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NORMALLIYEN ICIN DEVIRLI OLMAYAN GRAFLAR
Murat BESENK

Ozet

Bu ¢aligmada, p asal bir say1 ve B>4 olmak iizere T, (3Bp2) nin  PSL(2,0 ) deki

normalliyeni i¢in bazi alt yoriingesel graflar incelendi. Ve ayrica yonlendirilmemis

graflar i¢in orman kavraminin devirli olmayan bir graf oldugu vurgulandi.

Anahtar Kelimeler:Normalliyen; Altyoriingesel graf;, Yoriinge; Devre; Orman; Devir.

NON CYCLES GRAPHS FOR THE NORMALIZER

Abstract

In this paper, we examine some suborbital graphs for the normalizer of T',(3"p’) in

PSL(Z,D ) where p isaprime and > 4. And also it emphasized that the corresponding

concept for undirected graphs is a forest, a graph without cycles.
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INTRODUCTION

The main purpose in this study, is to set the foundations of a new method which
would help to identify the normalizer of I';(N) in PSL(2,0 ) much better, which have
been subject to many studies and gaining particular importance since 1970s and to reveal
how the producing elements of the normalizer can be gained by this method. With this
corresponded which we name as the graph method, the relations between the length of
some closed circuits and the orders of the elliptic elements in the normalizer are
examined. It is determined that if there are no closed circuits in the suborbital graph, there

are no elliptic elements in the normalizer as well.

The main purpose in studies conducted in this field by many scientists is in fact to

determine the signature of the normalizer NPSL(Z,L)(FO(N)) or in other words, to

calculate the g -genus which is the missing parameter. We therefore, tried in this study
to examine much better the structure of the normalizer. For this, we define a subgroup

NO(N), and examine the orders of elliptic elements of this group and lengths of

suborbital of corresponding graphs. Therefore, in order to find the signature, a new
approach is aimed with the help of suborbital graphs. With this new approach, some

invariants in the signature of the normalizer is found.
1. PRELIMINARIES

Definition 2.1. Let G is a topological group and X is a topological space. If

AGxX—— X a continuous transformation and
(9,x) = A(g,x)=gAx

(i) ga(hax)=ghax, gheG,xeX (i) eax=x,eeG,xeX
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conditions is provided then [G, X] is called a topological transformation group. Also G

actson X or G is called an action groupon X.

Lemma 2.2. Let [G,X] is a topological transformation group and x,ye X. In this case,

X~Yy:<>3geG:gx=y isdefined as the "~" relation is an equivalence relation on X.

Definition 2.3. "=" relation of equivalence classes are called orbits of action.
Furthermore, point in the orbit with xe X in the orbit of x is called and a set of
Gx={gx|g G}.

Definition 2.4. Let G actsonaset X. If, foreach x,ye X there exists some g € G such
that gx =y then we say that G acts transitively on X . According to this definition, if

transitif act Gx =X is obtained for ¥x € X. In other words there is a single orbit. Orbit

is set a transitif acts as of group.

az+b
cz+d

Definition 2.5. T':=PSL(2,0 )={z — | a,b,c,d €] and ad —hc :1} subgroup
of PSL(2,0) called Modular group. I'can be represented by 2x2 integer matrices
a by : I o o
A :(c d] with det A =1, provided we identify each matrix with its negative, since A

and —A represent the same transformation.

Definition 2.6 N being a positive whole number and of I' group basic congruence

subgroup can be defined as
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a b
[(N) = {c d] el’ Yha=d=1(modN),b=c=0(mod N)} .The most frequent
a b
congruence subgroup are I'y(N) = {[c dj el ‘ c=0 (mod N)} group.

Definition 2.7. Let G be a group and H <G . Normalizer of H in G is called the set of
Ne(H)={geG| gHg™ =H}.

Theorem 2.8. The elements of the normalizer of I';(N) in PSL (2,Y) are the

transformations corresponding to the matrices

b
ae

— h.
NPSL(Z,L)(FO(N))'_ / adez—bc’\%2 —e>0

C’\% de |

where all symbols are integer , | %2 and h is the largest divisor of 24 for which h?|N

with h* | N with the understandings that the determinant of the matrix is e >0, and that

r||s means that r|s and (r,%):l (r is called an exact divisor of s).

