ON CURVES AND SURFACES OF AW(k) TYPE

Bengü KILIÇ
Balikesir University
Faculty of Art and Sciences
Department of Mathematics
Balikesir, TURKEY
E-mail:benguk@balikesir.edu.tr

Kadri ARSLAN
Uludag University
Faculty of Art and Sciences
Department of Mathematics
Bursa, TURKEY
E-mail:arslan@uludag.edu.tr

ABSTRACT

In the present study we consider curves and surfaces of AW(k) (k = 1, 2 or 3) type. We also give related examples of curves and surfaces satisfying AW(k) type conditions.

Keywords: Frenet curve, curves and surfaces of AW(k) type.

ÖZET

Bu çalışmada, AW(k) (k=1, 2 yada 3) tipindeki eğri ve yüzeyler gözönüne alındı. AW(k) şartını sağlayan eğri ve yüzeylere örnekler verildi.

Anahtar Kelimeler: Frenet eğrisi, AW(k) tipinde eğri ve yüzey.

1- INTRODUCTION

Let $f:M\to \widetilde{M}$ be an isometric immersion of an n-dimensional connected Riemannian manifold M into an m-dimensional Riemannian manifold \widetilde{M} . Letters X,Y and Z (resp. ζ , μ and ξ) vector fields tangent (resp. normal) to M. We denote the tangent bundle of M (resp. \widetilde{M}) by TM (resp. $T\widetilde{M}$), unit tangent bundle of M by UM and the normal bundle by $T^\perp M$. Let $\widetilde{\nabla}$ and ∇ be the Levi-Civita connections of \widetilde{M} and M, resp. Then the Gauss formula is given by

$$\widetilde{\nabla}_X Y = \nabla_X Y + h(X, Y) \tag{1}$$

where h denotes the second fundamental form. The Weingarten formula is given by

$$\widetilde{\nabla}_X \xi = -A_{\xi} X + D_X \xi \tag{2}$$

where A denotes the shape operator and D the normal connection. Clearly h(X,Y) = h(Y,X) and A is related to h as $\langle A_{\xi}X,Y \rangle = \langle h(X,Y),\xi \rangle$, where \langle , \rangle denotes the Riemannian metrics of M and \widetilde{M} [1].

Let $\{e_1,e_2,...,e_n,e_{n+1},...,e_m\}$ be an local orthonormal frame field on M where $\{e_1,e_2,...,e_n\}$ are tangent vector and $\{e_{n+1},...,e_m\}$ are normal vector. The connection form w_i^j are defined by

$$\widetilde{\nabla}_{e_i} = \sum w_i^j e_j \; ; \; w_i^j = -w_j^i \; , \quad 1 \le i \; , j \le m$$
 (3)

$$\nabla_{e_i} e_j = \sum_{k=1}^n w_j^k(e_i) e_k , \qquad (4)$$

$$D_{e_i} e_{\alpha} = \sum_{\beta=n+1}^{m} w_{\alpha}^{\beta}(e_i) e_{\beta} . \tag{5}$$

The covariant derivations of h is defined by

$$(\overline{\nabla}_{X}h)(Y,Z) = D_{X}h(Y,Z) - h(\nabla_{X}Y,Z) - h(Y,\nabla_{X}Z) , \qquad (6)$$

where X, Y, Z tangent vector fields over M and $\overline{\nabla}$ is the van der Waerden Bortolotti connection. Then we have

$$(\overline{\nabla}_X h)(Y, Z) = (\overline{\nabla}_Y h)(X, Z) = (\overline{\nabla}_Z h)(Y, X) \tag{7}$$

which is called codazzi equations.

If $\overline{\nabla} h = 0$ then M is said to have parallel second fundamental form (i.e. I-parallel) [2].

