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Abstract: In [7], the authors defined the generalized order-k Jacobsthal orbit /% (G) of a finitely generated group G = (A). In this study,
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1 Introduction and Preliminaries

It is known that the Jacobsthal sequence {J,,} is defined recursively by the equation
]n =]n—1 + 2]11—2 (1)
forn > 2, whereJ, =0and J; = 1.

In [11], Koken and Bozkurt showed that the Jacobsthal numbers are also generated by a matrix

A O R el

Kalman [9] mentioned that these sequences are special cases of a sequence which is defined recursively as a linear
combination of the preceding k terms:

Anik = Coln + C1Qp41 + -+ Cp1Qpik-1,

where ¢y, ¢y, -, cx—1 are real constants. In [9], Kalman derived a number of closed-form formulas for the generalized
sequence by companion matrix method as follows:

0 1 0 0 0 -
00 1 - 0 0
a=10 0 0 00
0 0 0 0o 1
[co ¢ € .. Ch_p Ci_ql

Then by an inductive argument he obtained that

Qo an
a; an+1
Al 0= .
k : : :
Qg1 An+k-1

In [15], Yilmaz and Bozkurt defined the k sequences of the generalized order-k Jacobsthal numbers as follows:


http://www.ntmsci.com/

forn>0and1<i<k
Ja=Tn-1t 2pa ot Tk )
with initial conditions
’ 1 ifn=1-1i,
Jn = forl—k<n<0,

0 otherwise,

where J§ is the nth term of the ith sequence. If k = 2 and i = 1 the generalized order-k Jacobsthal sequence is reduced
to the conventional Jacobsthal sequence.

In [15], Yilmaz and Bozkurt showed that

[ J{l+1 1 [ Ja ]

]nl
l]nl}_cl]nz} (3)
n—k+2 n—-k+1

where C is called the generalized order-k Jacobsthal matrix and C is a k-square matrix as following:

2z - 11
10 - 00

c=0 1 00 (4)
lo o . 1 ol

Also, it was obtained that B,, = C - B,,_; Where
[ A B eI
Bn — l ]rlz—l 1121—1 ].r}f—l‘ (5)
]rlz—k+1 ]rzz—k+1 ]rlf—k+1

Lemma 1. (Yilmaz and Bozkurt [15]). Let C and B, be as in (4) and (5), respectively. Then, for all integers n = 0
B, =C"

Reducing the generalized order-k Jacobsthal sequence (k = 2) by a modulus m, we can get the repeating sequences,
denoted by

Unmy = e 13 Js™ ™, JE )
where]i’"m = J¥(mod m). It has the same recurrence relation as in (2) [8].
Theorem 1. (Deveci et al [7]). The sequence {Jx™} (k = 2) is periodic.
The notation h/%™ denotes the smallest period of {/™} (k > 2) [8].
Theorem 2. (Deveci et.al [7]). If p is a prime such that p # 2, then hj<?" = |<C)pa|.

Definition 1. (Deveci and Saglam [8]). Let h](ala - denote the smallest period of the integer-valued recurrence

relation u,, = u,_q + 2up_y + -+ Up_g, Uy = Qq, Uy = Ay, -+, U, = aWhen each entry is reduced modulo m.
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Theorem 3. (Deveci and Saglam [8]). For ay,a,, -, a, X1, %5+, %, EZ, p is a prime such that p # 2,
gcd(aq, az, -+, a,,p) =1 and ged(xq, x5, -, X, ) = 1,

Wt i = Wi

(ag,az,a (x1,x2, %K) "

A sequence of group elements is periodic if, after a certain point, it consists only of repetitions of a fixed subsequence.
The number of elements in the repeating subsequence is called the period of the sequence. For example, the sequence
a,b,c,d,eb,cd,eb,c,d,e,--is periodic after the initial element a and has period 4. A sequence of group elements is
simply periodic with period k if the first k elements in the sequence form a repeating subsequence. For example, the
sequence a, b, c,d,e, f,a,b,c,d,e, f,a,b,c,d,e,f,- issimply periodic with period 6.

Definition 2. (Deveci et.al [7]). The generalized order-k Jacobsthal orbit J%(G) for a finitely generated group G = (A),
where A = {a,, a,, -, a;} as following: the generalized order-k Jacobsthal orbit ¥ (G) with respect to the generating set

A to be the sequence {x;} of the elements of G such that

(x:)? (xi41), k=2
Xi = for0<i<k—1,%x= fori >0
() -+ (ipr-2)* Kpgr-1), k=3

The length of the period of the generalized order-k Jacobsthal orbit J%(G) is denoted by LJ%X(G) and is called the
generalized order-k Jacobsthal length of G.