Theorem 2.9. Let NeZand N=2%3"p " ...p ™ the prime power decomposition of N.

Then the normalizer NPSL(z,u ) (T4 (N)) acts on @ = Q U {0} transitively if and only if

a< 7,B< 3 and y;<1 where i=1,...,n.

Theorem 2.10. The index

NPSL(Z,u ) (FO(N)):FO (N)‘ =2"h"r,
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where p is the number of distinct prime factors of %2 and T:@J (ﬂ)

3
1if 2%,2%,2°0N 1if 90N
& = , E, = i i
' |0 otherwise 210 otherwise
Definition 2.11. Let (G, X) be a transitive permutation group and "~" be an equivalence

relation on X. Sincex ~ y for x, yeX, if g(x) = g(y) is for VgeG, then "~" relation is

called a G invariant equivalence relation.

Definition 2.12. The equivalence classes of a G invariant equivalence relation are called

blocks. Obvious examples of such relations are;
i) the identity relation, x ~y ifand only if x=y
i) the universal relation, x = y for all x,yeX.

This relations are called trivial relations. We call (G,X) imprimitive if X admits some G
invariant equivalence relation other than (i) and (ii); otherwise, we call (G,X) primitive.
Clearly, a primitive group must be transitive, for if not the orbits would form a system of
blocks.

Lemma 2.13. Let (G,X) be a transitive permutation group. (G,X) is primitive if and only

iIf G,, the stabilizer of x € X, is a maximal subgroup of G for each x e X.

Theorem 2.14. Let (G,X) be a transitive permutation group. There is a well-defined G

invariant equivalence relation ~ on X given by, if G, (IH[IG

g(a)~h(a)ifandonly if gheH.
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The number of blocks (equivalence classes) is the index |G : H| and the block containing

a is just the orbit H(«).

Definition 2.15. X = J isasetand AcXxX isarelation. G=(X,A) pair is called a graph.
Elements of X are vertices of graph and elements of A are edges of the graph. If (a,b) A,
this is indicated as a—b. If (a,b)eA or (b,a)eA, aand b are connected to a edge. In this

case, a and b are called neighboring vertices.

Definition 2.16. Let a=a,,a,,...,a, =b be a sequence of G graph vertices. If for 1<i
<n, a_, and a; are connected with a edge, then this is indicated with the expression from
a to b there is a path with the length of n. If a=b and a,,a,,...,a , vertices are all
different, then this is called a n edged circuit. Furthermore, if for the pairs of a;, a;,; &

=8,

then this is a circuit directed at a circuit. A three edged circuit is called a triangle,

four edged circuit is quadrilateral and six edged circuit is called a hexagon.

Definition 2.17. Assuming n >3, n edged graph not containing a circuit is called a forest.

Here H:={zel :Imz >0} is upper half plane and graph is a combination of hyperbolic

lines.

H - Quadrilateral H - Hexagon

Figure 1. Circuits
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Definition 2.18. Let (G,X) be a transitive permutation group. Let us define of G act on

XxX as g:(a,B)— (g(a), gB) ), (a,p) e XxX considering that geG. Orbits of this

act are called of G suborbits. Let us show the suborbit containing (a.8) with O (a.,B).

2. SUBORBITAL GRAPHS OF N%qzq(FJSHf» ON (7 (3%p?)
Let N=3"p? and T e NPSL(ZD)(F0 (3Bp2)). For >8, p>3 and p prime then,
b
. ae
h=3""P20 3 and that A= h N/, detA=e=1,2"°, p?, 2

c'% de’

p2. Where H1 is greatest integer function. That is, the elements of the normalizer are of

a b/3 3%a  b/3
the below forms: A, = Bl 2 , A, = :
3'p%c d 3 1p%c 3¢

A - ap? ms’&zsmwz b/3
3[5—1po dp? 3[3—1po 36_2dp2
Lemma 3.1. The orbits of the action of FO(Ssz)on [ are
. (1) (2 (L1 (2)(4\(S\(7\(8 (1) [ 1| 2)
0 [WHHHe o Mo e He Mo Mo ko )
1Y 2\ 4\ S )\(7)\( 8
(o ot Lo Lo L L
.. 1)(2)(3 p-1
| K
o (G5
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a1 aZ ap—l ) ) ai aj
(iii) (3%],[3%},...,(3%] where a; = a;(modp) for (3%} and (Sﬁp)

