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Abstract: In this paper, space curves of constant breadth according to Bishop frame in Euclidean 3-space are 
studied. It is shown that in some special cases, space curves of constant breadth are slant helix. Moreover, the 

differential equations characterizing the space curves of constant breadth in 3E  are given. 
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1 Introduction 
 Euler introduced the curves of constant breadth [1]. He gave the constant breadth curves in the plane. 
Then, many geometers were interested in these special curves [2-9]. Furthermore, Reuleaux studied the 
curves of constant breadth and gave the method related to these curves for the kinematics of machinery 
[10]. Köse, showed that when a space curve ( )C  is given, a space curve *( )C  could be determined so 

that corresponding points the curves have parallel tangents in the opposite directions and the distance 
between these points is constant and using the concepts related to the space curves of constant breadth 
which were presented in [11]. The differential equations characterizing these curves were established and 
a criterion for these curves were given [12]. The concepts related to space curve of constant breadth were 
extended to nE -space in [13]. Akdoğan and Mağden obtained an approximate solution of the equation 
system which belongs to these curves. Using this solution vectorial expression of the curve of constant 
breadth was gained. Also, Mağden and Köse investigated the curves of constant breadth in 4E -space 
[14]. After then, Önder and et. al., gave the diferential equations characterizing the timelike and spacelike 
curves of constant breadth in Minkowski 3-space [15]. Furthermore, they gave a criterion for a timelike or 
spacelike curve to be curve of constant breadth in 3

1E . Also, Kocayiğit and Önder showed that in 3
1E  

spacelike and timelike curves of constant were normal, helices and spherical curves in some special cases 
[16]. 
 
 In this paper, we study the space curves of constant breadth according to Bishop frame in 3E . And we 
give differential characterizations of these kind of curves. In addition, we show that space curves of 
constant breadth are related to slant helix. 
 
2 Preliminaries 
Now, we give some basic concepts on classical differential geometry of space curves. If a space curve in 
Euclidean 3-space is differentiable at each point of an open interval, a set of mutually orthogonal unit 
vectors can be constructed. These vectors are called Frenet frame. The set, whose elements are frame 
vectors and curvatures of a curve, is called Frenet apparatus of the curve. Let ( )s  be a space curve, 

where s  is an arc length parameter and let  ( ), ( ), ( )T s N s B s
  

 be Frenet frame of this curve. Here ,T N
 

 

and B


 are called, the unit tangent vector field, the unit principal normal vector field and the unit 
binormal vector field of the curve, respectively. ( )s  and ( )s  are called, curvature and torsion of the 

curve  , respectively. The Frenet formulae are also well known as 
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where , , , 1T T N N B B  
     

 and , , , 0T N N B T B  
     

.         

The parallel transport frame is an alternative approach to defining a moving frame that is well-defined 
even when the curve has vanishing second derivative. We can parallel transport an orthonormal frame 
along a curve simply by parallel transporting each component of the frame [17].  
        

 Its mathematical properties derive from the observation that, while ( )T s


 for a given curve model is 

unique, we may choose any convenient arbitrary basis  1 2( ), ( )N s N s
 

 for the remainder of the frame, so 

long as it is in the normal plane perpendicular to ( )T s


 at each point. If the derivatives of  1 2( ), ( )N s N s
 

 

depend only on ( )T s


 and not each other, we can make 1( )N s


 and 2 ( )N s


 vary smoothly throughout the 

path regardless of the curvature. We may therefore choose the alternative frame equations 
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 


                                                    (1) 

where 1 1 2 2, , , 1T T N N N N  
     

 and 1 1 2 2, , , 0T N N N T N  
     

. [18,19]. 

        
 One can show that [18] 

2 2
1 2( )s k k   , 2

1

( ) arctan
k

s
k


 

  
 

, 
( )

( )
d s

s
ds

   

1 cos( )k   , 2 sin( )k    

and 

T T
 

, 1 cos( ) sin( )N N B  
  

, 2 sin( ) cos( )N N B  
  

 

so that 1k  and 2k  effectively correspond to a Cartesian coordinate system for the polar coordinates ,   

with ( )s ds   . A fundamental ambiguity in the parallel transport frame compared to the Frenet frame 

thus arise from the arbitrary choice of an integration constant for 0 , which disappears from   due to the 

differentation [19]. 
 
Theorem 1. Let 3: I E   be a unit speed curve with non-zero natural curvatures. Then   is a slant 

helix if and only if 1

2

k

k
 is constant [20]. 

