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COEFFICIENTS OF RANDIĆ AND SOMBOR

CHARACTERISTIC POLYNOMIALS OF SOME GRAPH TYPES
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Abstract. Let G be a graph. The energy of G is defined as the summation

of absolute values of the eigenvalues of the adjacency matrix of G. It is pos-
sible to study several types of graph energy originating from defining various

adjacency matrices defined by correspondingly different types of graph invari-

ants. The first step is computing the characteristic polynomial of the defined
adjacency matrix of G for obtaining the corresponding energy of G. In this

paper, formulae for the coefficients of the characteristic polynomials of both
the Randić and the Sombor adjacency matrices of path graph Pn, cycle graph

Cn are presented. Moreover, we obtain the five coefficients of the character-

istic polynomials of both Randić and Sombor adjacency matrices of a special
type of 3−regular graph Rn.

1. Introduction

Let G = (V,E) be a simple graph with the number of n vertices and m edges. If
two vertices vi and vj are connected with an edge e, then they are called adjacent
vertices and they are expressed as e = vivj or e = vjvi. If a vertex v is a terminal
point of edge e, then they are called incident. Degree of a vertex vi is the number
of edges that are incident to the vertex vi and it is denoted by d(vi). A graph does
not contain any cycle is called acyclic. If there is a way between all vertices of a
graph, then it is called connected. Connected acyclic graph is called tree. Path
graph is a tree that is in the form of straight line with degrees of two vertices are
one and degrees of other vertices are two and it is denoted by Pn. Cycle graph is a
graph that contains only one cycle through all vertices and degrees of all vertices
are two. It is denoted by Cn. If degrees of all vertices of G are k, then it is called
k−regular graph.
Let A = [aij ]n×n be a matrix. If vi and vj are adjacent vertices then aij and aji are
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1 or else 0, see [1]. A is called adjacency matrix of G. Analogous with linear algebra,
det(λ·I−A) is called the characteristic polynomial of G and we denoted it by PG(λ).
Roots of PG(λ) are called eigenvalues of G and the energy of G is defined as the
summation of absolute values of the eigenvalues of G, see [6]. Furthermore, there
are many topological invariants used in several researches. In [16], Randić index is a
molecular descriptor defined by Milan Randić and denoted by

∑
vivj∈E

1√
d(vi)d(vj)

.

In [9], another important molecular descriptor recently introduced by Ivan Gutman

with the name Sombor index is
∑

vivj∈E

√
(d(vi))2 + (d(vj))2. In addition to topo-

logical invariants, several adjacency matrix forms have been defined until today,
for more details see [13]. With the help of various adjacency matrices defined by
correspondingly different types of graph invariants, it is possible to study different
types of graph energy such as laplacian energy, distance energy, Randić energy and
Sombor energy, see for details [15]. Two of the well-known them are Randić and
Sombor matrices that are related to the corresponding topological indices. Re-
searchers have studied these notions from various aspects so far. Some studies
on the subjects Randić and Sombor adjacency matrices and energies can be seen
in [2, 4, 5, 8, 10–12, 14, 17]. The first step to obtaining the desired energy type of
a graph G is to calculate the characteristic polynomials of the corresponding ad-
jacency matrices. In this paper, we obtain formulae for each coefficient of both
Randić and Sombor characteristic polynomials of path graph Pn and cycle graph
Cn by using a well-known equation. Also, we present formulae for some coefficients
of Randić and Sombor characteristic polynomials of a special type of 3−regular
graph.

2. Coefficients of Randić and Sombor Characteristic Polynomials of
Path, Cycle and a Special Type of 3-Regular Graphs

Let G = (V,E) be a simple graph with n vertices and m edges. The Randić
matrix of G was mentioned in the substantial book [3] and the Sombor matrix was
defined in [10]. We denote the Randić and Sombor adjacency matrices of G by
R(G) and S(G), respectively. R(G) = [rij ]n×n and S(G) = [sij ]n×n are formed by
using the adjacency of vertices as the following:

rij =

{
1√

d(vi)d(vj)
, if the vertices vi and vj are adjacent

0, otherwise.

sij =

{ √
(d(vi))2 + (d(vj))2, if the vertices vi and vj are adjacent

0, otherwise.

