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1 Introduction and Preliminaries 

It is known that the Jacobsthal sequence {𝐽𝑛} is defined recursively by the equation 

𝐽𝑛 = 𝐽𝑛−1 + 2𝐽𝑛−2                                                                                         (1) 

for 𝑛 ≥ 2, where 𝐽0 = 0 and 𝐽1 = 1.  

In [11], Koken and Bozkurt showed that the Jacobsthal numbers are also generated by a matrix 

  𝐹 = [
1 2
1 0

] , 𝐹𝑛 = [
𝐽𝑛+1 2𝐽𝑛
𝐽𝑛 2𝐽𝑛−1

] 

Kalman [9] mentioned that these sequences are special cases of a sequence which is defined recursively as a linear 

combination of the preceding k terms:  

𝑎𝑛+𝑘 = 𝑐0𝑎𝑛 + 𝑐1𝑎𝑛+1 +⋯+ 𝑐𝑘−1𝑎𝑛+𝑘−1, 

where 𝑐0, 𝑐1, ⋯ , 𝑐𝑘−1 are real constants. In [9], Kalman derived a number of closed-form formulas for the generalized 

sequence by companion matrix method as follows: 

𝐴𝑘 =

[
 
 
 
 
 
0 1
0 0

0  ⋯
1  ⋯

0       0
0       0

0 0
⋮ ⋮

0  ⋯
⋮  ⋯

0       0
⋮       ⋮

0 0
𝑐0 𝑐1

0 ⋯
𝑐2 …

0 1
𝑐𝑘−2 𝑐𝑘−1]

 
 
 
 
 

. 

Then by an inductive argument he obtained that 

𝐴𝑘
𝑛 [

𝑎0
𝑎1
⋮

𝑎𝑘−1

] = [

𝑎𝑛
𝑎𝑛+1
⋮

𝑎𝑛+𝑘−1

]. 

In [15], Yilmaz and Bozkurt defined the 𝑘 sequences of the generalized order-k Jacobsthal numbers as follows:  
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for 𝑛 > 0 and 1 ≤ 𝑖 ≤ 𝑘 

                                                    𝐽𝑛
𝑖 = 𝐽𝑛−1

𝑖 + 2𝐽𝑛−2
𝑖 +⋯+ 𝐽𝑛−𝑘

𝑖  ,                                                                            (2) 

with initial conditions 

𝐽𝑛
𝑖 = {

1 if 𝑛 = 1 − 𝑖,
for 1 − 𝑘 ≤ 𝑛 ≤ 0,

0 otherwise,

 

where 𝐽𝑛
𝑖  is the 𝑛th term of the 𝑖th sequence. If 𝑘 = 2 and 𝑖 = 1 the generalized order-𝑘 Jacobsthal sequence is reduced 

to the conventional Jacobsthal sequence. 

In [15], Yilmaz and Bozkurt showed that 

                                                                    

[
 
 
 
 
 
𝐽𝑛+1
𝑖

𝐽𝑛
𝑖

𝐽𝑛−1
𝑖

⋮
𝐽𝑛−𝑘+2
𝑖 ]

 
 
 
 
 

= 𝐶.

[
 
 
 
 
 
𝐽𝑛
𝑖

𝐽𝑛−1
𝑖

𝐽𝑛−2
𝑖

⋮
𝐽𝑛−𝑘+1
𝑖 ]

 
 
 
 
 

                                                                                (3)                                        

where 𝐶 is called the generalized order-k Jacobsthal matrix and 𝐶 is a k-square matrix as following: 

𝐶 =

[
 
 
 
 
1 2 ⋯ 1 1
1 0 ⋯ 0 0
0 1 ⋯ 0 0
⋮ ⋮  ⋮ ⋮
0 0 ⋯ 1 0]

 
 
 
 

                                                                            (4) 

Also, it was obtained that 𝐵𝑛 = 𝐶 ∙ 𝐵𝑛−1 where 

𝐵𝑛 =

[
 
 
 
𝐽𝑛
1 𝐽𝑛

2 ⋯         𝐽𝑛
𝑘

𝐽𝑛−1
1 𝐽𝑛−1

2 ⋯      𝐽𝑛−1
𝑘

⋮
𝐽𝑛−𝑘+1
1

⋮
𝐽𝑛−𝑘+1
2

⋮
⋯ 𝐽𝑛−𝑘+1

𝑘 ]
 
 
 

                                                             (5) 

 

Lemma 1. (Yilmaz and Bozkurt [15]). Let 𝐶 and 𝐵𝑛 be as in (4) and (5), respectively. Then, for all integers 𝑛 ≥ 0 

𝐵𝑛 = 𝐶
𝑛. 

