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Abstract: In this paper we introduce the modulus function of y,,. We establish some inclusion relations, topological results and we
characterize the duals of the 7 sequence spaces.

1. Introduction

A complex sequence, whose kth term is x; is denoted by {x;} or simply x. Let w be the set of all sequences x = (x;)

and ¢ be the set of all finite sequences. Let L, ¢, c, be the sequence spaces of bounded, convergent and null sequences

x = (x;) respectively. In respect of L, c,c, we have ||x|| = sup|x,|, where x = (x;) € ¢, € ¢ < .. A sequence x =
k

1
{x, } is said to be analytic if sup|x, |k < . The vector space of all analytic sequences will be denoted by A. A sequence
k

1
x is called entire sequence if Il(imlxkli. The vector space of all entire sequences will be denoted by T". y was discussed

in Kamthan [5]. Matrix transformation involving x were characterized by Sridhar [14] and Sirajiudeen [13]. Let yf be
1

the set of all those sequences x = (x;) such that (k! Z—’; )E — 0 as k — oo. Then yf is a metric space with the metric

1
d(x,y) = sup[(k! |"" _y"|)";k ~ 123, }
k Ty

Orlicz [11] used the idea of Orlicz function to construct the space (LM). Lindenstrauss and Tzafriri [7] investigated
Orlicz sequence spaces in more detail, and they proved that every Orlicz sequence space [,, contains a subspace
isomorphic to [,,(1 < p < ). Subsequently the different classes of sequence spaces were defined by Parashar and
Choudhary [4], Mursaleen et al. [9], Bektas and Altin [1], Tripathy et al. [15], Rao and Subramanian [3] and many
others.

The Orlicz sequence spaces is the special case of Orlicz space, studied in Ref [6].

Recall [6, 11] an Orlicz function is a function M: [0, ] — [0, o] which is continuous, non-decreasing and convex with
M) =0,M(x) >0, for x >0 and M(x) - o as x - c. If the convexity of Orlicz function M is replaced by
M(x +y) < M(x) + M(y) then this function is called modulus function, introduced by Nakano [10] and further
discussed by Ruckle [12] and Maddox [8] and many others.

An Orlicz function M is said to satisfy A,-condition for all values of w, if there exists a constant k > 0, such that
MQu) < KM(u) (u = 0). The A,-condition is equivalent to M(lu) < kIM(u), for all values of u and for [ > 1
Lindenstrauss and Tzafriri [7] used the idea of Orlicz function to construct Orlicz sequence space
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o0 %
b ={rew: Y M([E]) <ot >0

k=1

The space [, with the norm

x|l = inf{nk > oi: M <|:§—i ) < 1} @)
k=1

becomes a Banach space which is called an Orlicz sequence space. ForM(t) = tP,1 < p < o, the space [, coincide
with the classical sequence space [,. Given a sequence x = {x,} its nth section is the sequence x™ =

{xl,xl,...,xn,o,o,...},5"=(0,0,...,%,0,0,...),nk in the nth place and zero's elsewhere and S™=

(0,0, ey Tk 0,0, )E in the nth place, — in the (n + 1)st place and zero's elsewhere. An FK-space (Frechet
k! k! k! k!
Coordinate Space) is a Frechet Space which is made up of numerical sequences and has the property that the coordinate

functionals Py (x) = x,(k = 1,2,3, ...) are continuous. We recall the following definitions (see [16]).

An FK-space is a locally convex Frechet space which is made up of sequences and has the property that coordinate
projections are continuous. An metric space (x,d) is said to have AK (or sectional convergence) if and only if
d(x™,x) > 0 as n - o (see [16]). The space is said to have AD (or) be an AD space if ¢ is dense in X. We note that
AK implies AD by [2].

If X is a sequence space, we define

1. X' = the continuous dual of X;
2. X*={a=(ap):2r-q1lagx;| < o, for each x € X};
3. XB ={a = (ap):X7, arxy is convergent for each x € X};
4. XV = {a = (a,): sup| X =1 arxi| < oo, for each x € X};
n
5. Letbe an FK-space © ¢. Then X/ = {f(6™): f € X'}.
X% XB, X7 are called the a-(or Kothe Toeplitz) dual of X, B -( or generalized K6the T6 eplitz) dual of X, y-dual of X.
Note that X* ¢ Xf c X7. If X c Y then Y# ¢ X*, foru = a,B ory.