It is clear that R(G) and S(G) are symmetric matrices with dimension n× n.
Let us denote the ordinary characteristic polynomial of G as follows:

PG(λ) = λn + c1λ
n−1 + c2λ

n−2 + · · ·+ cn−1λ+ cn.
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Let us denote the number of components in an elementary subgraph G′ which
are single edges and cycles as ρ0(G

′) and ρ1(G
′), respectively.

In [18], the formula for the coefficients of the ordinary characteristic polynomial
are given by

ck =
∑

(−1)ρ0(G
′)+ρ1(G

′)2ρ1(G
′), (1)

where the summation is taken over all elementary subgraphs G′ with k vertices for
1 ≤ k ≤ n. At the present time, the formula is called Sachs theorem, for details
and history of the theorem see [1, 3, 7].

Let ψij denote the nonzero value in the entry ij of the adjacency matrix of a
vertex-degree-based topological index of a regular graph G. As a natural result of
the Sachs theorem, it is clear that the formula for each coefficient c′k of the charac-
teristic polynomial of the adjacency matrix of this vertex-degree-based topological
index is obtained by

c′k = (ψij)
k
∑

(−1)ρ0(G
′)+ρ1(G

′)2ρ1(G
′),

where the summation is taken over all elementary subgraphs G′ with k vertices for
1 ≤ k ≤ n.

In this paper, we aim to obtain all coefficients of the Randić and Sombor charac-
teristic polynomials of path graph Pn and regular graph Cn by using the numbers
of elementary subgraphs. Similarly, we also aim to obtain some coefficients of the
same characteristic polynomials of a special type of 3−regular graph we call Rn.
We begin with the Randić characteristic polynomial of Pn. Let us note that the
Randić characteristic polynomial of P2 is equal to λ2 − 1. Moreover, let us denote
the set of non-negative integer numbers and the set of positive integer numbers by
Z∗ and Z+, respectively.

Theorem 1. Let Pn = (V,E) be a path graph with n vertices and n − 1 edges.
Let PPn

(λ) = λn + c1λ
n−1 + c2λ

n−2 + · · ·+ cn−1λ+ c be the Randić characteristic
polynomial of Pn, where ck ∈ R, 1 ≤ k ≤ n − 1. The formulae for the coefficients
cks of the Randić characteristic polynomial of Pn, where n ≥ 3, are as follows:

c2 = (−1)
k
2 (n−3

4 + 1),

ck = 0, where k ∈ 2Z∗ + 1,

ck = (−1)
k
2

[((n−1)− k
2

k
2−1

)
· ( 1√

2
)2 · ( 12 )

2( k
2−1) +

((n−2)− k
2

k
2−2

)
· ( 14 ) · (

1
2 )

2( k
2−2) · ( 1√

2
)2

+
∑n−2− k

2

j= k
2−1

( j
k
2−1

)
· ( 12 )

k +
∑n−3− k

2

j= k
2−2

( j
k
2−2

)
· ( 14 ) · (

1
2 )

k−2
]
, where k ≥ 4, k ∈ 2Z+.

Proof. First of all, it is clear that c2 = (−1)
k
2 (n−3

4 + 1) for all n ≥ 3. By the Eqn.
1, we know that ck consists of the contributions of several elementary subgraphs of
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G with k vertices. Also, since Pn does not have any cycle we take into account only
edges that do not have any common vertex. At this point, we will apply a method
that involves an edge removing and continue calculation of remaining part. Let us
consider a path graph Pn with n vertices whose vertices are labelled by 1, 2, · · · , n.
For calculation of ck, if we remove the edge v1v2, then remaining part with k − 2
vertices consists of number of(k

2 − 2
k
2 − 2

)
+

(k
2 − 1
k
2 − 2

)
+ · · ·+

(
n− k

2 − 3
k
2 − 2

)
+

(
n− k

2 − 2
k
2 − 2

)
=

(
n− 1− k

2
k
2 − 1

)
combinations. Moreover, if we remove any edge vivi+1 which is not terminal edges
of Pn, then remaining part consists one of the numbers(k

2 − 1
k
2 − 1

)
,

( k
2

k
2 − 1

)
, · · · ,

(
n− 2− k

2
k
2 − 1

)
.

