh t, f'(t)). The taylor series of the function f in the neighbourhood
of zero is

J@=70)+ 1 (0)+

1O, SO,
2! 3!
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We take into consideration satisfying

f0)=f"0)=0, 0=/"0)=/"(0)=...
(2.3)

in the neighbourhood of zero. Then we have

f(0)cosht + f'(0)sinh¢ +

J‘sinh(u t)du — £(0)+ £ (O,

0

From the last equation, we get

f(0)cosht = f(0)

f'(0)sinh¢ = f'(O)t

j 1nh(u 0.
Ku+c

Then, for t >0

cosht =1
sinht =¢

j smh(u 0.
HO Ku+c

Thus, satisfying the equation (2. 3) as t > 0 , sinhz =¢ and the function f is
written such as f(z) = f'(0)sinh ¢ If we take the derivative of the last equation for

t and square, we have /" (¢t)= f" (0)cosh’t.
i. The tangent vector field of the spacelike £(¢) = (sinh t,cosh t,f(t)) 1s
(T(0),T(t),)=-1+f">0.
Then, we have
[P o>
/" (0)cosh® ¢ > 1.
For 1 — 0, since|cosh?| > 1, we have [ (0)>1.
ii. The curve f(¢) is timelike curve iff
(T(0),T(@t),)=-1+ "7 <0.
Then, we have " (0)>1.

iii. The curve f(¢) is null curve iff

(T(0),T(0),)=-1+ =0

Then, we have ' (0)=1.
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