
Commun.Fac.Sci.Univ.Ank.Ser. A1 Math. Stat.
Volume 72, Number 1, Pages 43–58 (2023)
DOI:10.31801/cfsuasmas.1074557
ISSN 1303-5991 E-ISSN 2618-6470

http://communications.science.ankara.edu.tr

Research Article; Received: February 16, 2022; Accepted: July 3, 2022

NEW INSIGHT INTO QUATERNIONS AND THEIR MATRICES

Gülsüm Yeliz ŞENTÜRK1, Nurten GÜRSES2 and Salim YÜCE3
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Abstract. This paper aims to bring together quaternions and generalized
complex numbers. Generalized quaternions with generalized complex number

components are expressed and their algebraic structures are examined. Several

matrix representations and computational results are introduced. An alterna-
tive approach for a generalized quaternion matrix with elliptic number entries

has been developed as a crucial part.

1. Introduction

Hamilton introduced the Hamiltonian quaternions for representing vectors in
the space, [1, 2]. The real quaternion is written as q = a0 + a1i + a2j + a3k,
where a0, a1, a2, a3 ∈ R are components and i, j,k /∈ R are versors, [3]. The set of
real quaternions, as an extension of complex numbers, is an associative but non-
commutative Clifford algebra used in many fields of applied mathematics. The
associative quaternions will be divided into two classes: in the first class, there
are the non-commutative quaternions (Hamiltonian, hyperbolic, split, generalized
quaternions [4–11] etc.), and in the second class, there are the commutative quater-
nions (generalized Segré quaternions [12,13], dual quaternions, [14–18] etc.).

The algebra of generalized quaternions as a non-commutative system, denoted
by Qα,β , includes a variety of well-known four-dimensional algebras as special cases.
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The conditions of the versors for them are given by:

i2 = −α, j2 = −β, k2 = −αβ,
ij = −ji = k, jk = −kj = βi, ki = −ik = αj,

(1)

where α, β ∈ R. For α = β = 1 Hamiltonian quaternions, α = 1, β = −1 split
quaternions, α = 1, β = 0 semi-quaternions, α = −1, β = 0 split semi-quaternions,
and α = β = 0 quasi-quaternions are obtained.

Additionally, the general bidimensional hypercomplex systems (namely general-
ized complex numbers (GCN )) over the field of real numbers R are given by the
ring ( [19–24]):

R[X]

⟨h(X)⟩
∼=

{
z = x1 + x2I : I2 = Iq+ p, p, q, x1, x2 ∈ R, I /∈ R

}
,

where h(X) = X2 − qX − p is monic quadratic. By denoting this set with Cq,p, it
is well known that the sign of ∆ = q2 +4p determines the properties of the general
bidimensional systems. These systems are ring isomorphic with one of the following
three types:

• for ∆ > 0 the hyperbolic system; the canonical system is the system of
hyperbolic (double, split complex, perplex) numbers H ∼= C0,1 with p = 1,
q = 0, [25–28],

• for ∆ < 0 the elliptic system; the canonical system is the system of complex
(ordinary) numbers C ∼= C0,−1 with p = −1, q = 0, [28,29],

• for ∆ = 0 the parabolic system; the canonical system is the system of dual
numbers D ∼= C0,0 with p = 0, q = 0, [28,30,31].

Regarding the value Dz = zz = (x1 + x2I)(x1 − x2I) = x1
2 − px2

2 + qx1x2,
which is called the characteristic determinant, z ∈ Cq,p can be classified into three
types, [20]. Hence z ∈ Cq,p is called timelike, spacelike or null where Dz < 0, Dz > 0
and Dz = 0, respectively. Then all of the elements of the set C0,−1 are spacelike.
For q = 0, I2 = p ∈ R, the generalized complex number system is denoted by Cp

and called p-complex plane, [23].
In this paper, we aim to design generalized quaternions by taking the compo-

nents as elements of Cq,p. Moreover, the algebraic structures and properties of
these quaternions are investigated, and several types of matrix representations are
introduced. Also, an alternative approach for the generalized quaternion matrix
with elliptic number entries is considered as a further result.

2. Generalized Quaternions with Gcn Components

In this section, we present mathematical formulations of improved quaternions:
generalized quaternions with GCN and examine special matrix correspondences.