Hence, contributions of elementary subgraphs that are in the form of v1v2, · · · , vivj
can be ( 1√

2
)2 ·( 12 )

2 · · · ( 12 )
2 ·( 12 )

2 or ( 1√
2
)2 ·( 12 )

2 · · · ( 12 )
2 ·( 1√

2
)2. Hereby, the contribu-

tion of the type subgraphs that contribute to ck in the ( 1√
2
)2 ·( 12 )

2 · · · ( 12 )
2 ·( 12 )

2 form

is obtained as
[((n−1)− k

2
k
2−1

)
−
((n−2)− k

2
k
2−2

)]
· ( 1√

2
)2 · ( 12 )

2( k
2−1). Moreover, the contribu-

tion of the other type subgraphs that contribute to ck in the ( 1√
2
)2 · ( 12 )

2 · · · ( 12 )
2 ·

( 1√
2
)2 form is obtained as

((n−2)− k
2

k
2−2

)
· ( 1√

2
)4 · ( 12 )

2( k
2−2). Thus, the first part of the

formula is obtained as
((n−1)− k

2
k
2−1

)
·( 1√

2
)2 ·( 12 )

2( k
2−1)+

((n−2)− k
2

k
2−2

)
·( 14 )·(

1
2 )

2( k
2−2) ·( 1√

2
)2

by arranging the contribution statements above.
Furthermore, contributions of elementary subgraphs that are in the form of vavb,

· · · , vivj can be ( 12 )
2 ·( 12 )

2 · · · ( 12 )
2 ·( 12 )

2 or ( 12 )
2 ·( 12 )

2 · · · ( 12 )
2 ·( 1√

2
)2, where a ̸= 1, b ̸=

2 or a ̸= 2, b ̸= 1. Similar to the previous part of the proof, two contribution equa-

tions of ck are obtained as
∑n−2− k

2

j= k
2−1

( j
k
2−1

)
· ( 12 )

k and
∑n−3− k

2

j= k
2−2

( j
k
2−2

)
· ( 14 ) · (

1
2 )

k−2,

respectively. As a result, since there is no other elementary subgraph contribution
type, the proof is completed by summing all the above subgraph contributions. □

In the next corollary, we continue with the Sombor characteristic polynomial of
Pn. Firstly, it is clear that the Sombor characteristic polynomial of P2 is equal to
λ2 − 2.

Corollary 1. Let Pn = (V,E) be a path graph with n vertices and n − 1 edges.
Let PPn(λ) = λn + c1λ

n−1 + c2λ
n−2 + · · ·+ cn−1λ+ c be the Sombor characteristic

polynomial of Pn, where ck ∈ Z, 1 ≤ k ≤ n − 1. The formulae for the coefficients
cks of the Sombor characteristic polynomial of Pn, where n ≥ 3, are as follows:
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c2 = (−1)
k
2 (8(n− 3) + 10),

ck = 0, where k ∈ 2Z∗ + 1,

ck = (−1)
k
2

[((n−1)− k
2

k
2−1

)
· (
√
5)2 · (

√
8)2(

k
2−1) − 3

((n−2)− k
2

k
2−2

)
· (
√
5)2 · (

√
8)2(

k
2−2)

+
∑n−2− k

2

j= k
2−1

( j
k
2−1

)
· (
√
8)k − 3

∑n−3− k
2

j= k
2−2

( j
k
2−2

)
· (
√
8)(k−2)

]
, where k ≥ 4, k ∈ 2Z+.

