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Abstract: In Dynamic Contrast Enhanced Resonance Imaging (DCE-MRI), abdomen is scanned repeatedly and rapidly after injection of 

a contrast agent. During data acquisition, collected images suffer from the motion induced by the patient if he/she moves or breathes 

heavily during the scan. Therefore, these images should be aligned accurately to correct the motion. Recently, mutual information (MI) 

registration has become the first tool to register renal DCE-MRI images before any further processing. However, MI registration is 

sensitive to initial conditions and optimization methods, and it is bound to fail under certain conditions such as extreme movement or 

noise in the image. Therefore, if automated image analysis for renal DCE-MRI is to enter the clinical settings, it is necessary to have 

validation strategies that show the limitations of registration models on known datasets. In this study, two methods are introduced for the 

validation of registration of renal DCE-MRI images. The first method demonstrates how to use the inverse transform to generate realistic 

looking DCE-MRI kidney images and use them in validation. The second method shows how to generate checkerboard images and how 

to evaluate the goodness of registration for real DCE-MRI images. These validation methods can be incorporated into the registration 

studies to quantitatively and qualitatively demonstrate the success and the limitations of registration models. 
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1. Introduction 

 Dynamic Contrast Enhanced Resonance Imaging (DCE-MRI) 

is an imaging technique in which the abdomen is scanned 

repeatedly and rapidly after the injection of a contrast agent. As 

the contrast agent perfuse into the kidney, it creates an intensity 

change in the images as shown in Fig. 1. The pattern of this 

intensity change is an indicator of the kidney’s functionality and 

it can be used in determining the type of kidney dysfunction. For 

example, if the intensity change is not reaching to high levels in a 

short amount of time, the kidney might not be filtering properly 

and the patient might need drug therapies [1,2]. Therefore, DCE-

MRI has become a very valuable tool in renal disease diagnosis 

as it is safe, sensitive, non-invasive and provides not only 

anatomical but also functional information. Furthermore, each 

functional renal compartment (renal cortex, medulla and the 

collecting system) can be independently evaluated and kidney 

glomerular filtration rate can be computed from a single kidney. 

As a result, there has been valuable amount of recent re- search in 

the image analysis of kidney DCE-MRI data to assess renal blood 

flow, understand kidney function, and evaluate several clinical 

disorders [3–23]. 

 In DCE-MRI of kidneys, the intensity change plotted over time 

is called a renogram [13]. A typical image analysis procedure to 

arrive at the renogram curves requires five major steps: (1) 

globally aligning the sequence of images (rigid registration), (2) 

segmenting the kidney into cortex and medulla structures, (3) 

realigning the sequence of images if non-rigid movements are 

present, (4) extracting and plotting the renograms from the cortex 

and medulla, and (5) classifying these renograms. The first step, 

registration, refers to spatially aligning the images and cancelling 

out any movement of the abdomen over time, as illustrated in Fig. 

2. Clearly, the success of this step affects the success of all the 

following image analysis steps, and any error in registration is 

propagated all the way to classification. Several studies have 

addressed the registration problem and many used mutual 

information (MI) registration as the first step [3–6, 12–15, 24–

40]. 

 

 
Figure 1: Example of a DCE-MRI series. For each patient, 150 images 

are taken from one cross section with 4 second intervals. Shown here are 

three images demonstrating the uptake of the contrast agent. The change 
in the signal intensity follows different patterns for the cortex and medulla 

structures. 
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Figure 2: Illustration of the misalignment of two images. In these images, 

compared with one another, the anatomical structure is located at different 

positions. A rigid registration would translate and rotate the right image to 

align it with the left image. 

These registration studies are aimed towards solving multiple 

complexities that arise during renal image alignment in DCE-

MRI. Some of these challenges can be listed as: (1) the lack of 

fiduciary markers on the kidneys, (2) the change in the intensity 

in a DCE- MRI image during data acquisition, (3) the variability 

in motion in real datasets both before and during the data 

acquisition and (4) the lack of standardized image acquisition 

protocols and a lack of a standard dataset. These challenges make 

it very hard to prove the accuracy of the registration methods, and 

require carefully studied validation strategies. 