Reducing the generalized order-k Jacobsthal sequence (𝑘 ≥ 2) by a modulus 𝑚, we can get the repeating sequences, 

denoted by 

{𝐽𝑛
𝑘,𝑚} = {𝐽1−𝑘

𝑘,𝑚 , 𝐽2−𝑘
𝑘,𝑚 , ⋯ , 𝐽0

𝑘,𝑚, 𝐽1
𝑘,𝑚, ⋯ , 𝐽𝑖

𝑘,𝑚, ⋯ } 

where 𝐽𝑖
𝑘,𝑚 ≡ 𝐽𝑖

𝑘(mod 𝑚). It has the same recurrence relation as in (2) [8]. 

Theorem 1. (Deveci et al [7]). The sequence {𝐽𝑛
𝑘,𝑚} (𝑘 ≥ 2) is periodic. 

The notation ℎ𝐽𝑘,𝑚 denotes the smallest period of {𝐽𝑛
𝑘,𝑚} (𝑘 ≥ 2)  [8]. 

Theorem 2. (Deveci et.al [7]). If 𝑝 is a prime such that 𝑝 ≠ 2, then ℎ𝐽𝑘,𝑝
𝛼
= |〈𝐶〉𝑝𝛼|. 

Definition 1. (Deveci and Sağlam [8]). Let ℎ𝐽(𝑎1,𝑎2,⋯,𝑎𝑘)
𝑘,𝑚

 denote the smallest period of the integer-valued recurrence 

relation 𝑢𝑛 = 𝑢𝑛−1 + 2𝑢𝑛−2 +⋯+ 𝑢𝑛−𝑘, 𝑢1 = 𝑎1, 𝑢2 = 𝑎2, ⋯ , 𝑢𝑘 = 𝑎𝑘when each entry is reduced modulo 𝑚.  
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Theorem 3. (Deveci and Sağlam [8]). For  𝑎1, 𝑎2, ⋯ , 𝑎𝑘 , 𝑥1, 𝑥2, ⋯ , 𝑥𝑘 ∈ ℤ, 𝑝 is a prime such that 𝑝 ≠ 2, 

gcd(𝑎1, 𝑎2, ⋯ , 𝑎𝑘 , p) = 1  and gcd(𝑥1, 𝑥2, ⋯ , 𝑥𝑘 , 𝑝) = 1, 

ℎ𝐽(𝑎1,𝑎2,⋯,𝑎𝑘)
𝑘,𝑝

= ℎ𝐽(𝑥1,𝑥2,⋯,,𝑥𝑘)
𝑘,𝑝

. 

A sequence of group elements is periodic if, after a certain point, it consists only of repetitions of a fixed subsequence. 

The number of elements in the repeating subsequence is called the period of the sequence. For example, the sequence 

𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑏, 𝑐, 𝑑, 𝑒, 𝑏, 𝑐, 𝑑, 𝑒,⋯ is periodic after the initial element 𝑎 and has period 4. A sequence of group elements is 

simply periodic with period k if the first k elements in the sequence form a repeating subsequence. For example, the 

sequence 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓,⋯ is simply periodic with period 6.  

Definition 2. (Deveci et.al [7]). The generalized order-k Jacobsthal orbit 𝐽𝐴
𝑘(𝐺)  for a finitely generated group 𝐺 = 〈𝐴〉, 

where 𝐴 = {𝑎1, 𝑎2, ⋯ , 𝑎𝑘} as following: the generalized order-k Jacobsthal orbit 𝐽𝐴
𝑘(𝐺) with respect to the generating set 

A  to be the sequence {𝑥𝑖} of the elements of 𝐺 such that 

𝑥𝑖 = 𝛼𝑖+1 for 0 ≤ 𝑖 ≤ 𝑘 − 1, 𝑥𝑖+𝑘 = {

(𝑥𝑖)
2(𝑥𝑖+1), 𝑘 = 2

for 𝑖 ≥ 0
(𝑥𝑖)⋯ (𝑥𝑖+𝑘−2)

2(𝑥𝑖+𝑘−1), 𝑘 ≥ 3

 

The length of the period of the generalized order-k Jacobsthal orbit 𝐽𝐴
𝑘(𝐺) is denoted by 𝐿𝐽𝐴

𝑘(𝐺) and is called the 

generalized order-k Jacobsthal length of 𝐺. 