Proof. Proof is the same with the proof of Thm. 1. Only difference originated from
the difference between the Randić and Sombor adjacency matrices of Pn. □

Theorem 2. Let Pn = (V,E) be a path graph with n vertices and n− 1 edges. Let
PPn

(λ) = λn + c1λ
n−1 + c2λ

n−2 + · · · + cn−1λ + cn be the Randić characteristic
polynomial of Pn, where ck ∈ R. The formula for the coefficient cn, where n ≥ 3,
of the Randić characteristic polynomial of Pn is as follows:

ck = 0, where k ∈ 2Z∗ + 1,

ck = (−1)
k
2

[((n−1)− k
2

k
2
−1

)
· ( 1√

2
)2 · ( 1

2 )
2( k

2
−1) +

((n−2)− k
2

k
2
−2

)
· ( 1

4 ) · (
1
2 )

2( k
2
−2) · ( 1√

2
)2

]
, otherwise.

Proof. First of all, it clear that ck = 0, where k ∈ 2Z∗ + 1. Similarly to Thm.
1, let us consider a path graph Pn with n vertices whose vertices are labelled by
1, 2, · · · , n. We keep in view elementary subgraphs with n vertices that consist
of disjoint edges since n = k. At this point, we have only one choice and it is
v1v2, v3v4, · · · , vn−1vn. Thus, by the proof of Thm. 1, we know that the contribu-

tion of this subgraph to ck is equal to
((n−1)− k

2
k
2−1

)
· ( 1√

2
)2 · ( 12 )

2( k
2−1) +

((n−2)− k
2

k
2−2

)
·

( 14 ) · (
1
2 )

2( k
2−2) · ( 1√

2
)2. Finally, by using Eqn. 1, we have the result as follow:

ck = (−1)
k
2

[((n−1)− k
2

k
2−1

)
· ( 1√

2
)2 · ( 12 )

2( k
2−1) +

((n−2)− k
2

k
2−2

)
· ( 14 ) · (

1
2 )

2( k
2−2) · ( 1√

2
)2
]
.

□

Corollary 2. Let Pn = (V,E) be a path graph with n vertices and n− 1 edges. Let
PPn

(λ) = λn + c1λ
n−1 + c2λ

n−2 + · · · + cn−1λ + cn be the Sombor characteristic
polynomial of Pn, where ck ∈ Z. The formula for the coefficient cn, where n ≥ 3,
of the Sombor characteristic polynomial of Pn is as follows:

ck = 0, where k ∈ 2Z∗ + 1,

ck = (−1)
k
2

[((n−1)− k
2

k
2
−1

)
· (

√
5)2 · (

√
8)2(

k
2
−1) − 3

((n−2)− k
2

k
2
−2

)
· (

√
5)2 · (

√
8)2(

k
2
−2)

]
, otherwise.

Proof. Proof is the same with the proof of Thm. 2. Only difference originate from
the definitions of Randić and Sombor adjacency matrices of Pn. □
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For the next theorem, we denote the number of elementary subgraphs with k
vertices by N(ck).

Theorem 3. Let Cn = (V,E) be a cycle graph with n ≥ 3 vertices and n edges.
Let PCn

(λ) = λn+ c1λ
n−1+ c2λ

n−2+ · · ·+ cn−1λ+ cn be the Sombor characteristic
polynomials of Cn, where ck ∈ R and 1 ≤ k ≤ n. The formulae for the coefficients
ck (k = 2t, t ∈ Z+) of the Sombor characteristic polynomial of Cn are as follows:

c2 = −8n,

c4 = (8)2
((

n− 2

2

)
+

(
n− 3

1

))
,

c6 = −(8)3
((

n− 3

3

)
+

(
n− 4

2

))
,

c8 = (8)4
((

n− 4

4

)
+

(
n− 5

3

))
,

c10 = −(8)5
((

n− 5

5

)
+

(
n− 6

4

))
,

...

ck = (−1)
k
2 · (8) k

2

((
n− k

2
k
2

)
+

(
n− (k2 + 1)

k
2 − 1

))
,

in the case of n = k, then cn = ck − 2 · 8n
2 , where ck is as given above.