Definition 1. For α, β ∈ R, the set of generalized quaternions with GCN compo-

nents are denoted by Q̃α,β and the element of this set is defined as in the form:

q̃ = a0 + a1i+ a2j+ a3k,
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where a0, a1, a2, a3 ∈ Cq,p and i, j,k /∈ R are generalized quaternion versors that
satisfy the properties in equations (1).

Axiomatically, the generalized complex unit I commutes with the three quater-
nion versors i, j and k, that is iI = Ii, jI = Ij and kI = Ik. It is obvious that for
q = 0, p = −1, α = 1, the usual complex operator is distinct from quaternion versor
i. Moreover i distinct from the usual hyperbolic unit for q = 0, p = 1, α = −1 and
distinct from the usual dual unit for q = 0, p = 0, α = 0. This conditions can also
be extended for the other versors.

Throughout this section, q̃ = a0+a1i+a2j+a3k and p̃ = b0+b1i+b2j+b3k ∈ Q̃α,β

are considered. Due to the generalized quaternions with GCN components are an
extension of generalized quaternions, many properties of them are familiar. For any

q̃ ∈ Q̃α,β , Sq̃ = a0 is the scalar part and Vq̃ = a1i + a2j + a3k is the vector part.
Equality of two improved quaternions is as follows: p̃ = q̃ ⇔ Sp̃ = Sq̃, Vp̃ = Vq̃.
Addition (and hence subtraction) of q̃ to another quaternion p̃ acts in a componen-
twise way:

q̃ + p̃ = (a0 + b0) + (a1 + b1) i+ (a2 + b2) j+ (a3 + b3)k
= Sp̃ + Sq̃ + Vp̃ + Vq̃.

(2)

The conjugate of q̃ is the following quaternion:

q̃ = a0 − a1i− a2j− a3k = Sq̃ − Vq̃. (3)

The scalar multiplication of q̃ with a scalar c ∈ Cq,p gives another improved quater-
nion as:

cq̃ = ca0 + ca1i+ ca2j+ ca3k = cSq̃ + cVq̃. (4)

Multiplication of the two quaternions is carried out as follows:

q̃ p̃ = (a0b0 − αa1b1 − βa2b2 − αβa3b3)
+ (a0b1 + a1b0 + βa2b3 − βa3b2) i
+(a0b2 − αa1b3 + a2b0 + αa3b1) j
+(a0b3 + a1b2 − a2b1 + a3b0)k.

(5)

Proposition 1. Q̃α,β is a 4-dimensional module over Cq,p with base {1, i, j,k} and
is an 8-dimensional vector space over R with base {1, I, i, Ii, j, Ij,k, Ik}.

Definition 2. For any q̃, p̃ ∈ Q̃α,β, the scalar and vector products on Q̃α,β are,
respectively, defined by:

⟨q̃, p̃⟩g = Sq̃Sp̃ + ⟨Vq̃, Vp̃⟩g= a0b0 + αa1b1 + βa2b2 + αβa3b3 = Sq̃ p̃,

q̃×gp̃ = Sq̃Vp̃ + Sp̃Vq̃ − Vq̃×gVp̃ = Vq̃ p̃,

where ⟨, ⟩g and ×g represent generalized scalar product and generalized vector prod-

ucts1 for α, β ∈ R+, respectively.

1For a more general description of the generalized inner and cross product, see [7].
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Definition 3. The norm of q̃ is defined as:

Nq̃ = q̃ q̃ = q̃ q̃ = a20 + αa21 + βa22 + αβa23 ∈ Cq,p. (6)

Definition 4. The inverse of q̃ is calculated by:

(q̃)−1 =
q̃

Nq̃

for non-null Nq̃ that is DNq̃
̸= 0.

Proposition 2. For any q̃, p̃ ∈ Q̃α,β and c1, c2 ∈ Cq,p, the conjugate and norm
hold the following properties:

i. q̃ = q̃,
ii. c1p̃+ c2q̃ = c1p̃+ c2q̃,

iii. q̃ p̃ = p̃ q̃,
iv. Nc1q̃ = c21Nq̃,
v. Nq̃ p̃ = Nq̃ Np̃.

Proof. Taking into account equations (2), (3) and (4), items i and ii are obvious.

iii. Considering the conjugate of equation (5), we have:

q̃p̃ = (a0b0 − αa1b1 − βa2b2 − αβa3b3)
− (a0b1 + a1b0 + βa2b3 − βa3b2) i
− (a0b2 − αa1b3 + a2b0 + αa3b1) j
− (a0b3 + a1b2 − a2b1 + a3b0)k.