 Validation refers to quantitatively and qualitatively evaluating 

the quality of the transformation models, reporting the accuracy 

of the computed models as well as determining the limits of 

registration and finding the bounds on error, i.e. reporting when a 

model works best and under which conditions it would fail. The 

need for validation strategies was discussed in the editorial paper 

by Jannin et al. [41] for all medical studies, which pointed to a 

neglect in validation studies, saying “... validation is usually 

addressed only as a section in the paper. However, validation is 

by itself a research topic where methodological innovation and 

research are required". Unfortunately, DCE-MRI studies have 

been suffering from the same problem, and many of the above 

studies lack the necessary validation strategies that are needed 

prior to clinical use. 

 In this study, two validation methods are proposed that can be 

incorporated into the DCE-MRI registration studies to test the 

accuracy of these registration methods: (1) inverse transform and 

(2) checkerboard validation with edge-based quantitative 

measures. The first method, inverse transform, is used to create 

realistic synthetic images from the original dataset. Such a 

synthetic dataset is useful to demonstrate the capabilities of the 

registration algorithms and to get a quantitative analysis of the 

conditions under which the registration algorithms would no 

longer be acceptable. The second method, checkerboard 

validation, is used to check the accuracy of the registration 

methods on the real data quantitatively and qualitatively. Both 

inverse transform and checkerboard validation methods are 

independent of the image acquisition protocol and can be applied 

to a wide range of rigid registration algorithms. 

 For DCE-MRI, mutual information (MI) registration [42] has 

been used as the first step of the 5-step image analysis framework 

in several studies includ- ing [3–6, 12–15, 24–26]; or has been 

the baseline for other algorithms such as [27]. MI has been 

chosen as the metric of registration in these studies mostly 

because it is very effective in multi-modal image registration and 

the intensity change in DCE-MRI images can be regarded as a 

multi-modality. Therefore, in the rest of this paper, MI 

registration is taken as a baseline and validation strategies are 

described on the MI registration of DCE-MRI images. 

 First, data acquisition protocol is given in Sec. 2 and MI 

registration is described in Sec. 3. Then, Sec. 4 introduces the 

inverse transform, demonstrates how to generate realistic looking 

synthetic images, discusses how to analyze the results and finds 

where the registration methods are no longer applicable or 

dependable. Finally, checkerboard-imaging validation is 

presented in Sec. 5 and the results are shown on real DCE-MRI 

data. 

1. Data Acquisition  

 Gradient echo T1 imaging is employed by a Signa Horizon GE 

1.5T scanner (Signa Horizon LX Echo speed; General Electric 

Medical Systems, Milwaukee, WI, USA) with the use of phased 

array Torso surface coil, and the contrast agent Gadolinium 

diethylene triamine pentaacetic acid (Gd-DTPA) is introduced via 

a wide bore veno-catheter placed at antecubital vein at a rate of 3-

4 ml/sec with a dose of 0.2 ml/kg.BW. Images are taken at 5mm 

thickness with no inter-slice gap, repetition time (TR) 34 msec, 

TE minimum, field of view (FOV) 42 × 42 cm and matrix of 

1005 × 804. For each patient, 150 temporal sequences of coronal 

scans are taken with 4 second intervals. 

2. Mutual Information Registration 

  

 In DCE-MRI, the abdomen is scanned repeatedly after the 

administration of the contrast agent. During the scanning process, 

the patient may breathe or move unintentionally, so the position 

of the kidney can change from one scan to another. To perform 

an accurate slice-by-slice comparison of these images, kidney 

images should first be aligned to each other. The alignment of 

two images is called registration, and if only translational and 

rotational movements are considered, the alignment process is 

called rigid registration. One of the rigid registration methods, 

mutual information (MI) registration, has been proven to align 

images from different modalities (such as MRI and CT) 

accurately and robustly [42–46]. Similarly, it has been successful 

in handling the contrast change in renal DCE-MRI images 

without requiring any fiducial markers, landmarks or feature 

extraction. 