Proof. We know that ck consist of the contributions of different elementary sub-
graphs of G with k vertices by Eqn. 1. For the coefficients ck (k = 2t, t ∈ Z+) of
the Sombor characteristic polynomials of Cn, where ck ∈ R and 1 ≤ k ≤ n− 1, we
take into account only elementary subgraphs that consist of disjoint edges without
any elementary subgraph that does not involve any cycle. Similarly to proof of
Thm. 1, we apply edge removing method so that we get the number of elementary
subgraphs for forming c4, c6, c8, c10, · · · , ck, where ck ∈ R, 1 ≤ k ≤ n− 1, by using
combinations as follows:

N(c4) =

n−3∑
i=1

(
i

1

)
+

(
n− 3

1

)
,

N(c6) =

n−4∑
i=2

(
i

2

)
+

(
n− 4

2

)
,

N(c8) =

n−5∑
i=3

(
i

3

)
+

(
n− 5

3

)
,
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N(c10) =

n−6∑
i=4

(
i

4

)
+

(
n− 6

4

)
,

...

N(ck) =

n−( k
2+1)∑

i= k
2−1

(
i

k
2 − 1

)
+

(
n− (k2 − 1)

k
2 − 1

)
.

As a result, we get the desired result by using combination properties and Eqn.
1. In addition, if n = k, then there exists one possibility of elementary subgraph
that consists of the cycle Cn itself. Therefore, in this case result is obtained as
cn = ck − 2 · 8n

2 , where ck is as given above. □

In a cycle graph Cn, it is trivial that if k is odd, then ck = 0 whenever 0 ≤ k ≤
n− 1. In the next corollary, the last part of the previous theorem is presented with
a more explicit statement.

Corollary 3. Let Cn = (V,E) be a cycle graph with n ≥ 3 vertices and n edges.
Let PCn

(λ) = λn+ c1λ
n−1+ c2λ

n−2+ · · ·+ cn−1λ+ cn be the Sombor characteristic
polynomials of Cn, where ck ∈ R and 1 ≤ k ≤ n. The formula for the coefficient cn
of the Sombor characteristic polynomial of Cn is as follows:

cn =

 −2
3n+2

2 , n = 2t+ 1,where t ∈ Z+

−2
3n+4

2 , n = 2t,where t ∈ {3, 5, 7, · · · }
0, n = 4t,where t ∈ Z+.

Proof. Let us consider a cycle graph Cn. There are three possible cases of elemen-
tary subgraph of Cn with n vertices. The first case is n = 2t + 1, where t ∈ Z+.
For this case, we have just an elementary subgraph that consists of Cn itself and
contribution of this subgraph is equal to −2 · (2

√
2)n by using Eqn. 1.

Second case is n = 2t, where t ∈ {3, 5, 7, · · · }. At this point, there are 2 types of
elementary subgraphs with n vertices. These elementary subgraphs can consist ei-
ther just a cycle Cn or n

2 disjoint edges. Therefore, contribution of these subgraphs

is equal to −2 · 8n
2 − 2 · 8n

2 that is −2
3n+4

2 . Third case is n = 4t, where t ∈ Z+.
Similarly to second case, there are two possible elementary subgraphs of Cn with n
vertices. These consist of either just a cycle Cn or n

2 disjoint edges. At this point,

since n
2 is even number contribution of these subgraphs is equal to 2 · 8n

2 − 2 · 8n
2

that is 0 by Eqn. 1. □

Corollary 4. Let Cn = (V,E) be a cycle graph with n ≥ 3 vertices and n edges.
Let PCn