Using equations (1), it is easy to check that

p̃ q̃ = (b0 − b1i− b2j− b3k)(a0 − a1i− a2j− a3k) = q̃ p̃.

iv. Having item ii and equation (6), we get: Nc1q̃ = (c1q̃) (c1q̃) = c21Nq̃.
v. Using item iii and equation (6), we obtain:

Nq̃ p̃ = (q̃ p̃) (q̃ p̃) = q̃ p̃p̃ q̃ = Nq̃Np̃.

□

Remark 1. As an another perspective to q̃ ∈ Q̃α,β, the following can be calculated:

q̃ = a0 + a1i+ a2j+ a3k
= (x01 + x02I) + (x11 + x12I) i+(x21 + x22I) j+ (x31 + x32I)k
= q0 + q1I,

(7)

where ai = xi1 + xi2I ∈ Cq,p, qj−1 = x0j + x1ji + x2jj + x3jk ∈ Qα,β for 0 ≤
i ≤ 3, 1 ≤ j ≤ 2. For q̃ = q0 + q1I and p̃ = p0 + p1I ∈ Q̃α,β, if p̃ = q̃, then
p0 = q0, p1 = q1. The addition is p̃+ q̃ = (p0 + q0)+(p1 + q1) I. The conjugate and
anti conjugate are q̃†1 = q0+qq1−q1I and q̃†2 = q1−q0I, respectively. Additionally,
cq̃ = cq0 + cq1I, c ∈ R and

q̃ p̃ = (q0p0 + pq1p1) + (q0p1 + q1p0 + qq1p1) I.
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It is worthy to note that Q̃α,β is a 2-dimensional module over Qα,β (skew-field)
with base {1, I}. The moduli is

N
†1
q̃ = q̃ q̃†1 (8)

and the inverse is (q̃)
−1

= q̃†1

N
†1
q̃

for non-null N
†1
q̃ . The analogue of the scalar product

on Q̃α,β can also defined by as follows:

⟨q̃, p̃⟩g = Sq0p0
+ pSq1p1

+
(
Sq0p1

+ Sq1p0
+ qSq1p1

)
I.

Proposition 3. The followings hold for q̃, p̃ ∈ Q̃α,β and c1, c2 ∈ R:

i.
(
q̃†1

)†1 = q̃,

ii.
(
q̃†2

)†2 = −q̃,

iii. (c1q̃ ± c2p̃)
†1 = c1q̃

†1 ± c2p̃
†1 ,

iv. (c1q̃ ± c2p̃)
†2 = c1q̃

†2 ± c2p̃
†2 ,

v. q̃ + q̃†1 = 2q0 + qq1,

vi. (q̃ p̃)
†1 ̸= p̃†1 q̃†1 ,

vii. N
†1
c1q̃

= c1
2N

†1
q̃ ,

viii. N
†1
q̃ p̃ ̸= N

†1
q̃ N

†1
p̃ .

Proof. vi. Let us consider q̃ = (1+i)I and p̃ = j+I. As it is seen the followings:

q̃ p̃ = p(1 + i) + (q+ qi+ j+ k)I,

(q̃ p̃)
†1 = p(1 + i) + q(q+ qi+ j+ k)− (q+ qi+ j+ k)I,

and

p̃†1 q̃†1 = (j+ q− I)(q(1 + i)− (1 + i)I)
= (p+ q2) + (p+ q2)i+ qj− qk− (q+ qi+ j− k)I.

It follows that (q̃ p̃)
†1 ̸= p̃†1 q̃†1 .

viii. From equation (8), we have the following equations:

N
†1
q̃ p̃ = (q̃ p̃)(q̃ p̃)

†1

and

N
†1
q̃ N

†1
p̃ =

(
q̃ q̃†1

) (
p̃ p̃†1

)
.

On account of the generalized quaternions are non-commutative and item

vi, we find N
†1
q̃ p̃ ̸= N

†1
q̃ N

†1
p̃ . One can also see this inequality considering

q̃ = iI and p̃ = j as N
†1
q̃ p̃ = pαβ = −N

†1
q̃ N

†1
p̃ .

