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Abstract: Since the obtained chiral alcohols are rather useful as well as biologically active compounds, 

the reduction of ketones to their respective alcohols is a crucial topic in synthetic chemistry. Thus, a 

new phosphinite ligand was synthesized by the interaction of cationic species N-vinyl imidazolium (1) 

with PCy2Cl. This phosphinite ligand in combination with [Ru(η6-p-cymene)(µ-Cl)Cl]2 and Ir(η5-

C5Me5)(μ-Cl)Cl]2 gave active catalytic systems for transfer hydrogenation reaction. Under optimum 

circumstances, ruthenium complex (3) showed rather a high conversion in the reduction reaction of 

acetophenone. Furthermore, reversibility of the transfer hydrogenation reaction was found to be low 

under these reaction circumstances. 
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1. Introduction 

Phosphino-imidazolium salts were first designed by Chauvin and Canac to prepare transition 

metal complexes having ionic character [1,2], and when used in homogeneous catalytic reactions by 

Zhao et al., [3-6] these complexes exhibited a high activity [7,8]. Afterward, the synthesis and 

applications of phosphinite-imidazolium salts have also become an effective field of study. Phosphinite-

imidazolium salts were used as catalysts in the preparation of phthalate and maleate diesters, 3,4-

dihydropyrimidin-2(1H)-(thio)ones, E-cinnamates, and coumarin derivatives by Valizadeh et al. [9-12]. 

Iranpoor et al., using these compounds, investigated the catalytic efficiency of aryl halides in 

dehalogenation, silylation, and Heck reactions in the presence of PdCl2 [13-15]. However, the 

application of complexes of phosphinite compounds based on the ionic liquid in asymmetric transfer 

hydrogenation reaction was first performed by our study group [16-18]. 

The reduction of carbonyl compounds using a catalyst, and dihydrogen (H2), hydrides, or H2-

donors as a source of hydrogen is an important route to obtaining alcohols [19-21]. In molecular 

hydrogenation, dihydrogen is used as a hydrogenation source, while hydrides are used in metal hydride 

reduction, and a hydrogen donor is used in transfer hydrogenation. It has shown that transfer 

hydrogenation is more advantageous than the conventional use of hydrides or direct hydrogen. Among 

them are (a) equipment is simpler; (b) catalyst loading is lower; (c) handling is safer; (d) solvents are 

environmentally friendly; (e) by-products are facile removable and volatile; and (f) the process may be 

used in industrial processes [22,23]. In this reaction, hydrogen is transferred from an organic source (e.g. 

isopropanol or formic acid) to an unsaturated bond of a compound (e.g. ketone or alkene), a metal is 
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used as a catalyst, often a base is also required [24]. Metal catalysts such as transition metal complexes 

(Ru, Ir, or Rh) containing phosphinites displayed high catalytic activity and became the most common 

organometallic compound employed in the transfer hydrogenation reaction [25-32].  

Continuing our previous research, the present study reports the synthesis of an imidazole 

containing ionic liquid (IL) via the regioselective epoxide ring-opening reaction. The ionic liquid (IL) 

was converted to the corresponding chiral functionalized ionic liquid-based phosphinite ligand (P-FIL) 

by adding phosphinite moiety to the ionic liquid through SN2 reaction, and then the corresponding Ru(II) 

and Ir(III) transition metal complexes were prepared. Structures of all new compounds were elucidated 

by 31P, 1H, 13C NMR, and FT-IR spectroscopies. Afterward, the application of Ru(II) and Ir(III) 

compounds as catalysts were investigated in the transfer hydrogenation (TH) of acetophenone 

derivatives to their respective 1-phenylethanol derivatives using isopropanol as a hydrogen source. 