Proof. It is clear from the definition of the orbit.

i)
The number of all orbits are Zgoud , 3 dp J} . The number of orbits can easily

dN

be found based on B number being an odd or even number.

In case where p number is odd, the divisors of N=3"p* are

E.‘

) Zqi((d,%)):Zh‘%—z for 1,3,3%,3,....3"

dj3P

I Zgo((d,%)):[z@”—zJ(p—l) for p,3p,32p,3°p,....3"p

dj3f

1) Zgo((d,%)):z%z—z for p?,3p?,3°p?,3p?,...,3p?.
dj3f

p

The total number of orbits, in that case is: (ZFZH+ —Zj(p +1). Where (i is greatest integer

function. In case where B number is even, the divisors of N=3"p’ are

) Zgo((d,%)):&ZE—Z for 1,3,3%,3%,...,3°
dj3P

1) Zgo((d,'%)):[S.Zg—ZJ(p—l) for p,3p,3%p,3%p,....3"p

dj3P
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1) z(p((d,'%)):&Zg—Z for p? 3p?,3°p?,3p?,....3%p%.
dj3P

B
Therefore the total number of orbits, in that case is: (3.22 —Zj(p +1).

- - B 2 AL ay.
Lemma 3.2. The action of the normalizer NPSL(Z,U)(FO (3" )) on [ is not transitive.

Proof. Theorem 2.9. gives the result.

« o (1 1 8 a a 1
Theorem 3.3.0 (3°p?):= (Ju(g}u...u[y}u(gﬁk}u(sﬁszu...u(pzj
0 1 9 2 9 1 UG 8 5 a, 0 a, UG aw(sﬁfkyg)k)
3p?) " \ap? ) @) gt L) s ) T g )

ke{0,1,2,...,8—3} is a maximal subset of (1 on which the normalizer

NPSL(z,u ) (FO (3%’ )) acts transitively.

1
Proof. Let us analyze the act of (J orbit with NPSL(Z,U)(FO (3ﬁp2)) :

a

If the element of A, = [35_] ol

b/3 . ) . .
e with ad —3%2bp%c =1 is taken into

consideration, the rational number of

b

a  b/3)(1 a+— S .
b1 2 = 3 = Bl 2 is obtained. In this case,
3Fp%  d )1 3 d 3(3 pc+d)
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" 3a+b 1 2
f3) d,th S —
() i3} d, then 3(35“p2c+d)e(3jor @

S 3a+b 1 1 2\ (4 8
(i) if 3|d, then 32(3B‘2p2c+d0)€(32j0r (32}[32],(32),...,(32J

1
@ it v Tl o3 )

We can prove other cases similarly.
Lemma 3.4 .The stabilizer of a pointin i (3"p*) is an infinite cyclic group.

Proof. Because of the transitive action, stabilizers of any two points are conjugate.So it

1 1 ae  BL)(1 1
is enough to look at just oo e As T |= A = ?e = :
3°p’ 0) [(3%p%c de )\0) 3"p’c (0