Lemma 1.1. (See[16, Theorem 7.27]). Let X be an FK space > ¢. Then (i) X¥ < X/. (ii) If X has AK, X# = XF_ (iii)
If X has A.D., X# = X7,

2. Definition and Preliminaries

Let w denote the set of all complex sequences x = (x;)j=, and f: [0,%) — [0, ) be a modulus function.

Let
1
X
XF= {x € w:lim (f (k' —x )k> = 0 for some m; > 0}
k- %
1
I'f =4{x e w:lim f(k! x—k)k = 0 for some ; >0
s k-0 %
and

T o__ Xk
AF = =

1
X €E w:sup (f (k! )k> < o for some m;, > 0}
k

The space x £ is a metric space with the metric
) = 1] ®3)

T

1
Xk — Yi|[\k

Tk

)

The space I'y and Af is a metric space with the metric

d(x,y) = inf{nk > 0:sup (f (k!
K
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) = 1] ()

1
Xk — Vk|\k

Tk

)

d(x,y) = inf{nk > 0:sup (f(
K

3. Main Result
Proposition 3.1.

Xk
Tk

i

Proof. Let x € x7. Then we have the following implications
o \x
k|\k
f((k!—))ﬁOask—mo. (5)
1
") < f((k! 2
Tk

1
xF < I'F with the hypothesis that f( e k) <f (k!

Xk
Tk

T

1
)"); by our assumption, implies that

Butf(—

Xk
Tk
1
Xy |&
- f<|— >—>Oask—>ooby(5)
Ty

=x €I}
= X7 C I'f.
This completes the proof.
Proposition 3.2.
X7 has AK where f is a modulus function.

1
Proof. Let x = {x;} € x7, then {f (k! )k} € xf and hence

Xk
Tk

1
sup f (k! |x—k|)E - 0asn—->ow 6
k=n+1 T (€)

1
d(x,x[“]) = sup f ((k! |z—k|)k> — 0 asn — o by using (6).
K

kzn+1
= x" 5 xasn - o,
implying that xf has AK. This completes the proof.
Proposition 3.3.

Xf is solid.
1 1
Proof. Let |x;| < |y, and let y = () € xF. f<(k! ke )k) < f((k! ke )") because f is non-decreasing. But
Tk Tk
1 1 1
f ((k! Xk )k) € x, because y € xf. Thatis, f <(k! ad 4 )k) —>0ask »oand f ((k! Tk )k) - 0ask - «.
Tk Tk Tk

Therefore, x = {x; } € x7. This completes the proof.
Proposition 3.4.
Let f be a modulus function which satisfies A,-condition. Then y < x7.

Proof. Let
XEY (7)
1 1
Then ((k! z—i )") < e sufficiently large k and every e > 0. By taking m; > % f((k! z—’; )k> < f(nik) < f(2¢)

(because f is non-decreasing)
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)jS”@ ®)

f((k! |:§—’;

by A,-condition, for some k >0 <e. f <(k!

1

)k’) — 0 as k - o (by defining f(e) < %). Hence x € xf. From (7)

Xk
Tk

and since
X € X7, )
we get y < x¢. This completes the proof.
Proposition 3.5.
If f is a modulus function, then xf is linear space over the set of complex number C.
Proof. Let x,y € xf and a, 8 € C. In order to prove the result we need to find some m; such that

f((k!|axk+ﬁ)/k ))E—»Oask—mo (10)

Ty

Since, x,y € xf such that
X [\E

f ((k! )i) —0ask - w (11)

Since f is a non-decreasing modulus function, we have
1
/)

: o o 2 ) <1

T

(== (e

T Ty

1
K Yk
|| ==

1 . 1 1 1 1
Take m;, such that — = min {——,——
Tk la| 7y " |B] 72

(R (G

}. Then

)%+ (k!

— 0ask — «. So (ax + By) € xf. Therefore, x7 is linear. This completes the proof.

X Ve

Uz

Tk T

f) - 0by (11).