 Let A and B be two images that are to be registered. Let a and 

b be the gray values of images A and B with marginal densities 

pA(a) and pB(b). These marginal densities correspond to the 

normalized histograms. Also, define pAB(a;b) as the joint 

distribution of the images’ gray values, which corresponds to the 

joint histogram. Normalized mutual information [47] measures 

the amount of information that one image A contains about the 

other image B as: 

where H(A) and H(B) are the marginal entropies of images A and 

B respectively, and H(A; B) is the joint entropy of these images. 

These entropies are computed from the probability density 

functions of the images’ gray values as:   

             



 

Mutual information measures the dependence of the two images. 

MI is maximized when there is a maximal dependence between 

the gray values of the images, and this happens when the images 

are correctly aligned [42]. The more similar (i.e. the less 

independent) the images are, the lower the joint entropy 

compared to the sum of the individual entropies i.e.            

𝐻(𝐴;𝐵) ≤ 𝐻(𝐴) + 𝐻(𝐵). Therefore, two images are best aligned 

by a transformation function T when H(A; B) is minimized and 

NMI(A; B) in Eq. (1) is maximized. To calculate Eq. 1, one has to 

compute the joint densities in Eq. 2. One way to compute these 

joint densities is by Parzen windowing. In Parzen windowing, an 

intensity sample S of size Ns is drawn from the image. Then, the 

probability pA(a) is computed as the sum of the contributions of 

each sample from S to pA(a) in accordance with its distance from 

a. The Parzen estimate can be obtained from the following 

equation: 

where sj is the intensity (gray level) of the jth pixel in the sample 

set S, and K is generally a Gaussian kernel in the form of         

K(u) = exp(-u2/2σ2) with variance σ2. To calculate the entropy, 

another intensity sample R of size Nr is drawn from the image, 

and the entropy is calculated with the following equation: 

     (4) 

where rj is the intensity of the jth pixel in the sample set R. Parzen 

windowing gives a smooth solution to density estimation. 

However, if the variance σ2 is selected to be too large, then 

important modes in the density may be filtered out during 

smoothing. Likewise, a small variance value results in a noisy 

density estimate.  

 In the implementation of mutual information, relatively high 

noise in the images can sometimes be a problem. With increased 

noise, the entropy can be determined by the noise instead of the 

original signal, affecting the performance of the registration. To 

minimize such problems, the kidneys are cropped from the rest of 

the abdomen before the registration, resulting in a smaller region 

of interest which includes mostly the kidneys.  

 The code was written into C++ with the use of ITK libraries 

[48]. Images were smoothed with Gaussian kernels with a 

variance of 2.0. For the gradient descent optimization the step 

size (learning rate) was chosen to be 0.02 and the maximum 

number of iterations were set to 500. Another important 

parameter is the number of randomly selected samples from an 

image for the Parzen windowing. If the sample size is selected to 

be large, the metric is smoother from one iteration to another, but 

at the expense of longer computation times. In our 

implementation, we found Ns = 500 and σ = 0.4 to be reasonable 

approximations. These parameters are listed in Table 1. 

 

TABLE 1: Mutual Information Registration Parameters 

Fixed Image & 

Moving Image 

 Standard Deviation 0.4 

Smoothing Variance 2.0 

Number of Spatial Samples 500 

Learning Rate 0.02 

Number of Iterations 500 

3. Validation of Registration Using Synthetic 
Images: Inverse Transform Sampling 

 One way to validate registration results is by generating 

realistic looking phantom images, transforming them with known 

parameters, and applying the registration techniques to revert 

them back to the initial conditions. This technique gives the limit 

of transformation to be able to successfully register the images 

and shows how much of the transformation is recoverable. In 

addition, it allows to test the effect of image noise on registration 

models. Such noise analysis is especially important in DCE-MRI 

as increasing the speed of image acquisition results in a better 

temporal resolution at the expense of noisier images. 