1 b
then ¢c=0 and e =1. From the determinant equality, T =[ A} Consequently take

0 1

1
NPSL(Z’L)(F0 (3Bp2))w :<[O }ED in place of G_,.Now we consider the imprimitive

action on 1J (3"p*) of I;(3"p*) we define the group N, (3"p*):= <FO(3Bp2),A1,A2>

and denote the stabilizer of o by NPSL(ZL)(F0<3ﬁP2)) . It is clear that
) ) B2 _

NPSL(Z,L)(FO(S D ))wi N, (3°p*)< NPSL(Z,L)(FO(3 p )).Let a+d =1. The element

of A, istaken into consideration therefore,

114



NORMALLIYEN ICIN DEVIRLI OLMAYAN GRAFLAR

-1 b 3"2a-1 b
a A] A’=-1 and also A22=[ A J

A’ = ,
3"p’c -a

A =(3‘“pzc (32;_2.3 2y3) jero (3"p) is obtained. Additionally, in case of
atd=-1 ASel, (3Bp2) is achieved again. Thus, A’=-I and
Aferl, (3Bp2) <a+d=+1.Asa consequence{I,Al,Af}x{I,Az,AZZ,Aj,AZ“,Af}
= {I,A2 AZLAS A A ALAALAA 2,...,A12A25} is achieved as a representatives set

of cosets. In this case the number of the blocks is 2 because of the index

Nost (2, )(ro (3 sz)):l“o (3°p?)| = 22.3°.1=36, that is

Nesi (2, )(ro (379%)): No(3"P2)| [N, (3%9%): T, (3P| =218 =36

2 p
It is clear that, NPSL(ZL)(F0(3Bp2)):NO(Bsz)u{3Z?p2C cf;JNO(Bsz)'

The purpose is to gain to the normalizer by the elements of N,(3°p*) group, to
examine its structure and to characterize the elements of N, (3°p*) by graphs. We denote

by "~" the invariant equivalence relation reduced by N,(3"p”) on [ (3"p®). Let

F(oo,%j denote the subgraph of G(oo,%j whose vertices form the block [oo]:=

{f ell U{w}:y=0(mod N)} . Shortly, instead of F(oo,%j , we will write F, .Blocks
y ,

formed as a result of the imprimitive action are given below:
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1= gt M M M M)
BATRATRBRERWN .
MM M M e e s )

el ol o (o). )

being a transitive permutation group, the suborbital graph number of F 3Bp2 IS (p(3 p )

[0]=

dir. Therefore, the suborbital graph, vertices of which are on the [«] block is in the form

of F, Pp2- Considering that 4=0,1,2,3,...,p—1,B, total number of graphs on [e] block
is (p?)+9(30%)+p(3°p*)+..+¢(3"'p* )+ (3%p*). Taking F g2 here, the

following results are obtained:

Theorem 3.5. Let g and = be in the block [ec]. Then there is an edge £—>§ in
y y

3[3 , ifandonly if

(i |If SBpZHS or 3% 2”5 then x =+ur(mod3"'p*), y ==+us(mod3°p*) and
ry—sx =+ 3°p’

(i) For2<k<p-land ke, if 3" p’[s then
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inur(modsz), yzius(mod3ﬁp2) and ry—sx =+ 3%2p?

(iii) If pzus then x ==+3ur(mod3p? ),y ==+3us(mod3"p*) and ry—sx =+ 3%7p’.

r : : .
Proof. "=": Suppose that - — X s an edge in Fu 3bp2” Therefore there exists some T
S y y

in the normalizer NPSL(Z,L ) (FO (35p2)) such that T sends the pair (m#} to the pair

[r XJ that is T(oo)——and T( ; 2]—5
sy 37 )y

a b/3
(i) Since 3"p’[s or 3"'p’s, T must be of the form | . | and detT
3" p’c d
—ad —-3"bp2c =1. If T(oo):3B+apo:£ then r=(-1)'a and s=(-1)'3"'p for

i=0,1 and c=3c,, c,el. If 3)f a then

U @ b/3)( u ) au+3"bp® x
3p? 3 p’c d )\3fp*) 3% 'plcu+3fdp* vy

Hence x=(—1)j(au+3ﬁ"bp2) and y=(—1)j(3ﬁ"p2cu+35dp2) forj=0,1. That is

x =zur(mod3"'p*), y=:+us(mod3p’).