 
3  Curves of Constant Breadth 
In this section, we study the space curves of constant breadth according to Bishop frame in Euclidean 3-
space. We obtain the differential equations characterizing curves of constant breadth according to Bishop 
frame in Euclidean 3-space and it is shown that space curves of constant breadth are slant helix in some 
special cases. 
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Definition 1. Let ( )C  be a space curve in 3E . If ( )C  has parallel tangents in opposite directions at the 

opposite points ( )s  and *( )s  and if the distance between these points is always constant, then ( )C  is 

called a space curve of constant breadth [6]. 
 
Definition 2. A pair of space curves ( )C  and *( )C  in 3E  for which the tangents at the corresponding 

points ( )s  and * *( )s  are parallel and in opposite directions, and the distance between these points is 

always constant are called space curve pair of constant breadth [11]. 
Let ( )C  and *( )C  be a pair of unit-speed space curves with non-zero Bishop curvatures in 3E  and let 

those curves have paralel tangents in opposite directions at the corresponding points ( )s  and * *( )s , 

repectively. The position vector of the curve *( )C  at the point * *( )s  can be expressed as  

           * *
1 2 1 3 2( ) ( )s s s T s s N s s N s       

    
                             (2) 

where ( ) ( 1,2,3)i s i   are differentiable functions of s  which is arc lenght of ( )C . Denote by 

 1 2, ,T N N
 

, 1k  and 2k  the moving Bishop frame, Bishop curvatures along the curve ( )C , respectively. 

And denote by  * * *
1 2, ,T N N

  
, *

1k  and *
2k  the moving Bishop frame, Bishop curvatures along the curve 

*( )C , respectively. 

         
Differentiating (2) with respect to s  and by using the Bishop formulae given by (1), we obtain   

* *
* 31 2

1 2 2 3 1 1 1 2 1 21
dd dd ds

T k k T k N k N
ds ds ds ds ds

                      
     


   

. 

Since *T T 
 

 at the corresponting points of the curves ( )C  and *( )C , we obtain the following 

differential equation system 
*
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It is well-known that the curvature ( )s  of the curve ( )C  is  

 
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Δ
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Δs
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s

s ds

  
 

   

where   is the angle between the tangent T


 of the curve ( )C  and a given fixed direction at the point 

( )s . Hence, we can rewrite the system (3) as follow. 

1
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d
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d
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   
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 
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                                                       (4) 

where 

1
1 1 cos( )

k
k  


   , 2

2 2 sin( )
k

k  


   ,     ds    

and 

*( )f     , 
1


  and *
*

1


 . 
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Here,  and *  indicates the radius of curvatures at the points ( )s  and * *( )s , respectively. 

         
Eliminating 2 3,   and their derivatives from the system (4), we obtain the following differential 

equation of third order with respect to 1 . 

1 1 1 1 1 1 1 1 1a b c d e                                                            (5) 

where 

   3
3

1 1 2 2 1 1 2 1 2 2 1a                    

 2 3 2 2 2
1 2 1 2 1 2 1 2 1 2 2 1 2 1 2 2 1( ) ( ) ( )b                                 

 

 
 

3 3 2 2 5
1 1 2 2 1 1 2 2 1 2 1 1 2 2 1 2 2

2 3 2 2 2
1 2 2 1 2 2 1 2 2 1 2 1 2 2 1

( ) ( )

( ) ( ) ( )( )

c                

              

                

             
 

     
        

4 2 3 3 2 3
1 2 1 2 1 2 1 2 1 1 2 2 2 1 2 1 2 1 1 2 2 1

2
6 4 2 2 2 3
2 2 1 1 1 2 2 2 1 2 2 1 1 1 2 2 1 2 2 1

3 ( 2 )

( ) 3

d                     

                   

                  

                 

 

       
       

3 3
1 1 2 1 1 2 1 2 2 1 2 1 2 2 1 2 2

2
2 3 4

1 2 2 2 1 2 2 1 2 2 2 1 2 2 1( ) .

e f f f f f

f f f f f

               

              

                    

                    

 

         
Here and later ( )  denotes the differentiation with respect to " " . Similarly, eliminating 1 3,   and their 

derivatives from the system (4), we obtain the following differential equation of third order with respect 
to 2 . 

2 2 2 2 2 2 2 2 2a b c d e                                                         (6) 

where 
2

2 1 2a     

2
2 1 1 2 2 12b         

2 4 3 2
2 1 1 2 1 2 1 2 2 1 1 2 12( )c                     

 3
2 1 1 2 2 1d          

 3
2 1 2 2e f f     . 

         
Furthermore, eliminating 1 2,   and their derivatives from the system (4), we obtain the following 

differential equation of third order with respect to 3 . 