The proof of the other items is a simple calculation considering Remark 1. □

2.1. Matrix Correspondences. In this subsection, we formulate 2×2, 4×4 and
8× 8 matrix correspondences which provide an alternative formulation of multipli-
cation.

Theorem 1. Every generalized quaternion with GCN components can be repre-

sented by a 2× 2 quaternionic matrix. Q̃α,β is the subset of M2(Q̃α,β).
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Proof. For q̃ = a0 + a1i+ a2j+ a3k ∈ Q̃α,β , L : Q̃α,β → R, q̃ 7→ Aq̃ is linear map,
where

R: =

{
Aq̃ ∈ M2(Q̃α,β) :Aq̃ =

[
a0 + a3k a1i+ a2j
a1i+ a2j a0 + a3k

]}
(9)

is a subset of M2(Q̃α,β). So there exists a correspondence between Q̃α,β and R via
the map L. Hence, 2× 2 quaternionic matrix representation of q̃ is Aq̃.

□

Corollary 1. L can be determined as the following representation:

L(a0 + a1i+ a2j+ a3k) = a0I2 + a1I+ a2J+ a3K, (10)

where

I =

[
0 i
i 0

]
, J =

[
0 j
j 0

]
,K =

[
k 0
0 k

]
.

Thus
I2 = −αI2, J2 = −βI2, K2 = −αβI2,

IJ = −JI = K, JK = −KJ = −βI, KI = −IK = αJ.

Theorem 2. For q̃, p̃ ∈ Q̃α,β and λ ∈ R, then the following identities hold:

i. q̃ = p̃ ⇔ Aq̃ = Ap̃,
ii. Aq̃+p̃ = Aq̃ +Ap̃,

iii. Aλq̃ = λ(Aq̃),
iv. Aq̃p̃ = Aq̃Ap̃.

Proof. The proof is obvious considering the matrix form given in equation (9).
However let us discuss the proof of the item iv for better understanding:

iv. Considering equation (5), we can write:

Aq̃p̃ =


a0b0 − αa1b1 − βa2b2 − αβa3b3 (a0b1 + a1b0 + βa2b3 − βa3b2) i
(a0b3 + a1b2 − a2b1 + a3b0)k +(a0b2 − αa1b3 + a2b0 + αa3b1) j

(a0b1 + a1b0 + βa2b3 − βa3b2) i a0b0 − αa1b1 − βa2b2 − αβa3b3
+(a0b2 − αa1b3 + a2b0 + αa3b1) j +(a0b3 + a1b2 − a2b1 + a3b0)k

 .

(11)

Computing Aq̃Ap̃ as

Aq̃Ap̃ =

[
a0 + a3k a1i+ a2j
a1i+ a2j a0 + a3k

] [
b0 + b3k b1i+ b2j
b1i+ b2j b0 + b3k

]

gives equation (11) quickly. We thus get Aq̃p̃ = Aq̃Ap̃.

□

Theorem 3. Every generalized quaternion with GCN components can be repre-

sented by a 4× 4 generalized complex matrix. Q̃α,β is the subset of M4(Cq,p).
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Proof. For q̃ ∈ Q̃α,β , denote K as a subset of M(Cq,p) given by:

K: =

Bl
q̃ ∈ M4(Cq,p) :Bl

q̃ =


a0 −αa1 −βa2 −αβa3
a1 a0 −βa3 βa2
a2 αa3 a0 −αa1
a3 −a2 a1 a0


 (12)

and define linear the map N : Q̃α,β → K, q̃ 7→ Bl
q̃. There exists a correspondence

between Q̃α,β and K via the map N . Bl
q̃ is the 4×4 left generalized complex matrix

representation of q̃ according to the standard base {1, i, j,k}.
4 × 4 right generalized complex matrix representation of q̃ can be calculated

similarly2. Throughout this paper Bl
q̃ will be considered. □

Corollary 2. Considering the base {1, i, j,k}, the column matrix representation

of p̃ ∈ Q̃α,β is given by p̃ =
[
b0 b1 b2 b3

]T
. Using Bl

q̃, the multiplication of

q̃, p̃ ∈ Q̃α,β can also be written by: q̃p̃ = Bl
q̃ p̃.