Hence f (k! —“x";kﬁy"D%

Definition 3.6.

)%—>0ask—>

Let P = (Py) be any sequence of positive real numbers. Then we define xf(P) = {x =) f (k! %
k
) } Suppose that Py is a constant for all k, the x 7 (P) = xf.

Proposition 3.7.
Let 0 < p, < g, and let {Z—’;} be bounded. Then x£(q) = x7t(p).
Proof. Let

X € X}T (q), (12)

1\ 9k
ad )E - 0ask - o
T (13)

1\ K
i )") and 1, = 2,
dk

Xk
Tk

Lett, = (f (k!

Since pr < qx, wehave 0 < 4, < 1.
Take 0 < A < A;. Define



0! (tk = 1)

w = {tk, (ty =1
k= te, (t,<1)

0, t, < 1) and v, = {

82

(14)

tk = uk + vk; tklk = ukak + vkak. NOW |t fO”OWS that uklk S uk S tk and Uklk S vkl. Slnce tklk = uklk + Uklk,

then t, % < t, + v, 2.
1\ 9k A 1y 9k
() ) = ()
18 K\ Pr/ak
- f((k!;_i)f) g(f(k!;;_';
l Pk l dk
=><f(k! )k> S(f(k! )")

1\ 9k
But (f (her [ )") — 0ask - by (13)
1\ Pk
Therefore (f (k! o )") — 0as k — . Hence
k

Xk Xk

T Tk

i)

Xk Xk

Tk Tk

Xk
Tk

x € xf(p)

From (12) and (15) we get x7(q) < xf(p).
Thus completes the proof.
Proposition 3.8.

(@) Let0 <inf <p, <1.Then xF(p) c xF.
Pk
(b) Let1 < p, < sup <oo.Then 7 < xF(p).
Pk
Proof.

(@) Letx € xf(p)

1\ Pk
R
(f(k!|—k)k> > 0ask > o
Ty

Since 0 < inf < p, < 1.
Pk

(1)) (et

From (16) and (17) it follows that x € x7. Thus x7 (p) < xf. We have thus proven (a).

(b) Letp, = 1 foreach k and sup < .
Pk

Letx € x7

(f(k!|;—z)%>—>0ask—>oo

Since 1 < p,, < sup < o we have

Pk
(f (k! |;—’; f)pk < (f (k! z—’;

/)

(15)

(16)

an

(18)

(19)
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1

1\ Pk
)") — 0as k — o by using (18). Therefore x € x7 (p). This completes the proof.

Xk
Tk

(f (k!

Proposition 3.9.
Let 0 < p; < qi < oo for each k. Then xF(p) S x7(q).
k

Proof. Let x € x7 (p).

(f(k! a

Pk
% Oask
- ) —UasK —> o (20)

1

Pk
)k> < 1 for sufficiently large k.

)%>pk
(21)

1\ 9k
)k> - 0 as k - o (by using (20))

This implies that (f (k!

Xk
Tk

Xk

T

Since f is non-decreasing, we get
Zk

(f(k! ad f)qk < (f(k!

Tk
Xk
I |—
= (f (k. |nk
x € x5 (q)
Hence, 7 (p) < xft(q).
This completes the proof.

Proposition 3.10.

xf (p) is ar-convex for all r where 0 < r < inf. Moreover if p, = p < 1 Vk, then they are p-convex.
Pk

Proof. We shall prove the proposition for xf(p). Let x € x7(p) and 7 € (0, lim pn). Then, there exists k, such that
n—-oo
r < pr, Vk > ko. Now, define

oo =nfnar (e P2 ) (e 220)) |

since, r < p, < 1,Vk > k. g* is subadditive. Further, for 0 < || < 1; |A|Pk < A", VK > k.

g (Ax) < |A"g"(x) (23)

Now, for0 < 8§ < 1,

U = {x: g*(x) < 6}, which is an absolutely r — convex set (24)

for

A"+ |ul" < Lx,y €U (25)

Now,

9" Ax +py) < g*(Ax) + g"(uy) < 1A"g"(x) + |ul"g*(v) < 11”6 + |u|" 6 using (23) and (24)

< (JA" + |u|")é < 1.6, by using (25) < &

If p, =p <1 Vkthenfor 0 <r <1, U={x:g*(x) <8} is an absolutely p-convex set. This can be obtained by a
similar analysis and therefore we omit the details. This completes the proof.
Proposition 3.11.