3 3 3 3 3 3 3 3 3a b c d e                                                         (7) 

where 
2

3 2 1a     

2
3 2 2 1 1 22b         

2 3 2 4
3 2 2 1 2 1 1 2 2 1 2 2 12( )c                     

 3
3 2 2 1 1 2d          

 3
3 2 1 1e f f     . 
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When the curve ( )C  and the function ( )f   are given, from the solving the systems (3), (4) or the 

equations (5), (6), (7), we can find the values of 1 ( 1, 2,3)i  . Eqs. (5), (6), (7) express the differential 

characterizations for the space curves ( )C  and *( )C  according to i . 

        
 As the curves ( )C  and *( )C  are a space curve pair of constant breadth, then the distance d  between the 

corresponding points ( )s  and * *( )s  is constant. Hence,  
22

2 * * 2 2 2 2
1 2 3( ) ( ) .d d s s k const k            

 
                         (8) 

Differentiating (8) with respect to  , we gain 
2

1 1 2 2 3 3

1
0

2

d
d

d
     


     


. 

Substituting the equalities given by (4) into the (8), we obtain the following equality. 

1 0f  . 

This relation express to be curve pair of constant breadth of the space curves ( )C  and *( )C  in 3E . Here, 

there are two main cases. 
 

Case 1. Let 
*

( ) 0 1 0 .
ds

f
ds


 

   
 

 This means that the curve *( )C  is a translation of the curve ( )C  by 

the constant vector 

1 2 1 3 2d T N N    
   

.                                                      (9) 

In fact, if ( ) 0f    then the vector d


 is constant. To verify this fact, differentiate (9) with respect to   

and use the equalities (4) for 0f   and Bishop formulae given by (1). Hence, we obtain 0
dd

d



. 

Consequently, if 0
dd

d



 then the vector d


 is constant. In this case we can rewrite the systems (3), (4) 

and the equations (5), (6), (7) as follows: 

1
1 2 2 3

2
1 1

3
2 1

d
k k

ds
d

k
ds
d

k
ds


 







  

  



 


                                                         (10) 

1
1 2 2 3

2
1 1

3
2 1

d

d

d

d

d

d


   




 



 


 

 
















                                                        (11) 

and 

1 1 1 1 1 1 1 1 0a b c d                                                          (12) 

where 

   3
3

1 1 2 2 1 1 2 1 2 2 1a                    

 2 3 2 2 2
1 2 1 2 1 2 1 2 1 2 2 1 2 1 2 2 1( ) ( ) ( )b                                 
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 
 

3 3 2 2 5
1 1 2 2 1 1 2 2 1 2 1 1 2 2 1 2 2

2 3 2 2 2
1 2 2 1 2 2 1 2 2 1 2 1 2 2 1

( ) ( )

( ) ( ) ( )( )

c                

              

                

             
 

     
        

4 2 3 3 2 3
1 2 1 2 1 2 1 2 1 1 2 2 2 1 2 1 2 1 1 2 2 1

2
6 4 2 2 2 3
2 2 1 1 1 2 2 2 1 2 2 1 1 1 2 2 1 2 2 1

3 ( 2 )

( ) 3

d                     

                   

                  

                 

. 

2 2 2 2 2 2 2 2 0a b c d                                                        (13) 

where 
2

2 1 2a     

2
2 1 1 2 2 12b         

2 4 3 2
2 1 1 2 1 2 1 2 2 1 1 2 12( )c                     

 3
2 1 1 2 2 1d         . 

3 3 3 3 3 3 3 3 0a b c d                                                                                (14) 

where 
2

3 2 1a     

2
3 2 2 1 1 22b         

2 3 2 4
3 2 2 1 2 1 1 2 2 1 2 2 12( )c                     

 3
3 2 2 1 1 2d         . 

 
Theorem 2. The general differential equations and systems characterizing space curve pair of constant 
breadth according to Bishop frame in 3E  are given by (10), (11), (12), (13) and (14). 
 
Case 2. Let 1 0  . Then, there are three cases here. 

i) We can take 2 .const   and 3 0   (from (4)). Then, 1 2( )f    . 

ii) We can take 0   and 3 .const   (from (4)). Then, 2 3( )f    . 

iii) Now, we consider the third and interesting case 2 .const   and 3 .const   

If 2 .const  , 3 .const   and ( ) 0f    (from (4)), then we obtain 31

2 2

.
k

const
k





   This means that 

the curve ( )C  is a slant helix according to Bishop frame. Thus we can give following theorem. 

 
Theorem 3. Let consider the curve pair of constant breadth which has the sum of curvature radius at 
corresponding points is zero according to Bishop frame in 3E . If the first normal component 2 .const   

and the second normal component 3 .const   given by (2), then the curve ( )C  is a slant helix. 
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