Theorem 4. Let q̃ ∈ Q̃α,β. Bl
q̃ can be determined as:

Bl
q̃ = a0I4 + a1I+ a2J+ a3K,

where

I =


0 −α 0 0
1 0 0 0
0 0 0 −α
0 0 1 0

 ,J =


0 0 −β 0
0 0 0 β
1 0 0 0
0 −1 0 0

 ,K =


0 0 0 −αβ
0 0 −β 0
0 α 0 0
1 0 0 0

 .

Undoubtedly, I,J,K satisfy the generalized quaternion versors conditions in equa-
tions (1).

Using q̃ ∈ Q̃α,β as q̃ = (a0 + a1i) + (a2 + a3i) j and considering a different con-
jugate related to this form, we can write the following theorem:

Theorem 5. Let q̃ ∈ Q̃α,β. Then, we have σBl
q̃ σ = Bl

q̃∗ , where σ = diag(1, 1,−1,−1)

and q̃∗ = (a0 + a1i)− (a2 + a3i)j ∈ Q̃α,β.

24× 4 right generalized complex matrix representation of q̃ is:

Br
q̃ =


a0 −αa1 −βa2 −αβa3
a1 a0 βa3 −βa2
a2 −αa3 a0 αa1
a3 a2 −a1 a0

 .
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Proof. An easy computation shows that

σBl
q̃ σ =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1




a0 −αa1 −βa2 −αβa3
a1 a0 −βa3 βa2
a2 αa3 a0 −αa1
a3 −a2 a1 a0




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1



=


a0 −αa1 βa2 αβa3
a1 a0 βa3 −βa2
−a2 −αa3 a0 −αa1
−a3 a2 a1 a0

 .

Hence, one can see that the last matrix is Bl
q̃∗ . □

Theorem 6. Let q̃, p̃ ∈ Q̃α,β and λ ∈ Cq,p, the following properties are satisfied:

i. q̃ = p̃ ⇔ Bl
q̃ = Bl

p̃,

ii. Bl
q̃+p̃ = Bl

q̃ + Bl
p̃,

iii. Bl
λq̃ = λ(Bl

q̃),

iv. Bl
q̃p̃ = Bl

q̃Bl
p̃,

v. det(Bl
q̃) = N2

q̃ ,

vi. tr(Bl
q̃) = 4Sq̃.

Proof. By considering the matrix form given in equation (12), the proof is clear.
As well let us discuss the proof of the item iv for better understanding:

iv. Using equation (5), we obtain the following matrix for Bl
q̃p̃:

a0b0 − αa1b1
−βa2b2 − αβa3b3

−α (a0b1 + a1b0
+βa2b3 − βa3b2)

−β (a0b2 − αa1b3
+a2b0 + αa3b1)

−αβ (a0b3 + a1b2
−a2b1 + a3b0)

a0b1 + a1b0
+βa2b3 − βa3b2

a0b0 − αa1b1
−βa2b2 − αβa3b3

−β (a0b3 + a1b2
−a2b1 + a3b0)

β (a0b2 − αa1b3
+a2b0 + αa3b1)

(a0b2 − αa1b3
+a2b0 + αa3b1)

α (a0b3 + a1b2
−a2b1 + a3b0)

a0b0 − αa1b1
−βa2b2 − αβa3b3

−α (a0b1 + a1b0
+βa2b3 − βa3b2)

(a0b3 + a1b2
−a2b1 + a3b0)

− (a0b2 − αa1b3
+a2b0 + αa3b1)

a0b1 + a1b0
+βa2b3 − βa3b2

a0b0 − αa1b1
−βa2b2 − αβa3b3


.

(13)

Multiplying Bl
q̃ and Bl

p̃ as:

Bl
q̃Bl

p̃ =


a0 −αa1 −βa2 −αβa3
a1 a0 −βa3 βa2
a2 αa3 a0 −αa1
a3 −a2 a1 a0




b0 −αb1 −βb2 −αβb3
b1 b0 −βb3 βb2
b2 αb3 b0 −αb1
b3 −b2 b1 b0


gives equation (13) quickly. Hence we get Bl

q̃p̃ = Bl
q̃Bl

p̃.

□

Theorem 7. Let q̃ ∈ Q̃α,β and q̃−1 be the inverse of q̃. Then,

Bl
q̃−1 =

1√
det(Bl

q̃)
Bl
q̃
.
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Proof. Taking into account Definition 4 and Theorem 6 items iii and v, the proof
is obvious. □

Theorem 8. Every GCN with generalized quaternion components can be repre-

sented by a 2× 2 generalized quaternion matrix. Q̃α,β is the subset of M2(Qα,β).