2. Materials and Methods 

2.1. Materials 

If it is not stated otherwise, materials and solvents were employed as received. The reactants 1-

vinylimidazole (99%), chlorodicyclohexylphosphine (97%) (PCy2Cl), n-butyllithium solution (1.6 M in 

hexane; n-BuLi), (±)-epichlorohydrin (99%), dichloro(p-cymene)ruthenium(II) dimer, [Ru(η6-p-

cymene)(µ-Cl)Cl]2 (99%) and pentamethylcyclopentadienyliridium(III) chloride, dimer, Ir(η5-C5Me5) 

(μ-Cl)Cl]2 were purchased from Sigma-Aldrich (Germany). The phosphinite ligand and their complexes 

were prepared under an inert atmosphere employing standard Schlenk techniques. CaH2 was used to dry 

2-propanol. A Bruker AV400 spectrometer was used to record 1H, 13C and, 31P-{1H} nuclear magnetic 

resonance (NMR) spectra. An Agilent Cary 630 Fourier Transform infrared spectrometer was used to 

obtain the infrared spectra. A Costech ECS 4010 instrument was used to conduct elemental analysis. 

Melting points of the products were obtained by means of a Stuart SMP40 apparatus with an open 

capillary. GC analysis was conducted with a Shimadzu GC 2010 Plus instrument equipped with 

cyclodex B (Agilent) capillary column (5% biphenyl, 95% dimethylsiloxane; 

30 m × 0.32 mm × 0.25 μm).  

2.2. GC analyses  

The GC parameters for TH of acetophenone derivatives are given below; init. temp., 50 ºC; init. 

time, 1.1 min; solv. del., 4.48 min; temp. ramp 15 ºC/min; ending temp., 270 ºC; hold time, 5 min; last 

time, 20.76 min; inj. port temp., 200 ºC; det. temp., 200 ºC; inj. vol., 2.0 μL.  

2.3. A general protocol for the catalytic hydrogen transfer reaction 

A representative protocol for TH of ketones is given below: a solution of pre-catalysts (3-

4) (0.005 mmol), potassium hydroxide (0.025 mmol), and respective ketone (0.5 mmol) in isopropanol 

that was degassed (5 mL) was heated to reflux until the reactions finished. Then, a specimen was taken 

from this medium, followed by dilution with acetone and analyzing immediately by GC. The 

conversions are calculated depending on the remaining ketone. 1H NMR spectra of the resulting products 

were as anticipated. 

2.4. Preparation and structure elucidation of compounds 

2.4.1 Preparation of 3-(3-chloro-2-hydroxypropyl)-1-vinyl-1H-imidazol-3-ium chloride, (1)  

Concentrated HCl (10.50 mL, 128 mmol) was cautiously added into an ethanol (20 mL) solution 

of 1-vinylimidazole (11.30 mL, 11.764 g, 125 mmol), which was stirred at ambient temperature. 

Warning: The neutralization of a base with a strong acid is rather exothermic. Having added acid, it 
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was pended until the medium cooled to ambient temperature. Then, the addition of (±)-epichlorohydrin 

(10.16 mL, 12.027 g, 130 mmol) was carried out dropwise by stirring the solution, meanwhile, 

temperature of the solution was kept at 25 °C. Afterward, the reaction flask was closed and stirred at 

ambient temperature for 24 – 48 hours. Then, removal of the solvent of the solution in vacuo with 

warming at 70 °C, and keep warming under reduced pressure afforded a liquid that became more viscous 

when dried further, which was then recrystallized from ethyl acetate at 0 oC. The precipitated solid part 

was filtered and dried under reduced pressure giving 1 as an off-white solid. Yield 27.22 g, 97.6 %, 

Melting Point = 99-101 °C. 1H NMR (400.1 MHz, DMSO-d6, ppm): δ: 9.46 (s, 1H, –NCHN+–), 8.19 

and 7.85 (2xs, 2H, –NCHCHN–), 7.35-7.29 (m, 1H –CH=CH2), 6.05 (br, 1H, –CHOH), 5.98-5.94 (m, 