(λ) = λn + c1λ
n−1 + c2λ

n−2 + · · ·+ cn−1λ+ cn be the Randić characteristic
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polynomials of Cn, where ck ∈ R and 1 ≤ k ≤ n. The formulae for the coefficients
ck (k = 2t, t ∈ Z+) of the Randić characteristic polynomial of Cn are as follows:

c2 = −n
4
,

c4 = (
1

4
)2
((

n− 2

2

)
+

(
n− 3

1

))
,

c6 = −(
1

4
)3
((

n− 3

3

)
+

(
n− 4

2

))
,

c8 = (
1

4
)4
((

n− 4

4

)
+

(
n− 5

3

))
,

c10 = −(
1

4
)5
((

n− 5

5

)
+

(
n− 6

4

))
,

...

ck = (−1)
k
2 · (1

4
)

k
2

((
n− k

2
k
2

)
+

(
n− (k2 + 1)

k
2 − 1

))
,

in the case of n = k, then cn = ck − 2 · ( 14 )
n
2 , where ck is as given above.

Proof. Proof can be followed by using Theorem 3. □

In the previous theorem, it is clear that if k is odd, then ck = 0 as long as
0 ≤ k ≤ n − 1 for each cycle graph Cn. The case n = k is presented in the next
result.

Corollary 5. Let Cn = (V,E) be a cycle graph with n ≥ 3 vertices and n edges.
Let PCn(λ) = λn + c1λ

n−1 + c2λ
n−2 + · · ·+ cn−1λ+ cn be the Randić characteristic

polynomials of Cn, where ck ∈ R and 1 ≤ k ≤ n. The formula for the coefficient cn
of the Randić characteristic polynomial of Cn is as follows:

cn =

 −21−n, n = 2t+ 1,where t ∈ Z+

−22−n, n = 2t,where t ∈ {3, 5, 7, · · · }
0, n = 4t,where t ∈ Z+.

Proof. Proof can be followed by using Corollary 3. □

Let us define a special regular graph that consists of n (n ≥ 4, n = 2t, t ∈ Z+)
vertices, 3n

2 edges and degrees of all vertices are 3. Also vertices intersect each
others in a point. We denote it by Rn. Let us demonstrate the structures of graphs
R6 and R8 in Figure 1.

Theorem 4. Let Rn = (V,E) be a 3−regular graph with n vertices and 3n
2 edges

as shown in Fig. 1. Let PRn
(λ) = λn + c1λ

n−1 + c2λ
n−2 + · · · + cn−1λ + cn be

the Randić characteristic polynomial of Rn, where ck ∈ R. The formulae for some
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Figure 1. Graphs R6 and R8

coefficients of the Randić characteristic polynomial of Rn are as follows:

c2 = −n
6 ,

c3 = 0, if n = 4, then c3 = −8 · ( 13 )
3,

c5 = 0, if n = 8, then c5 = −16 · ( 13 )
5.

c4 =


−3 · ( 1

3 )
4, n = 4

0, n = 6

−( 1
3 )

4n + ( 1
3 )

4
(∑n−3

j=1 j + (n − 3) + nn−4
2 +

(n
2
2

))
, otherwise.

c6 =



0, n = 4

0, n = 6

−( 1
3 )

6

(∑n−4
j=2

(j
2

)
+

(n−4
2

)
+

(n
2
3

)
+ n

(n−4
2
2

)
+ n(n

2 − 3)(n
2 − 4) + n(n

2 − 3)

+n
2 (n

2 − 2)
)
+ 2 · ( 1

3 )
6
(
n(n−4

2 − 1) + (n
2

n−4
2 )

)
− 2 · ( 1

3 )
6
(
n + n

2

)
, n = 10

−( 1
3 )

6

(∑n−4
j=2

(j
2

)
+

(n−4
2

)
+

(n
2
3

)
+ n

(n−4
2
2

)
+ n(n

2 − 3)(n
2 − 4) + n(n

2 − 3)

+n
2 (n

2 − 2)
)
+ 2 · ( 1

3 )
6
(
n(n−4

2 − 1) + (n
2

n−4
2 )

)
− ( 1

3 )
6n, otherwise.