)’ = a7
Proof.
Step 1: 7 < I by Proposition 3.1;

= (Ff")ﬁ c (;(}T)B. But (Ff")B = A7 see (3).
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7 < (xp)’ (26)

Step 2: Lety € ()(f)ﬁ we have f(x) = Xi=; XYy, With x € x7. We recall that $® has % in the kth place and zero's

Xk
Tk

1 1
elsewhere, with x = &, (f (k! )") = {0,0, oo f <(711i>0 ...}which converges to zero. Hence, S® € x7. Hence,
k

d($%,0) = 1. But |y,| < lIfId(S®,0) < oo Vk. Thus (y;) is a bounded rate sequence and hence a rate analytic
sequence.
In other words y € Af.

) < @7)

Step 3: From (25) and (26) we obtain ()(}T)ﬁ = AF. This completes the proof.
Proposition 3.12.

(F)" = nforu=a,B.y.f.
Proof.
Step 1: x has AK by Proposition 3.2. Hence, by Lemma 1.1 (ii).

We get ()(}T)B = ()(]’Z)f. But (;(}T)ﬁ = AT
Hence
T f T
(xF) = 1F (28)
Step 2: Since AK=AD. Hence by Lemma 1.1.(iii).
We get ()(}T)B = (xF)". Therefore

Y
(xf) =17 (29)
Step 3: xf is normal by Proposition 3.3. Hence by Proposition ?? and (12), we get
3 a 3 14 Vs
()(f) = (Xf) = A7 (30) (30)
From (28) and (30) we have (xF)“ = (X}T)B =(x7) = (X}T)f = A7

Proposition 3.13.
The dual space of x7 is A. In other words x; = A.

Proof.
We recall that S has % in the kth place and zero’s elsewhere with
. 1 1
X [\& 1k
x=5®, f(k! i3 )" oo, [ 9,
Ty Tk

Hence, S% € xF. We have f(x) = ¥, x ¥, With x € 7 and f € ()(}T)awhere XF is the dual space of x7. Take x =
S® € x7. Then

1yl < IFIld(S%,0) < oo for all k. 1)

Thus (y,) is a bounded rate sequence and hence a rate of analytic sequence. In other words, y € A. Therefore y; = A.
This completes the proof.

Lemma 3.14 ([16, Theorem 8.6.1]).

Y o X & Y/ c X/ where X is an AD-space and Y on FK-space.

Proposition 3.15.

Let Y be any FK-space > ¢. Then Y o x if and only if the sequence S® s weakly analytic.

Proof. The following implications establish the result
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Y o xf & Y/ c xf since x, has AD by Lemma 3.14
& for each f € Y', the topological dual of Y.

& f(S™) is rate of analytic.

& 5® js weakly rate of analytic.

This completes the proof.

Proposition 3.16.

X7 is a complete metric space under the metric

1
)" k=123, }
Where x = (x) € x7 and y = (¥ )xf-
Proof. Let {x(™} be Cauchy sequence in xF. Then given any e > 0 there exists a positive integer N depending on e

Xk — Yk

s

d(x,y) = m;p {f (k! |

x]({n) _x}(cm)

1
x
such that d(x™,x™)) < € for all n > N and for m > N. Hence, sup f (k! ) < e forall n > N and for
k

m=N.

==

(n)
Consequently f (k! ank

) is a Cauchy sequence in the metric space C of a complex numbers.

But C is complete. So,

M\
f(k! x"—) —>f<k!

Ty
Hence there exists a positive integer no such that

Xk

T

k
asn — oo,

ngn) — Xk

Ty

k
) < eforalln < n,.

supA f (k!
k
In particular, we have

m) _
f<k! x5 = %

Ty
Now
X % X — ,(cno) x;EnO) k
f k!n_ <f|k! - +f| k! - <e—-0ask - .
k k k
Thus

==

X
f(k! n_k) <e—-0ask—> .
k

That is x € x7.
Therefore xf is a complete metric space. This completes the proof.
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