1H, –CH=CH2 (a)), 5.44-5.40 (m, 1H, –CH=CH2 (b)), 4.42-4.39 (m, 1H, –N+CH2 (a)), 4.20-4.15 (m, 

1H, –N+CH2 (b)), 4.10 (br, 1H –CHOH), 3.45 (m, 2H,–CH2Cl); 13C NMR (100.6 MHz, DMSO-d6, 

ppm): δ 136.43 (–NCHN+–), 129.22 (–NCH=CH2), 124.46, 119.20 (–NCHCHN+–), 109.21 (–

NCH=CH2), 68.86 (–CHOH), 52.99 (–N+CH2CH(OH)), 46.91 (–CH2Cl); IR (cm-1): υ 3369 (O-H), 

3116, 3041 (aromatic C-H), 2989, 2888 (aliphatic C-H), 1575 (C=N), 1162 (C-N) cm-1; Analysis results 

for C8H12Cl2N2O (223.10g/mol): calcd. C 43.07, H 5.42, N 12.56; found C 42.98, H 5.36, N 12.51. 

2.4.2 Preparation of 3- (3-chloro-2-((dicyclohexylphosphaneyl)oxy)propyl)-1-vinyl-1H-

imidazol-3-ium chloride, (2) 

A CH2Cl2 (20 mL) solution of 1 (0.105 g, 0.47 mmol) under an inert atmosphere was cooled to 

−78 °C in an acetone and dry ice bath. A hexane solution of n-BuLi (0.293 mL, 0.47 mmol) was added 

dropwise into this cooled solution. Followed by the addition, the solution was stirred at −78 °C for 1 h 

and further 45 minutes at room temperature (RT). Afterward, the reaction solution was cooled to −78 °C 

again and a solution of dicyclohexylchlorophosphine (0.112 g, 0.47 mmol) in CH2Cl2 (10 mL) was 

added dropwise to this solution, which was stirred for a further 1 h at −78 °C. Having removed the 

cooling bath, the solution was further stirred for 3 hours at RT and 31P NMR spectroscopy was used to 

follow the progress of the reaction. After ligand formation was observed, removal of the precipitated 

lithium chloride was performed by filtration under an inert atmosphere, followed by removal of the 

volatiles in vacuo, which gave a viscous oil phosphinite ligand, 2. 31P-{1H} NMR (162.0 MHz, CDCl3, 

ppm): δ 148.99 (s, OPCy2).  

2.5. General protocol for the synthesis of (IL-OPCy2-Metal) complexes  

Metal precursor (0.40 mmol) and [(Cy2P)-C8H11Cl2N2O], 2 (0.40 mmol) were dissolved in dried 

CH2Cl2 (25 mL) under an inert atmosphere, and then this mixture was stirred for 1 h at RT. The volume 

of the solution was reduced to 1-2  mL in vacuo, and petroleum ether (15  mL) was added to afford the 

respective metal complexes as microcrystalline solid. This solid was separated by filtrating the mixture 

and dried under reduced pressure.  

2.5.1 [3-(3-chloro-2-({[dichloro(η6-p-cymene)ruthenium]dicyclohexylphosphanyl}oxy) propyl)-

1-vinyl-1H-imidazol-3-ium chloride], (3) 

Yield: 280 mg, 96.5%; Melting point:113-115 °C. 1H NMR (400.1 MHz, DMSO-d6, ppm): δ: 

9.59 (s, 1H, –NCHN+–), 8.25, 7.91 (2xs, 2H, –NCHCHN+–), 7.40-7.34 (m, 1H, –CH=CH2), 5.99 (br, 

1H, –CH=CH2 (a)), 5.83-5.79 (m, 4H, aromatic protons of p-cymene), 5.43 (br, 1H, –CH=CH2(b)), 5.41 

(br, 1H, –CHOP), 4.43 (d, 1H, J=13.23 Hz, –N+CH2 (a)), 4.19 (d, 1H, J=13.61 Hz, –N+CH2 (b)), 3.69 