Proof. It is clear that c1 of PRn(λ) is 0.
First of all, let us consider c2. We know that the number of possible elementary

subgraphs with 2 vertices is equal to the number of edges of Rn. Hence, since Rn

is 3−regular, contribution of these elementary subgraphs to c2 = −( 13 )
2 3n

2 = −n
6

by Eqn. 1.
Secondly, it is clear that 3−cycles just exist in Rn when n is equal to 4. Thus,

by Eqn. 1 if n = 4, then c3 = −( 13 )
3 · 2 · 4, otherwise c3 = 0.

Thirdly, there exists 4 options for elementary subgraphs with 4 vertices. They
can consist of 4−cycles that are in the form of cross labeling such as (1436) in R6

in Fig. 1 and the number of possible elementary subgraphs in this form is n
2 . The
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rest 3 options can be two disjoint edges that one belongs to Cn and other one is a
diagonal edge, two disjoint edges that belong to Cn and lastly two disjoint edges
that are diagonal edges, respectively. The number of possible elementary subgraphs
in the form of second option is nn−4

2 because when we select an edge that belongs

to Cn, we have
(n−4

2
1

)
possibility for an other diagonal edge. Since Rn has n vertices

there are nn−4
2 elementary subgraphs in the second form. For the third option, the

number of possible elementary subgraphs that are in the form of

{v1v2, v3v4} , {v1v2, v4v5} , · · · , {v1v2, vn−1vn},
{v2v3, v4v5} , {v2v3, v5v6} , · · · , {v2v3, vn−1vn} , {v2v3, vnv1},
...
{vn−3vn−2, vn−1vn} , {vn−3vn−2, vnv1}

is equal to 1 + 2 + 3 + · · · + (n − 3) + (n − 3). Also, it is clear that the number

of possible elementary subgraphs of the last option is
(n

2
2

)
. As a result, by using

Eqn. 1 we get c4 = −2 · ( 13 )
4 n
2 +( 13 )

4
(∑n−3

j=1 j + (n− 3) + nn−4
2 +

(n
2
2

))
. However,

additionally when n is equal to 4, for the first option we have one more possible
elementary subgraph that is C4 itself so we get the result as −3 · ( 13 )

4 by adding

−2 · ( 13 )
4. Moreover, when n is equal to 6, for the first option, we have six more

possible elementary subgraphs that are C4 itself so we get result as 0 by adding
−12 · ( 13 )

4.
Fourthly, there exists just one option for an elementary subgraph with 5 vertices

that is a 5−cycle C5 itself and it can be possible only for Rn, where n = 8. There-
fore, c5 is obtained as −16 · ( 13 )

5 by Eqn. 1.
Lastly, let us consider possible elementary subgraphs with 6 vertices, where

n ̸= 6, 10. One of the possible elementary subgraph types consisting of three edges
that are in Cn are in the form

{v1v2, v3v4, v5v6} , {v1v2, v3v4, v6v7} , · · · , {v1v2, vn−3vn−2, vn−1vn},
{v2v3, v4v5, v6v7} , {v2v3, v4v5, v7v8} , · · · , {v2v3, vn−3vn−2, vnv1} , {v2v3, vn−2vn−1, vnv1} ,
...
{vn−4vn−3, vn−2vn−1, vnv1} .

Possible number of these types is equal to
∑n−4

j=2

(
j
2

)
+
(
n−4
2

)
. An another type can consist

of three diagonal edges whose possible number is
(n

2
3

)
. Another type can consist of one edge

that is in Cn and other two edges are diagonal edges. As explained before possible number

of these elementary subgraphs is n
(n−4

2
2

)
. For another type of elementary subgraphs that

consist of two edges in Cn and one in diagonal edges, we get the possible number n(n
2
−

3)(n
2
− 4) + n(n

2
− 3) + n

2
(n
2
− 2) by using processes as mentioned above. The number

of possible elementary subgraphs that consist of cross labeling C4 and an edge in Cn is
n(n−4

2
−1). Also, the number of possible elementary subgraphs that consist of cross labeling
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C4 and a diagonal edge is (n
2

n−4
2

). Moreover, the number of possible elementary subgraphs
that consist of C6 is n

2
. Consequently, we get the formula by using Eqn. 1, where n ̸= 6, 10.