Proof. For q̃ = q0 + q1I ∈ Q̃α,β , denote T as a subset of M2(Qα,β) given by:

T : =

{
Dq̃ ∈ M2(Qα,β) :Dq̃ =

[
q0 pq1
q1 q0 + qq1

]}
, (14)

and define the linear map M : Q̃α,β → T , q̃ 7→ Dq̃. It can be concluded that

there exists a correspondence between Q̃α,β and T via the map M. Hence, 2 × 2
generalized complex matrix representation of q̃ with respect to the standard base
{1, I} is the matrix Dq̃. □

By using Dq̃ and p̃ =
[
p0 p1

]T
, we have: q̃p̃ = Dq̃p̃. Moreover, Dq̃ is also in

the form Dq̃ = q0I2 + q1I, where I =

[
0 p
1 q

]
is the representation of I. It should

be noted that there are many ways to choose I, for instance: I =

[
q 1
p 0

]
(see

in [32]).

Theorem 9. For any q̃ = q0 + q1I and p̃ = p0 + p1I ∈ Q̃α,β and λ ∈ R, the
following properties are satisfied:

i. q̃ = p̃ ⇔ Dq̃ = Dp̃,
ii. Dq̃+p̃ = Dq̃ +Dp̃,
iii. Dλq̃ = λ(Dq̃),
iv. Dq̃p̃ = Dq̃Dp̃,
v. det(Dq̃) = q20 + qq1q0 − pq21, where the notation det represents the determi-

nant of the quaternion matrix3.

Proof. The proof is obvious considering the matrix form given in equation (14).

iv. Using equation (1), we obtain:

Dq̃p̃ =

[
q0p0 + pq1p1 p(q0p1 + q1p0 + qq1p1)

q0p1 + q1p0 + qq1p1 q0p0 + pq1p1 + q(q0p1 + q1p0 + qq1p1)

]
. (15)

Also, the computation of the following multiplication

Dq̃Dp̃ =

[
q0 pq1
q1 q0 + qq1

] [
p0 pp1
p1 p0 + qp1

]
gives equation (15). Hence we have Dq̃p̃ = Dq̃Dp̃.

3The determinant of an arbitrary 2 × 2 quaternion matrix is defined by

det

([
a b
c d

])
= da− cb, [33].
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□

Definition 5. Let q̃ = q0 + q1I ∈ Q̃α,β. The vector representation of q̃ is defined
as

−→
q̃ =

[ −→q0 T −→q1 T
]T

=

[ −→q0−→q1

]
∈ M8×1(R),

where qj−1 = x0j + x1ji+ x2jj+ x3jk ∈ Qα,β and

−−→qj−1 = (x0j , x1j , x2j , x3j)
T = [x0j x1j x2j x3j ]

T

are vectors (matrices) for 1 ≤ j ≤ 2.

Theorem 10. Let q̃ = q0 + q1I ∈ Q̃α,β. Then

i.
−→
q̃†1 = X

−→
q̃ , where X =

[
I4 qI4
0 −I4

]
∈ M8(R).

ii.
−→
q̃†2 = Y

−→
q̃ , where Y =

[
0 I4

−I4 0

]
∈ M8(R).

Proof.

i. Computing
−→
q̃†1 and X

−→
q̃ gives the equality as:

−→
q̃†1 =

[ −→q0 + q−→q1
−−→q1

]
and

X
−→
q̃ =

[
I4 qI4
0 −I4

] [ −→q0−→q1

]
=

[ −→q0 + q−→q1
−−→q1

]
.

With the same manner the other item can be proved. □

By applying the map Γ(xi1 + xi2I) =

[
xi1 pxi2

xi2 xi1 + qxi2

]
to Bl

q̃, where

ai = xi1 + xi2I ∈ Cq,p, for 0 ≤ i ≤ 3, the left real matrix representation Cl
q̃ of

q̃ (see in equation (7)) with respect to the base {1, I, i, Ii, j, Ij,k, Ik} can be easily

found. So, Q̃α,β is the subset of M8(R).

Example 1. Take q̃ ∈ Q̃2,1 with GCN components for p = −1 and q = 1:

q̃ = 1 + (−1 + I) i+ Ij+ (1 + 2I)k.