(m, 2H, –CH2Cl), 2.84-2.81 (m, 1H, –CH(CH3)2 of p-cymene), 2.46 (m, 2H, –CH of P(C6H11)2), 2.08 

(s, 3H, –CH3Ph of  p-cymene), 1.78 + 1.23-1.18 (m, 26H, (CH3)2CH Ph of p-cymene + CH2 of 

P(C6H11)2); 13C NMR (100.6 MHz, DMSO-d6, ppm): δ: 136.63 (–NCHN+–), 129.35 (–NCH=CH2), 

119.20, 124,54 (–NCHCHN+–), 109.10 (–NCH=CH2), 106.80, 100.53 (quaternary carbons of p-

cymene), 86.83, 85.98 (s, aromatic carbons of p-cymene), 73.25 (d, JP-C=6.0 Hz –CHOP), 53.01 (–
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N+CH2CH(OP)), 46.91 (–CH2Cl), many resonances at between 46.08-45.44 for –CH of P(C6H11)2), 

30.43 (–CH(CH3)2  of p-cymene), many signals at between 28.31-26.11 for –CH2 of P(C6H11)2), 21.96 

(–CH(CH3)2 Ph of p-cymene), 18.33 (–CH3Ph of  p-cymene); 31P-{1H} NMR (162.0 MHz, CDCl3, ppm) 

δ: 156.01 (s, OPCy2);31P-{1H} NMR (162.0 MHz, DMSO-d6, ppm) δ: 158.20 (s, OPCy2); IR (cm-1); 

υ 3041 (aromatic C-H), 2922, 2851 (aliphatic C–H), 1446 (P-Cy), 1054 (O-P), 533 (Ru-P); Analytical 

results for C30H47Cl4N2OPRu (725.56 g/mol): calcd. C 49.66, H 6.53, N 3.86; found C 49.60; H 6.478; 

N 3.78 %. 

2.5.2 [3-(3-chloro-2-({[dichloro(η5-pentamethylcyclopentadienyl) iridium] dicyclohexyl 

phosphanyl}oxy)propyl)-1-vinyl-1H-imidazol-3-ium chloride], (4) 

Yield: 310 mg, 94.7 %; m.p.: 124–126 °C; 1H NMR (400.1 MHz, DMSO-d6, ppm): δ: 9.53 (s, 

1H, –NCHN+–), 8.31, 7.76 (2xs, 2H, –NCHCHN+–), 7.39 (br, 1H, –CH=CH2), 6.02 (br, 1H, –

CH=CH2(a)), 5.58 (br, 1H, –CHOP), 5.41 (br, 1H, –CH=CH2(b)), 3.87 (m, 1H, –N+CH2(a)), 3.78 (m, 

1H, –N+CH2(b)), 4.49 (br, 2H, –CH2Cl), 1.53 (s, 15H C5Me5), 1.98-1.23 (m, 22H,  protons of  

P(C6H11)2) ; 13C NMR (100.6 MHz, DMSO-d6, ppm): δ:136.6 (–NCHN+–), 129.35 (–NCH=CH2), 

124.06, 119,63 (–NCHCHN+–), 109.19 (–NCH=CH2), 93.92 (s, C5Me5), 73.99 (d, JP-C=6.0 Hz, –

CHOP), 50.02 (–N+CH2CH(OP)), 45.70 (–CH2Cl), many resonances at between 44.28-43.73 for –CH 

of P(C6H11)2), many signals at between 28.76-25.54 for –CH2 of P(C6H11)2), 9.45 (C5Me5); 31P-{1H} 

NMR (162.0 MHz, CDCl3, ppm) δ: 122.92 (s, OPCy2); 31P-{1H} NMR (162.0 MHz, DMSO-d6, ppm) 

δ: 123.03 (s, OPCy2); IR (cm-1); υ 3097 (aromatic C-H), 2922, 2847 (aliphatic C–H) 1446 (P-Cy), 1058 