After all, additively when n is equal to 6, there is no possible elementary subgraph in the
form of one edge that is in Cn and other two edges are diagonal edges. Therefore, for the

n = 6 distinctively, we have
∑2

j=2

(
j
2

)
+
(
2
2

)
+
( 6

2
3

)
+6( 6

2
− 3)( 6

2
− 4) + 6( 6

2
− 3) + 6

2
( 6
2
− 2)

times possible elementary subgraphs that consist of disjoint edges of Rn and we have
(6 · 0 + 3 · 1) times possible elementary subgraphs that consist of one cross labeling C4 and
edge in R6. Also, we have 6 possible elementary subgraphs that consist of C6 and we have 6
possible elementary subgraphs consisting of an edge and a C4 that is not cross labeling. As
a consequence, privately for n = 6, we have the result−6·( 1

3
)6+6·( 1

3
)6−12·( 1

3
)6+12·( 1

3
)6 =

0 by using Eqn. 1. Finally, additively, if n = 10, there are n times more possible elementary
subgraphs that consist of a C6 so we have the formula by adding −2 · ( 1

3
)6n to the first

formula. Thus, we complete the proof. □

Corollary 6. Let Rn = (V,E) be a 3−regular graph with n vertices and 3n
2 edges

as shown in Fig. 1. Let PRn(λ) = λn + c1λ
n−1 + c2λ

n−2 + · · · + cn−1λ + cn be
the Sombor characteristic polynomial of Rn, where ck ∈ R. The formulae for some
coefficients of the Sombor characteristic polynomial of Rn are as follows:

c2 = −27n,

c3 = 0, if n = 4, then c3 = −8 · (
√
18)3,

c5 = 0, if n = 8, then c5 = −16 · (
√
18)5,

Also, we get the equations as follows:

c4 =


−3 · (

√
18)4, n = 4

0, n = 6

−(
√
18)4n + (

√
18)4

(∑n−3
j=1 j + (n − 3) + nn−4

2 +
(n

2
2

))
, otherwise

c6 =



0, n = 4

0, n = 6

−(
√
18)6

(∑n−4
j=2

(j
2

)
+

(n−4
2

)
+

(n
2
3

)
+ n

(n−4
2
2

)
+ n(n

2 − 3)(n
2 − 4) + n(n

2 − 3)

+n
2 (n

2 − 2)
)
+ 2 · (

√
18)6

(
n(n−4

2 − 1) + (n
2

n−4
2 )

)
− 2 · (

√
18)6

(
n + n

2

)
, n = 10

−(
√
18)6

(∑n−4
j=2

(j
2

)
+

(n−4
2

)
+

(n
2
3

)
+ n

(n−4
2
2

)
+ n(n

2 − 3)(n
2 − 4) + n(n

2 − 3)

+n
2 (n

2 − 2)
)
+ 2 · (

√
18)6

(
n(n−4

2 − 1) + (n
2

n−4
2 )

)
− (

√
18)6n, otherwise

Proof. The proof can be completed by simply replacing 1
3 with

√
18 in the proof of

the previous theorem. □
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3. Conclusion

The Randić and the Sombor characteristic polynomials of Pn and Cn were ob-
tained. Additionally, the formulae of five coefficients of the Randić and Sombor
characteristic polynomials of Rn were presented. The Randić and the Sombor en-
ergies of Pn and Cn can be studied by using these presented results. Furthermore,
various characteristic polynomials of some similar adjacency matrices defined ac-
cording to some vertex-degree-based topological invariants can be obtained by using
the number of elementary subgraphs that we presented in the theorems and corol-
laries. Especially, this study can also be extended to the multiplicative Sombor
index associated with the Sombor index.
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