 In this study, kidney phantoms were generated with known 

translation and rotation parameters to validate the registration 

results on renal DCE-MRI. Kidney phantoms are realistic looking 

synthetic images that have the medulla and cortex structures as 

shown in Fig. 3(j,k,l). These images were generated using in- 

verse transform sampling (ITS). ITS [49] is a method for pseudo-

random number sampling which generates samples from a 

probability distribution with a known cumulative distribution 

function (CDF). In order to use ITS, first, densities (normalized 

histograms) were obtained from the cortex and medulla 

compartments of real DCE-MRI images of kidneys. Second, 

CDFs were obtained from these structures as well as the 

background. Then, ITS was used to generate random variables 

with similar distributions. These random variables become the 

gray level values in the phantoms where the gray levels of 

background, cortex and medulla structures resemble the noise and 

intensity levels of the original images. 

 Let X be a random variable whose distribution can be 

described by the CDF F. To generate a continuous random 

variable X that is distributed according to this distribution such 

that X ~ F, the ITS works as follows: 

1) Generate a uniform random variable U from the standard 

uniform distribution in the interval [0,1].  

2) Compute the value X such that X=F−1(U).  

3) Take X  to be the random number drawn from the distribution 

described by F. 

 

To apply the inverse transform for a discrete random variable         

X = {X1, X2,..., Xn}, the second step is modified as:                          

{X = xj}  if  FX(xj−1)≤U<FX(xj). The pseudo-code for ITS for the 

discrete case is as follows: 
 
Algorithm 4.1:  INVERSE TRANSFORM (A) 

 

Obtain F from the object of interest in image A  

for each pixel (k1, k2) in the region of interest of the mask image 

          Get U = rand() 

do  find number of pixels Np  such that F ≤ U 

 Output Image(k1; k2) = Np 

 

return (Output Image) 
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 ITS is demonstrated in Fig. 3 in three steps. In the first step, 

three images with well identifiable cortex and medulla structures 

were chosen from one patient as shown in Fig. 3(a-c). These 

indicate the first image of the sequence, an early enhancement 

image and a late enhancement image. From these images, Fig. 

3(b) was used as to create a mask, and the gray level values of 

this mask were assigned using inverse transform. 

 In the second step, normalized histograms of these three 

images were calculated as shown in Fig. 3(d-f) for the cortex, the 

medulla and the background. Then, cumulative distribution 

functions were obtained as displayed in Fig. 3(g-i). In the third 

step, these CDF’s were used in ITS to generate realistic 

phantoms. To obtain the gray values of the phantoms, for each 

pixel in the mask, a random variable was generated with ITS, and 

this random variable was used as the gray level of the phantom 

image as given in the pseudocode 4.1. An example of the 

phantom images for zero rotations and translation is given in Fig. 

3(j-l). 

 Finally, the mask image was transformed with several rotations 

and translations as shown in Fig. 4(a-c). After the 

transformations, these masks were assigned their gray values with 

ITS as described above. The phantoms generated for Fig. 3(b) are 

shown in Fig. 6(a-c) for three different transformations. Let these 

images be denoted as test sequence 1. Similarly, the phantoms 

generated for Fig. 3(a) are given in Fig. 5(a-c), and are referred to 

as the test sequence 2. All of these test images in Fig. 6 and Fig. 5 

were registered to Fig. 3(l). The original rotation and translation 

values and the estimated results using mutual information 

registration are given at Tables 2 and 3 for the test sequences 1 

and 2, respectively. The first three columns of these tables show 

the original transformations, the next three columns are the 

results obtained by mutual information registration, and the last 

column is the normalized MI metric (i.e. the similarity measure of 

the registration). In the tables, we refer to Fig. 3(l) as the 

reference image.   

 

TABLE 2: Registration of test sequence 1 to the reference image: 

robustness to translation (in pixels) and rotation (in degrees). 