(O-P); Analytical results for C30H48Cl4N2OPIr (817.72 g/mol): calcd.: C 44.07; H 5.92; N 3.43; found 

C 44.01; H 5.82; N 3.37 % 

3. Results and Discussion 

3.1. Synthesis and characterization of the ionic liquid, phosphinite ligand, and corresponding 

complexes 

One of the most common techniques for the preparation of hydroxyl-functionalized ionic liquid 

is the ring-opening of epoxides. Based on this method [33-40], N-vinylimidazole was reacted with (±)-

epichlorohydrin to afford the corresponding functionalized ionic liquid in 97.6 % isolated yield (Scheme 

1). The initial formation of a new generation of desired ionic liquid 3-(3-chloro-2-hydroxypropyl)-1-

vinyl-1H-imidazol-3-ium chloride, (1) was unambiguously confirmed by their spectroscopic analysis. 

In the 1H NMR spectrum of compound 1, the –NCHN+– signal of the starting material N-vinylimidazole 

at δ 7.98 ppm shifted to 9.46 ppm due to the formation of the corresponding ionic liquid 1, which was 

in agreement with the literature [41,19,42,18 and references therein]. The signal for extra OH proton 

was observed at around 6.05 (br) ppm, which is good evidence of the success of the alkylation of the 

imidazole ring with (±)-epichlorohydrin. The remaining protons were observed in their respective 

regions. The 13C-{1H} NMR spectrum of (1) also shows the presence of the N-vinylimidazolium carbons 

at δ 136.43, 129.22, 124.46, 119.20, and 109.21 ppm. In addition, the signal at 68.86 ppm belongs to –

CHOH, which is another evidence that the ring-opening reaction has occurred. In the IR spectrum, the 

signal of the hydroxyl group was observed as expected. Moreover, the elemental analysis result of 1 

supports the formation of the compound.  



Middle East Journal of Science  (2022) 8(1):1-15          https://doi.org/10.51477/mejs.1077805 

 

 5 

 

Figure 3.  The 31P-{1H} NMR spectra of ligand (2) and its complexes (3 and 4),  

 

 

Scheme 1. Synthesis of compounds 1-4; (i) 1 equiv. (±)-Epicholorohydrin, 1 equiv. HCl, C2H5OH; (ii) 

1 equiv. Cy2PCl, 1 equiv. n-BuLi, CH2Cl2; (iii) 1/2 equiv. [Ru(η6-p-cymene)(µ-Cl)Cl]2;  (iv) 1/2 equiv. 

[Ir(η5-C5Me5)(μ-Cl)Cl]2, CH2Cl2. 

 

The synthetic procedure to prepare the cyclohexyl-containing phosphinite ligand [17,42,43] is 

shown in Scheme 1. The reaction of the ionic liquid 1 with 1 equiv. of n-BuLi in CH2Cl2 at –78 °C for 

1 h, and then the addition of 1 equiv. of ClPCy2 produced phosphinite ligand 3-(3-chloro-2-

((dicyclohexylphosphaneyl)oxy)propyl)-1-vinyl-1H-imidazol-3-ium chloride, (2). The 31P NMR 

characterization of the crude reaction presented a signal at δ 148.99 ppm (singlet) attributed to –OPCy2. 
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Our result agrees with the values for previously reported phosphinites [44-47] (Fig. 1). Unfortunately, 

although ligand 2 was clearly present in the crude reaction mixture, it could not be isolated sufficiently 

pure for characterization studies. Because the phosphinite ligand decomposes gradually to give oxide ~ 

44 ppm as singlet (-OP(O)Cy2). Furthermore, doublet signals at about δ 57.7 ppm and at δ -20.1 ppm 

having 1J(PP): 285 Hz in the 31P-{1H} NMR spectrum support the occurrence of P(O)Cy2PCy2 [48] (Fig. 