Many references may be given for some special linear recurrence sequences in groups and related issues; see for example, 

[1,3,5,10,12-14]. Campbell and Campbell calculated the Fibonacci lengths of certain centro-polyhedral groups [2]. Deveci 

et.al obtained the periods of k-nacci sequences in centro-polyhedral groups and related groups [6]. In this paper, we obtain 

the lengths 𝐿𝐽(𝑥,𝑦,𝑧)
3 (〈2, −𝑛, 2〉), 𝐿𝐽(𝑥,𝑦,𝑧)

3 (〈−2, 𝑛, 2〉) and 𝐽(𝑥,𝑦,𝑧)
3 (〈2, 𝑛, −2〉) . 

2 Main Results and Proofs 

Definition 3. The polyhedral group (𝑙, 𝑚, 𝑛), for 𝑙, 𝑚, 𝑛 > 1 is defined by the presentation  

〈𝑥, 𝑦, 𝑧: 𝑥𝑙 = 𝑦𝑚 = 𝑧𝑛 = 𝑥𝑦𝑧 = 1〉. 

The polyhedral group  nml ,,  is finite if, and only if, the number 

𝜇 = 𝑙𝑚𝑛 (
1

𝑙
+
1

𝑚
+
1

𝑛
− 1) = 𝑚𝑛 + 𝑛𝑙 + 𝑙𝑚 − 𝑙𝑚𝑛 

 is positive. Its order is 2𝑙𝑚𝑛/𝜇. 

For more information on these groups see [4, p.67-68]. 

Definition 4. The centro-polyhedral group 〈𝑙, 𝑚, 𝑛〉, for 𝑙, 𝑚, 𝑛 ∈ ℤ is defined by the presentation  

〈𝑥, 𝑦, 𝑧: 𝑥𝑙 = 𝑦𝑚 = 𝑧𝑛 = 𝑥𝑦𝑧〉. 

For more information on these groups see [2,4]. 

Theorem 4.  𝐿𝐽(𝑥,𝑦,𝑧)
3 (〈2, −𝑛, 2〉) = 7 . 

Proof. These group have orders 4𝑛. We first note that in the group defined by  this presentation 𝑧2 is central and |𝑥| =

4, |𝑧| = 4 and|𝑦| = 2𝑛 then 𝑦−𝑛 = 𝑦𝑛. The orbit 𝐽(𝑥,𝑦,𝑧)
3 (〈2, −𝑛, 2〉) becomes: 

𝑥, 𝑦, 𝑧, 𝑧𝑥, 𝑒, 𝑦𝑥, 𝑥3, 𝑥, 𝑦, 𝑧,⋯, 

which has period 7. That is 𝐽(𝑥,𝑦,𝑧)
3 (〈2, −𝑛, 2〉) = 7 . 
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Theorem 5.  𝐿𝐽(𝑥,𝑦,𝑧)
3 (〈−2, 𝑛, 2〉)= 𝐿𝐽(𝑥,𝑦,𝑧)

3 (〈2, 𝑛, −2〉) = ℎ𝐽3,4(𝑛−1). 

Proof. These groups have orders 4𝑛(𝑛 − 1). Let us consider the group given by the presentation 〈−2, 𝑛, 2〉. We first note 

in the group defined this presentation both 𝑥−2 and 𝑧2 are central, |𝑥| = |𝑧| = 4(𝑛 − 1),|𝑦| = 2𝑛(𝑛 − 1) and 𝑥−3 = 𝑦𝑧. 

Let us consider the recurrence relations defined by the following: 

𝑢𝑛+3 = 𝑢𝑛 + 2𝑢𝑛+1 + 𝑢𝑛+2  for 𝑛 ≥ 3  where 𝑢0 = 1, 𝑢1 = 0 and 𝑢2 = 0; 

𝑣𝑛+3 = 𝑣𝑛 + 2𝑣𝑛+1 + 𝑣𝑛+2  for 𝑛 ≥ 3  where 𝑣0 = 0, 𝑣1 = 1 and 𝑣2 = 0; 

𝑤𝑛+3 = 𝑤𝑛 + 2𝑤𝑛+1 + 𝑤𝑛+2  for 𝑛 ≥ 3  where 𝑤0 = 0,𝑤1 = 0 and 𝑤2 = 1; 

Then a routine induction shows that the number of 𝑥’s,𝑦’s and 𝑧’s in 𝑛th entry of the Jacobsthal sequence is given by 
nu

,
nv  and nw ,  respectively. 