Rotation is denoted by R, translation in X is denoted by TX and 

the translation in the Y direction is denoted by TY. 
Original Estimated Metric  

  R  T
X

  T
Y

 Rotation Translation X Translation Y Value 

0 0 0 -0.14 0.30 0.58 0.45 

0 5 0 0.24 5.60 0.10 0.44 

0 0 5 0.06 -0.53 5.26 0.44 
5 0 0 5.46 -0.70 -0.24 0.44 

5 5 0 5.10 4.70 0.31 0.43 

5 0 5 5.10 4.70 0.31 0.43 
5 5 5 5.16 5.08 5.08 0.44 

10 0 0 9.85 -0.51 -0.06 0.44 

0 10 10 0.18 9.79 9.76 0.44 
10 5 5 10.23 5.11 5.35 0.39 

10 10 10 10.04 8.01 11.65 0.44 

0 20 20 -0.14 20.17 20.05 0.44 

10 20 20 10.11 16.62 22.80 0.43 

 

 

 

 

 

 

 

 

 

 

 

TABLE 3: Registration of test sequence 2 to the reference 

image: robustness to translation (in pixels) and rotation (in 

degrees). Rotation is denoted by R, translation in X is denoted by 

TX and the translation in the Y direction is denoted by TY. 

 
Original Estimated Metric 

Value 

R T
X

 T
Y

 Rotation Translation X Translation Y  

0 0 0 0.34 -0.35 -1.94 0.026 

0 5 0 -1.86 5.54 0.37 0.027 
0 0 5 1.34 -1.66 3.82 0.019 

5 0 0 2.03 0.02 0.46 0.023 

5 5 0 3.24 5.79 1.25 0.029 
5 5 5 6.15 6.71 6.31 0.029 

10 0 0 6.36 2.02 -0.88 0.029 

0 10 10 1.31 8.28 6.02 0.022 
10 5 5 6.77 3.57 3.84 0.029 

10 10 10 9.82 11.23 9.61 0.028 

 

 

  

In Table 2, mutual information registration is able to handle the 

transformations with subpixel accuracy for small translations 

under five pixels and rotations under five degrees. For bigger 

transformations, it deviates with a couple of pixels until reaching 

a breaking point at the end of the table for 10 degrees of rotation 

and 20 pixels of translation in each axis. Note that 4 pixels 

correspond to 17mm in the x-axis and 20mm in the y-axis as 

explained in Sec. 2. Some of this error in accuracy can easily be 

handled by decreasing the learning rate of the optimizer and by 

increasing the number of iterations. However, when the 

boundaries are harder as in the test sequence 2, the MI metric 

values are much smaller. In Table 3, the results are still 

acceptable for small translations and rotations, but the MI metric 

starts to decrease in accuracy with higher translations and 

rotations. Therefore, it is very important to know the maximum 

translation and rotation values one would expect in a typical 

clinical setting and compare that to these values. Moreover, it is 

also important to at least visually confirm that registration gives 

meaningful results. In the next section, a second method is 

presented to qualitatively and quantitatively confirm the goodness 

of registration on kidney DCE-MRI images. 



 

 

  

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

   
(j) (k) (l) 
Figure 3: Three images from a sequence (a,b,c), their gray level densities (d,e,f) and the cumulative distributions (CDF’s) (g, h, i). 

A mask is obtained from (b), and by inverse transform, the test images (j, k, l) are obtained for zero translation and rotation. 
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(a) R=0, TX=0, 

TY=0 

(b) R=10, Tx=10, 

Ty=10 

(c) R=10, Tx=20, 

Ty=20 

Figure 4: A mask image is generated manually based on the real 

kidney image in Fig. 3(b). This mask is transformed with various 

rotations (R in degrees) and translations in x direction (Tx) and in 

y direction (Ty) in pixels. Three of them are shown here. 

(a) R=0, Tx=0, 

Ty=0 

(b) R=10, Tx=10, 

Ty=10 

(c) R=10, Tx=20, 

Ty=20 

Figure 5: Test Sequence 1. Background, cortex and medulla 

structures in the mask are filled separately with random variables 

obtained via inverse transform from the gray level CDF’s (Fig. 