2).  

 

Figure 2. The 31P-{1H} NMR spectrum of decomposed products {(-OP(O)Cy2) and P(O)Cy2PCy2}. 

 

It is well-known that dimers {[Ru(arene)(μ-Cl)Cl]2} are capable of forming mononuclear 

complexes possessing a general formula of [Ru(η6-arene)Cl2L] [49]. Therefore, Ru(II) and Ir(III) 

complexes were prepared through reactions of metal precursor ([Ru(η6-p-cymene)(µ-Cl)Cl]2 or Ir(η5-

C5Me5) (μ-Cl)Cl]2) and phosphinite (Scheme 1). All the reactions proceeded very readily in CH2Cl2 at 

RT and were almost quantitative. In contrast to the free ligand, which is quite air-sensitive, the 

complexes are stable microcrystalline solids and can be kept in the open air for an extended amount of 

time. The complexes were fully characterized by several spectroscopic techniques such as 1H NMR, 13C 

NMR, IR, and elemental analysis. In the 31P-{1H} NMR spectrum, Ru(II) complex (3) exhibits a singlet 

downfield at δ 156.01 from the position of the free ligand (Fig. 1). Characteristic resonances of p-cymene 

protons for 3 were detected in the 1H NMR spectrum at 5.82-5.79 ppm range as multiplets. For other 

characteristic signals of the p-cymene protons, the -CH, -CH3, and -CH(CH3)2 resonances appeared at δ 

2.84-2.81, 2.08, and 1.78 + 1.23-1.18 ppm, respectively. Furthermore, the -CH and CH2 protons of Cy 

in the OPCy2 group gave multiplets at 2.46 and 1.78 + 1.23-1.18 ppm, respectively. 13C NMR spectrum 

of Ru (II) complex displays p-cymene signals, in addition to the resonances from the ligand. The IR 

spectrum of the Ru(II) complex 3 exhibits one new absorption peak at 553 cm-1 for Ru-P stretching 

vibration, indicating that phosphinite binds to the complex. So, we can conclude that our P-O donor 

ligand was bound to the Ru atom with a p-cymene group.  
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Simple coordination chemistry of (2) with [Ir(η5-C5Me5)(μ-Cl)Cl]2 precursors was investigated as 

well. The 31P NMR signal of the Ir(III) complex obtained from the interaction of the phosphinite and 

iridium precursor was observed at 122.92 ppm as a singlet. The existence of a single signal at 1.53 ppm 

in the 1H NMR spectrum of the Ir(III) complex (4) indicates that Ir(III) complex is formed. In the 13C 

NMR spectrum of the Ir(III) complex, the luminous signals at 44.28–43.73 and 28.76-25.54 ppm belong 

to the –CH and -CH2 groups of the -OP(C6H11), respectively, and help illuminate the structure. In 

addition, the 9.45 and 93.92 ppm signals corresponded to the methyl and aromatic carbons of the Cp* 

coordinated complex 4, respectively. Extra the aliphatic and N-vinylimidazole ring carbon signals of 

complex 4 appeared, as expected. The infrared spectrum of (4) exhibits the bands at 3097, 2922, 2847, 

1446, and 1058 cm-1 are due to υ(aromatic C-H), υ(aliphatic C–H), υ(P-Cy), and υ(O-P), respectively. 

Additionally, elemental analysis results also support the proposed structures. 

3.2. Transfer hydrogenation of ketones 

     The transition metal catalyzed-hydrogen transfer process is usually assumed to include metal 

hydrides as important intermediates. Both complexes 3 and 4 most probably follow a well-known 

mechanism that includes a metal-alkoxide intermediate and β-elimination [50,51]. It has been shown 

that the replacement of chlorides by a hydride is easy through an alkoxide displacement/β-hydride 

elimination sequence [52,53].  Ionic-liquid containing phosphinite ligands are indispensable compounds 

to obtain efficient catalysts that are homogeneous and organometallic [17-19]. The activity of the metal 

center is highly influenced by ligand choice. Ionic-liquid-based phosphinite complexes with 

coordination geometries of ruthenium or iridium show good activity in catalytic transfer hydrogenation 

[17-19,41].  