Here the start of the orbit 𝐽(𝑥,𝑦,𝑧)
3 (〈−2, 𝑛, 2〉)  is 

𝑥0 = 𝑥, 𝑥1 = 𝑦, 𝑥2 = 𝑧, 𝑥3 = 𝑥𝑦2𝑧, 𝑥4 = 𝑦
3𝑥𝑧3, 𝑥5 = 𝑥

3𝑦7𝑧6, 

𝑥6 = 𝑥6𝑧13𝑦15, 𝑥7 = 𝑥13𝑦32𝑧28, 𝑥8 = 𝑥
28𝑦69𝑧60, ⋯. 

We can see that the sequence will separate into some natural layers and each layer will be of such as 

𝑥𝑛 =

{
 
 

 
 
𝑥𝑢𝑛𝑧𝑤𝑛𝑦𝑣𝑛 , 𝑛 ≡ 0 mod 6,

𝑥𝑢𝑛𝑦𝑣𝑛𝑧𝑤𝑛 , 𝑛 ≡ 1 𝑚𝑜𝑑 6

𝑥𝑢𝑛𝑦𝑣𝑛𝑧𝑤𝑛 , 𝑛 ≡ 2 𝑚𝑜𝑑 6

𝑥𝑢𝑛𝑦𝑣𝑛𝑧𝑤𝑛 , 𝑛 ≡ 3 𝑚𝑜𝑑 6

𝑦𝑣𝑛𝑥𝑢𝑛𝑧𝑤𝑛 , 𝑛 ≡ 4 𝑚𝑜𝑑 6

𝑥𝑢𝑛𝑦𝑣𝑛𝑧𝑤𝑛 , 𝑛 ≡ 0 𝑚𝑜𝑑 6

 

Now the proof is finished if we note that the sequence will repeat when 𝑥ℎ𝐽3,4(𝑛−1) = 𝑥, 𝑥ℎ𝐽3,4(𝑛−1)+1 = 𝑦 and 

𝑥ℎ𝐽3,4(𝑛−1)+2 = 𝑧. Since the sequence can be said to form layers lenth seven then the period is 7. 𝜇,, (𝜇 ∈ ℕ)that is 𝑃 ≡

0 mod 7, 𝑃 + 1 ≡ 1mod 7 and 𝑃 + 2 ≡ 2 mod 7. Where we denote  𝐿𝐽(𝑥,𝑦,𝑧)
3 (〈−2, 𝑛, 2〉) by 𝑃. Examining this statement 

in more detail gives  

𝑥𝑃 = 𝑥𝑢𝑃𝑧𝑤𝑃𝑦𝑣𝑃 , 

𝑥𝑃+1 = 𝑥
𝑢𝑃+1𝑦𝑣𝑃+1𝑧𝑤𝑃+1 , 

𝑥𝑃+2 = 𝑥𝑢𝑃+2𝑦𝑣𝑃+2𝑧𝑤𝑃+2  

Using 𝑃 ≡ 0 mod 7,   𝑃 + 1 ≡ 1 mod 7 and 𝑃 + 2 ≡ 2 mod 7 we obtain   

𝑢𝑃 ≡ 𝑢0 = 1, 𝑢𝑃+1 ≡ 𝑢1 = 0, , 𝑢𝑃+2 ≡ 𝑢2 = 0   

𝑣𝑃 ≡ 𝑣0 = 0, 𝑣𝑃+1 ≡ 𝑣1 = 1, 𝑣𝑃+2 ≡ 𝑣2 = 0   

and 

𝑤𝑃 ≡ 𝑤0 = 0,𝑤𝑃+1 ≡ 𝑤1 = 0,𝑤𝑃+2 ≡ 𝑤2 = 1 . 

So, from the above equalities we have  

𝑥𝑃 = 𝑥, 𝑥𝑃+1 = 𝑦, 𝑥𝑃+2 = 𝑧 . 



 63 

Then from Theorem 3 it is clear that the smallest non-trivial integer satisfying the above conditions occurs when the 

period is ℎ𝐽2,2
𝑛−1

. That is 𝐿𝐽(𝑥,𝑦,𝑧)
3 (〈−2, 𝑛, 2〉) = ℎ𝐽3,4(𝑛−1). 

The proof for the orbit 𝐽(𝑥,𝑦,𝑧)
3 (〈2, 𝑛, −2〉)  is similar to the above and is omitted.  
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