Then,

Aq̃ =

[
1 + (1 + 2I)k (−1 + I) i+ Ij
(−1 + I) i+ Ij 1 + (1 + 2I)k

]
,

Bl
q̃ =


1 −2(−1 + I) −I −2(1 + 2I)

−1 + I 1 −1− 2I I
I 2(1 + 2I) 1 −2(−1 + I)

1 + 2I −I −1 + I 1

 ,
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Cl
q̃ =



1 0 2 2 0 1 −2 4
0 1 −2 0 −1 −1 −4 −6
−1 −1 1 0 −1 2 0 −1
1 0 0 1 −2 −3 1 1
0 −1 2 −4 1 0 2 2
1 1 4 6 0 1 −2 0
1 −2 0 1 −1 −1 1 0
2 3 −1 −1 1 0 0 1


,

Dq̃ =

[
1− i+ k −i− j− 2k
i+ j+ 2k 1 + j+ 3k

]
,

Bl
q̃−1 =

1√
−189 + 45I


1 2(−1 + I) I 2(1 + 2I)

1− I 1 1 + 2I −I
−I −2(1 + 2I) 1 2(−1 + I)

−1− 2I I 1− I 1

 .

Also, the vector representation of q̃†1 is computed by:

−→
q̃†1 = X

−→
q̃ =

[
I4 I4
0 −I4

][ [
1 −1 0 1

]T[
0 1 1 2

]T
]

=
[
1 0 1 3 0 −1 −1 −2

]T
.

3. Further Result: An Alternative Matrix Approach

The questions about numbers, hypercomplex numbers and quaternions included
questions about their matrices. Inspired by matrix forms in the study [34], we
give an answer for the question of the alternative representation of generalized
quaternion matrix with elliptic number entries (see elliptic biquaternions in [35]).
So this matrix is in the form:

Q̃ = A0I2 +A1I +A2J +A3K,

where A0, A1, A2, A3 ∈ Cp are elliptic numbers for p < 0. The base elements can
be defined as follows:
Case 1: For α, β ∈ R+

I =

 √
α
|p|I 0

0 −
√

α
|p|I

 ,J =

[
0

√
β

−
√
β 0

]
,K =

 0
√

αβ
|p| I√

αβ
|p| I 0

 ,

Case 2: For α ∈ R+, β ∈ R−

I =

 √
α
|p|I 0

0 −
√

α
|p|I

 ,J =

[
0

√
−β√

−β 0

]
,K =

 0
√

−αβ
|p| I

−
√

−αβ
|p| I 0

 ,
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Case 3: For α ∈ R−, β ∈ R+

I =

[
0

√
−α√

−α 0

]
,J =

 −
√

β
|p|I 0

0
√

β
|p|I

 ,K =

 0
√

−αβ
|p| I

−
√

−αβ
|p| I 0

 ,

Case 4: For α, β ∈ R−

I =

 0
√

−α
|p| I

−
√

−α
|p| I 0

 ,J =

[
0

√
−β√

−β 0

]
,K =

 √
αβ
|p| I 0

0 −
√

αβ
|p| I

 .

These elements satisfy the following conditions:

I2 = −αI2, IJ = −JI = K,
J 2 = −βI2, JK = −KJ = βI,
K2 = −αβI2, KI = −IK = αJ .

Taking into account Case 1, Q̃ is rewritten as

Q̃ =

 A0 +
√

α
|p|IA1

√
βA2 +

√
αβ
|p| IA3

−
√
βA2 +

√
αβ
|p| IA3 A0 −

√
α
|p|IA1

 .

One can see this matrix in Tian’s paper [36] related to biquaternions (complexified
quaternion) for α = β = 1 and p = −1.

The conjugate (same as the adjoint), transpose, the elliptic conjugate, the total

conjugate and determinant Q̃ can be given as follows:

Q̃ = A0I2 −A1I −A2J −A3K = Adj Q̃,

Q̃T = A0I2 +A1I −A2J +A3K,

Q̃Cp = A0I2 −A1I +A2J −A3K = Q̃
T

,

Q̃
Cp

= A0I2 +A1I −A2J +A3K =
(
Q̃Cp

)
,

and
det Q̃ = A2

0 + αA2
1 + βA2

2 + αβA2
3

= A2
0 +A2

1 det I +A2
2 detJ +A2

3 detK.