      The synthesized Ru(II) and Ir(III) complexes (3) and (4) were employed as catalysts in the 

TH of acetophenone and its derivatives. First, as mentioned above, we thought to explore the TH of 

acetophenone in the existence of iridium and ruthenium-based catalysts. Thus, acetophenone has been 

hydrogenated in the existence of a catalyst with KOH as a base in 2-propanol. The transfer 

hydrogenation results are given in Table 1. Isopropanol is used as a hydrogen source in the 

hydrogenation and in this circumstance, the process occurs under thermodynamic control: when 

isopropanol gives hydrogen, acetone forms, and this is able to behave as a hydrogen acceptor, so, 

equilibrium is generated. The boiling point of 2-propanol is 82 °C, which enables it a good option to 

carry out the process at reflux temperature too [54]. Table 1 (entry 2 and entry 6) obviously depicted 

that the process cannot happen when a base is not used. Thus, one can conclude that the use of a base is 

necessary for this reaction [54,30,32,44,55]. The amount of base is generally 5 equivalent with respect 

to the catalyst [56-58]. Thus, our complexes act as good catalysts in TH reaction of acetophenone when 

isopropanol is used as a hydrogen donor at 82 °C, in the existence of a base, and after a certain time (1/2 

h and 2 h for 3-4, respectively), (Table 1 entry 1, entry 5). It was found that Ru(II) complex, 3 exhibited 

better activity in the transfer hydrogen. Because, ruthenium has different oxidation states, and a variety 

of coordination geometries introduced by various ligands, which render it is a good candidate for the 

catalyst for transfer hydrogenation as well as for the asymmetric version of transfer hydrogenation [59]. 

Furthermore, an increase in the amount of substrate increases the reaction time and leads to a reduction 

in TOF (Table 1 entry 3-4, entry 7-8). 
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Table 1. Transfer hydrogenation of acetophenone with 2-propanol catalyzed by 3 and 4. 

 

     Under optimized conditions at hand, we investigated the extent of this TH reaction of 

acetophenone derivatives. It was observed that the corresponding alcohol is formed in a shorter time 

when using an acetophenone derivative that carries an electron-withdrawing moiety such as p-fluorine, 

p-chlorine, and p-bromine (Table 2, entry 1-3, entry 6-8). Because electron-withdrawing groups reduce 

the electron density of the C=O bond of the ketone, the ketone is more easily hydrogenated [60-62]. 

Secondly, TH of acetophenone derivatives containing o- and p-OCH3 groups takes a longer reaction 

time and the TOF values are lower. Also, it was observed that when there is an electron-donating 

substituent on the o-position (-OCH3), then, TOF value will be lower compared to the p-position. Indeed, 

the reaction time towards the transfer hydrogenation decreased from 9 h to 7 h when 4-MeO was used 

instead of 2-MeO catalyzed by 4 (Table 2, entry 9-10). 
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Table 2. Transfer hydrogenation results for substituted acetophenones with the catalyst systems, 3 and 

4[a]. 

 

4. Conclusions and Perspectives                                                                                                                                    

In conclusion, a new series of phosphinite-based Ru(II) and Ir(III) complexes were synthesized 

using a precursor of ionic liquid. These complexes were found to be effective catalysts and they are able 

to be easily applied, resulting in secondary alcohols with good to high yields. Moreover, ruthenium 

complex (3) behaved as a better catalyst for the transfer hydrogenation than the analogous Ir(III) 

complex. These catalysts are attractive because of their modular design and versatility in terms of 

transfer hydrogenation and future reports will focus on the use of the complexes that we have 

synthesized in TH of other activated aryl/alkyl ketones. 
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