a b/3)(1 u (—1)ir (—l)jx N
Moreover 3h1p? , |= : , i,j=0,1 we get

p’c d JL0 3% (-1)'s (-1)y

ry —sx = +3"p?. The other (ii) and (iii) are likewise done.
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"="(i) Let 3°p|s  x=zur(mod3"'p*), y=zus(mod3®p’)and ry—sx =1+ 3°p’,
In that case, 3b,d el is such that x =ur+3""'bp*> and y=us+3"dp>.With these

equations, ry—sx =r(us+3°dp”)—s(ur+3"'bp*)=3"p” is achieved and if both sides

of the equation is divided by 3°p? , rd- b% =1 isachieved. Accordingly, for T, :=

b
;
[ A] detT,=1 and 3Bp2Hs T, €T, (3°p*) = N,(3"p*) is achieved.
s d

With a similar process, the others (ii) and (iii) are likewise done.

Theorem 3.6. Let N=3"p® and p>4. For p prime, p>3 and n>3 (n—gon) then,
the suborbital graph 32 of NPSL(Z,L)(FO (3ﬁp2)), is a forest .
Proof. LetC beacircuitin Fu 3hp2 of minimal length. Suppose first that C is directed,

v, >V, >V, >...—>V,. We may choose the vertices of C apart from <o in the interval

u  u+3°p*] u+3°p’ . .
3 30y as V,<V,<V;<..<V,. If v, = 37 v, is single edged in
[ u u+3"p?] . .
307 30 , which v, —> . Because the chosen circuit is in the form of
[oP P

0=V, >V, >V, >...—V, —>o.Letusassume v, = ——
1 2 3 k k 3Bp2

Since there can no prime number exist between two adjacent vertices in Fu 3Bp2 the

r

circuit cannot go to the left of 1. Which means, if v, = 375 then r > 2%p? . Therefore,
p

r = 3°p® +k under the condition that 3k >0 . Additionally, since r < 3°p*+u,
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k<u<3p’ is achieved. Because =—ur (mod3""'p?),

=-u(3"p’ +k) (mod3"p) equation is achieved. Accordingly,

. k 1 .k .
1=-uk (mod3*'p?) if and only if W_)Ee Fu,sﬁpz' However, if Wd this

creates a contradiction. Therefore, such a C circuit does not exist. Thus, we can take

u - u+l
0= —— >V, >V, >..—>V, > asaC circuit. v, > —.
3% 3p?

Figure 2. Path of the action

Let v be the largest rational greater than v, for which v, — visanedge in Fu 3hp2-

We see that v, must equal v. Assume otherwise that v, <v. If v isa vertex in C,

then we obtain a circuit which is a shorter length than C. If v is not a vertex in C then

there are vertices v;,v;,, in C such that v, <v<v,,,. Inthiscase, the edges v, »>v

and v; —>v,,, cross to each other, it is a contradict the fact that no edges of Fu 3hp2
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m
T
cross in H. Consequently, v, =v. As v, <V,, V, :35—20 for some positive integers
P

m and k,. Since v, >V, isanedgein F then 3°p’v, — 3°p’v, is an edge

3Pp2”
m
u+k7 uk, +m
0 _ 0 i
Fu,3f>p2' Thus m must be 1. From the edge 37 - 35~ 3'pk, € Fappz 1S

<
obtained. Also 3°p’k,u —3°p’k,u—3"p’m=-3"p*> then m=1 and u uk, +1

3'p? 737k,
We obtain u’ +uk,+1=0 (mod3*"'p*) by Theorem 3.5.
~ u? +uk, +1
Now we define the following transformation ¢:= 3°p? , dete=1.
-3°p? u+k,

_ 1 —u u u

quk1 ur X u(ko—xj+1 u+k y
—2=v,, thatis ¢(v;)=V,.In general, ¢| Y |= Y-
3% 3°p 3Bp2[ko—xj o
y
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1
u-+ 1
u? +uk, +1 1 Ko —-—
. -u ——22 " |lu+— k . —
In addition to 3%p’ K, |= 33—20 ... continues likewise.
-3°p? u+k, 3°p’ P
u-+ !
1 1
1 Y I
u+-— K,—-— Ky —-—
. 1 u K, K, K,
This means, = — == > > - > —> ..
0 3% 3% 3°p 3%
1
K _ 1
is obtained. Therefore, it is clear that k 1 fraction is an irrational number for
0 ko
k, > 2. Therefore, we can easily see that 0 (v)< ;:% for positive integers i. Therefore
Y
. . . i u+1 . . .
continues likewise ¢'(v,)<—=—  is obtained for Viel We now that