For det Q̃ ̸= 0, the inverse of Q̃ is defined by:

Q̃−1 =
1

det Q̃
Q̃ =

1

A2
0 + αA2

1 + βA2
2 + αβA2

3

(A0I2 −A1I −A2J −A3K).

Similar calculations can be given for the other cases. Additionally, the relation-
ships between the above operations and some properties of generalized quaternion
matrices with elliptic number entries can be easily proved. We omit them for the
sake of brevity. For A0, A1, A2, A3 ∈ C−1, we refer to [37] under the condition that
α = β = 1 and α = 1, β = −1.
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4. Concluding Remarks

Our paper is motivated by the question: What happens if the components of
quaternions become GCN ? Based on this question, we develop the theory of gen-
eralized quaternions (non-commutative system) with GCN components p, q ∈ R.
Also, we investigate the algebraic structures and properties by considering them as
a GCN and a quaternion. With specific values of α and β, we obtained different
types of quaternions with GCN components in Section 2. Additionally, we establish
matrix representations and give a numerical example. In Section 3, we also come
up with a different way to deal with a generalized quaternion matrix with elliptic
number entries.

The crucial part of this paper is that one can reduce the calculations to men-
tioned types of quaternions by considering hyperbolic, elliptic and parabolic number
components for ∆ = q2 + 4p (see Table 1). As a natural consequence of this situ-
ation, taking into account special conditions, the definition of special quaternions
mentioned in the papers [38–47] are generalized via Definition 1, the papers [48–53]
are generalized from the viewpoint of definition, algebraic properties, relations and
matrix representations of quaternions and finally, different matrix forms in the
papers [35–37] are generalized in Section 3. All of these situations can be exam-
ined in Table 2. For instance, all of the obtained calculations agree with complex
quaternions for α = β = 1, q = 0, p = −1.

With this unified method, we believe that these results give rise to ease of calcu-
lation via mathematical concordance, and in future studies, we intend to investigate
other commutative and non-commutative quaternions created with GCN compo-
nents in this manner. Now, the necessary and sufficient condition for similarity,
co-similarity and semi-similarity for elements of the generalized quaternions with
GCN components for p, q ∈ R is an open problem for researchers.

Table 1. Basic classification regarding components

∆ = q2 + 4p Type of components References
∆ < 0 elliptic biquaternion [35,50] (for q = 0)
∆ = 0 parabolic [41,51] (for q = 0)
∆ > 0 hyperbolic
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Table 2. Classification considering components with regard to
the value of p, q, α and β

Condition α β Component Quaternion Ref.

q = 0
p = −1

1 1 complex Hamiltonian [14,36,44]
1 -1 complex split [49, 53]
1 0 complex semi [38,39]
-1 0 complex split semi
0 0 complex quasi

q = 0
p = 0

1 1 dual Hamiltonian [45,47,54]
1 -1 dual split [46]
1 0 dual semi [42,52]
-1 0 dual split semi
0 0 dual quasi

q = 0
p = 1

1 1 hyperbolic Hamiltonian [40]
1 -1 hyperbolic split [43]
1 0 hyperbolic semi
-1 0 hyperbolic split semi [48]
0 0 hyperbolic quasi
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[8] Alagöz, Y., Oral, K.H., Yüce, S., Split quaternion matrices, Miskolc Math. Notes, 13(2)

(2012), 223–232. https://doi.org/10.18514/MMN.2012.364



NEW INSIGHT INTO QUATERNIONS AND THEIR MATRICES 57

[9] Pottmann, H., Wallner, J., Computational Line Geometry, Springer, Berlin, 2000.

https://doi.org/10.1007/978-3-642-04018-4

[10] Rosenfeld, B., Geometry of Lie Groups, Springer, New York, 1997.
https://doi.org/10.1007/978-1-4757-5325-7

[11] Savin, D., Flaut, C., Ciobanu, C., Some properties of the symbol algebras, Carpathian J.

Math., 25(2) (2009), 239–245.
[12] Catoni, F., Cannata, R., Catoni, V., Zampetti, P., An introduction to commutative quater-

nions, Adv. Appl. Clifford Algebr., 16(1) (2006), 1–28. https://doi.org/10.1007/s00006-006-

0002-y
[13] Catoni, F., Cannata, R., Zampetti, P., An introduction to constant curvature spaces in the
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