3(h) of Fig. 3(b)). 

(a) R=0, Tx=0, 

Ty=0 

(b) R=10, Tx=10, 

Ty=10 

(c) R=10, T
x
=20, 

T
y
=20  

Figure 6: Test Sequence 2. Background, cortex and medulla 

structures in the mask are filled separately with random variables 

obtained via inverse transform from the gray level CDF’s (Fig. 

3(g) of Fig. 3(a)).  

4. Validation of Registration: Checkerboard 
Imaging 

A checkerboard image is obtained by patching one square region 

from the fixed image and another square region from the moving 

image after registration, and these patches are visualized in one 

checkerboard image. In a checkerboard image, the expectation is 

to see continuous contours. If two images are correctly registered, 

the contours of the kidneys and other structures should be 

aligned, and should show continuously lines as opposed to having 

discrete disparities. Disparities between these two images indicate 

errors, which may be due to the problems with the transformation 

model itself, or the inaccuracies in the parameters.  

 With the observation that mutual information registration gives 

satisfactory results on phantom images, the registration technique 

has been applied to real abdomen images. The cropped time 

series of a patient were aligned using mutual in-formation 

registration to cancel the breathing and movement errors. The 

resulting images were visually tested by checkerboards. Between 

each square, continuous contours were well obtained in the 

resulting checkerboard images as shown in Figs. 7 and 8. 

 Although checkerboard imaging is a qualitative way to 

validate registration, it can also be extended for quantitative use. 

One option would be to compute the edges and do a connected 

component analysis to see if they are continuous. Another option 

would be to compute the mutual information within each square 

and expect a smooth MI metric over all the squares. This option 

also brings the following advantage: if most of the squares have 

similar MI metrics but one of the neighbouring square is much 

lower or higher than the others, this could indicate the existence 

of a non-rigid transformation. 

5. Conclusion 

 DCE-MRI is a noninvasive test that provides high spatial and 

temporal resolution of a single kidney, and allows evaluating the 

state of the cortex and medulla structures separately. In the recent 

years, many studies have focused on automatic image analysis of 

the DCE-MRI images to differentiate between several kidney 

diseases. Registration is one of the key components in these 

image analysis techniques, and the quality of registration models 

need to be validated before automated analysis of DCE-MRI can 

enter the clinical settings. In this study, two validation techniques 

were introduced for the validation of registration in renal DCE-

MRI images: inverse transform sampling and checkerboard 

imaging. With inverse transform sampling, a way to generate 

synthetic kidney images that follow the noise structure of real 

DCE-MRI images was demonstrated. Then how to test the 

goodness of registration was shown with these images under 

various translations and rotations. In these tests, mutual 

information was used as the method of registration. Qualitative 

metric values were obtained, bounds on error were obtained and 

the limits on registration for this data collection were reported. In 

the second validation method, the cropped time series of a patient 

were aligned using mutual information registration to cancel the 

breathing and movement errors. Then the registered images were 

displayed as checkerboard images. The existence of continuous 

contours in checkerboard images provides a qualitative validation 

on the goodness of registration. 

 With these two fold validation techniques, a robust and 

flexible system has been presented that can be used to address a 

variety of image registration problems. The validation framework 

presented in this paper presents a generic approach to both 

simulate kidney images as well as work on real kidney images. 

These validation strategies could be used to help improve any 

rigid registration algorithm, to compare the registration 

performance of a set of rigid registration methods, as well as to 

evaluate the goodness of registration in a clinical environment. 

 

 

 

 



(a) Fixed image  

(b) Moving image after 
registration  

(c) Checkerboard 
visualization after 
registration  

Figure 7: Sample registration results for two images from one data 
set. The moving image in (b) is registered to the fixed image in 
(a), and the resultant registration is shown in (c). A checkerboard 
image is generated from (a) and (c) to test the quality of the 
registration visually. Registration results: Rotation R=1.82 
degrees, translation in x direction TX=1.49 pixels, translation in y 
direction TY=0.78 pixels, MI metric = 0.27129. 
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