3p?
Vi =9' (v)=¢"™ (o) for 0<i<k-1.Wealready know that ¢(V; )=V, . Now assume
that v, =¢'"(v,) forall 1<i<s. Then let us show that v, =¢°(v,). If not, then first

assume that v, ,

<¢*(v,). Then by transitive action, v, = ¢~ (v,) > ¢*™*(v,) =¢°(V,)
isan edge in Fu,3Bp2 1f ¢°(v,) isnota vertex in C, as ¢°(v,) <V, there exist vertices

v, and v, such that v; <¢®(V;) <V, and therefore the edges v, - V,,; and v, - ¢° (v, )

cross, a contradiction. If ¢°(v,) is a vertex in C , as vg,; <¢°(v,), ¢°(v,) =V, for some

m>s+2. However, in this case, we  would have a  circuit
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©—>V, >..—>V, >V, =V, > which is of a shorter length, again a contradiction.
Now suppose finally that v,,, >¢°(v;). Then from the above v,,; >¢°(v,)> ¢ (V).
Since v, <V, and  ¢is strictly increasing  ¢(v,)<o(v,).  Moreover
o(0(v))) =0 (V) =0(v,) and ¢(v,)<@?(v,). Since @(v;)<¢*(v,) and o is strictly
increasing  ¢(@(v,))<o(¢?(v)) and ¢°(v,)<¢’(v,). With a similar process
¢ ()< (v)<¢’(v,) is obtained. As ¢ (v)<¢"(v)<¢°(v)  and

P (9P (W)) =2, ¢V (V) >0 (9° () =0 (V) =V,. Hence by transitive

action, v; =@ P (v,) > 9 (v, which is contradiction to the

) isanedgein Foappe

u+l
2

3'p

contradiction.Finally, assume that there is an anti-directed circuit C as minimal length,

choice of v,. Consequently v, =¢'(v,) for 0<i<k-1. Thus, v, <

u
—— .. 2V < V..V, > oo for some t>1. We know from the

of the form « — v, =
3%

above that v, =¢' (o) for i<t.Let v be the largest rational greater than such

3Pp?

1
u+-—

that v, «—v isanedge F . Then v= K for some integer k,. And also t
U,SBpZ 3Bp2 0

1
u+-—

must be greater than 1, otherwise v<v, = 37 2 for some s>3 and then we would
P

circuit o »>v, »> v, —>...v, > of a shorter length, a contradiction. Hence we must
1
u+-—
K

have Vv, >V, = 37 % . Let w=¢"" (). Since, by transitive action,
Y
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v, _)(Pt—l(vl) _>(p“l(v2) is an edge Fu ahp2 - Therefore, the inequality v,,, <w must be

true. For if v, >w then, as o (07 (v)) = and

02 (v)<0' () =0'(o(x))=0" (), w<vy, 0 (v,)>0 P (w)=v, and

—(t-1) _ —(t-1) . . . . .
@ (v)=v, ¢ (v, ) >V, is an edge in Foahp2 which contradicts the choice of

v,. However, if v,, <w then we would have w=v, for some s>t+2 and therefore
we would have the circuit o —>v, »...—>Vv, -V, —>...v, = o of ashorter length, which

again gives a conradiction. This shows that C must be directed. Hence the proof of the

theorem is completed.

4. RESULTS

In this paper, the following results are obtained:

The number of all the orbits of T',(3°p*) on [ calculated for §> 4.

Edge conditions is achieved of F ., . suborbital graphs of NPSL(Z,D)(FO(BﬁpZ)) onll .

And also it is shown to contain no circuit of FUsppz suborbital graphs of
Nesio ) (To(3%07)) on 11 .
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