Many references may be given for some special linear recurrence sequences in groups and related issues; see for example,
[1,3,5,10,12-14]. Campbell and Campbell calculated the Fibonacci lengths of certain centro-polyhedral groups [2]. Deveci
et.al obtained the periods of k-nacci sequences in centro-polyhedral groups and related groups [6]. In this paper, we obtain

the Iengths L](3x,y,z) ((2’ -n, 2))’ L](?’x,y,z) (<_2: n, 2)) and ]gx,y,z) (<2v n, _2)) :

2 Main Results and Proofs

Definition 3. The polyhedral group (I, m,n), for [, m,n > 1 is defined by the presentation
(x,y,z:x' = y™ = z" = xyz = 1).

The polyhedral group (I, m, n) is finite if, and only if, the number

1 1
,u=lmn<—+—+——1>=mn+nl+lm—lmn
Il m n

is positive. Its order is 2lmn/u.

For more information on these groups see [4, p.67-68].

Definition 4. The centro-polyhedral group (I, m,n), for [, m,n € Z is defined by the presentation
(x,y,z:x' = y™ = z™ = xyz).

For more information on these groups see [2,4].

Theorem 4. Lj¢,, »((2,—1,2)) =7 .

Proof. These group have orders 4n. We first note that in the group defined by this presentation z2 is central and |x| =
4,|z| = 4 and|y| = 2nthen y™™ = y™. The orbitjgx'yyz)((z, —n, 2)) becomes:

3
X, Y, Z,2X,6,YyX, X", X,y,Z, ",

which has period 7. That is J¢, ,, ,((2,-n,2)) = 7.
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Theorem 5. L3, ((=2,n,2))= LJ3,,, ,({2,n,=2)) = hJ3*®D,

Proof. These groups have orders 4n(n — 1). Let us consider the group given by the presentation (—2, n, 2). We first note
in the group defined this presentation both x~2 and z2 are central, |x| = |z| = 4(n — 1),|ly| = 2n(n — 1) and x 3 = yz.

Let us consider the recurrence relations defined by the following:
Upiz = Uy + 2Upyq + Uyy, forn >3 whereuy = 1,u; = 0and u, = 0;
Vpas = Uy + 2V,44 + Upy, forn >3 wherevy = 0,v; = 1and v, = 0;
Wyy3 = Wy + 2Wy 44 + Wy, forn >3 wherew, = 0,w; = 0andw, = 1;

Then a routine induction shows that the number of x’s,y’s and z’s in nth entry of the Jacobsthal sequence is given by U,

.V, and W,_, respectively.
Here the start of the orbit /¢, ,, ,,((~2,1,2)) is

— — — — yy2 — 3453 — 231,7,6
Xo =X, X1 =Y, Xp =Z,X3 = XY"Z, X4 =Y XZ°, X5 =X"Y ' Z",
xg = x6z13y15 x, = x13y32;28 y. — x28,69,60 ...

We can see that the sequence will separate into some natural layers and each layer will be of such as

xUnzWnyvn  n = 0mod 6,
xUnyPnzWn  n =1mod6

_ { xUnyVnz¥n = 2mod 6

Tn = xUnyVnz¥n  n =3 mod6
yvnx¥nzWn  n =4 mod 6
xUnyvnzWn — n =0mod 6

Now the proof is finished if we note that the sequence will repeat when x, ssmn-1) =X, X 34-1,, =y and
Xy 3am-1),, = 2. Since the sequence can be said to form layers lenth seven then the period is 7. u,, (1 € N)that is P =

Omod7,P+1=1mod 7and P + 2 = 2 mod 7. Where we denote L]Ex_y‘z) (=2, n, 2)) by P. Examining this statement
in more detail gives

Xp = x“PzWPyYP,
Xppq = XUP+1YVP+1ZzWP41,
Xp+2 = qu+2yUP+ZZWP+2
UsingP =0mod7, P+1=1mod7andP + 2 = 2 mod 7 we obtain
Up = Uy =L upy  =u; =0,,Upy, = Uy =0

Vp =V =0,vp,1 =V =1L vp, =v, =0

and

wp =wo = 0,Wpy4q

w;=0,wp, =w,=1.

So, from the above equalities we have

Xp = X, Xpy1 = Y, Xpy2 = Z .
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Then from Theorem 3 it is clear that the smallest non-trivial integer satisfying the above conditions occurs when the
period is Rj22""". That is L](3x,y,z)((—2, n,2)) = hy34e-D),

The proof for the orbit]f‘x,y,z)((z, n,—2)) is similar to the above and is omitted.
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