It is well known that $\overline{\nabla}h$ is a normal bundle valued tensor of type (0,3). We define the second covariant derivative of h by

$$(\overline{\nabla}_{W}\overline{\nabla}_{X}h)(Y,Z) = D_{W}((\overline{\nabla}_{X}h)(Y,Z)) - (\overline{\nabla}_{X}h)(\nabla_{W}Y,Z) - (\overline{\nabla}_{X}h)(Y,\nabla_{W}Z) - (\overline{\nabla}_{X}h)(Y,Z)$$

$$(8)$$

For the orthonormal frame $\{e_1, e_2, ..., e_n\}$ of T_pM the mean curvature vector H of f is defined by

$$H = \frac{1}{n} \sum_{i=1}^{n} h(e_i, e_i).$$
 (9)

2.CURVES OF AW(k) TYPE

Let $\gamma = \gamma(s) : I \subset IE \to IE^m$ be a unit speed curve in IE^m . The curve γ is called *Frenet curve of osculating order d* if its higher order derivatives $\gamma'(s)$, $\gamma''(s)$, $\gamma'''(s)$,..., $\gamma^{(d)}(s)$ are linearly independent and $\gamma'(s)$, $\gamma''(s)$, $\gamma'''(s)$, ..., $\gamma^{(d+1)}(s)$ are linearly dependent for all $s \in I$. For each Frenet curve of order d one can associate an orthonormal *d*-frame $v_1, v_2, ..., v_d$ along γ (such that $T = \gamma'(s) = v_1$) called *the Frenet frame* and *d-1* functions $\kappa_1, \kappa_2, ..., \kappa_{d-1} : I \to IR$ called *the Frenet curvatures*, such that the Frenet formulas are defined in the usual way;

$$T'(s) = v_1' = \kappa_1(s)v_2(s) \tag{10}$$

$$v_2'(s) = -\kappa_1(s)T(s) + \kappa_2(s)v_3(s)$$
 (11)

$$v_{i}'(s) = -\kappa_{i-1}(s)v_{i-1}(s) + \kappa_{i}(s)v_{i+1}(s)$$
(12)

$$v_{i+1}'(s) = -\kappa_i(s)v_i(s).$$
 (13)

A regular curve $\gamma = \gamma(s)$: $I \subset IE \to IE^m$ is called a *W-curve of rank d*, if γ is a Frenet curve of osculating order d and the Frenet curvatures κ_i , $1 \le i \le d-1$ are non zero constant and $\kappa_d = 0$. In particular, a W-curve $\gamma(s)$ of rank 2 is called a *geodesic circle*. A W-curves of rank 3 is a *right circular helix*.

Let M be a smooth n-dimensional submanifold in (n+d)-dimensional Euclidean space IE^{n+d} . For $x \in M$ and a unit vector $X \in T_xM$, the vector X and the normal space N_xM determine a (d+1)-dimensional affine subspace IE(x,X) of IE^{n+d} . The intersection of M and IE(x,X) gives rise to a curve $\gamma(s)$ (in a neighborhood of x) called the *normal section* of M at x in the direction of X, where s denotes the arc length of $\gamma[1]$.

Definition 1. If each normal section γ of M is a Frenet curve of osculating order d then M is said to have d-planar normal sections (d-PNS). For every normal sections γ of M if γ is a W-curve of rank d in M then M is called weak helical submanifold of order d.

Definition 2. If each d-planar normal section is γ a geodesic of M then M is said to have *geodesic d-planar normal sections* (Gd-PNS). For every geodesic normal sections γ of M if γ is a W-curve of rank d in M then M is called *weak geodesic helical submanifold of order d*.

From now on we consider the Frenet curve of osculating order 3 of IE^{m} .

Proposition 3. Let γ be a Frenet curve of IE^m of osculating order 3 then we have

$$\gamma''(s) = \kappa_1 \nu_2, \quad \gamma'(s) = \nu_1(s)$$

$$\gamma'''(s) = -\kappa_1^2 \nu_1 + \kappa_1' \nu_2 + \kappa_1 \kappa_2 \nu_3$$
 (14)

$$\gamma^{1\nu}(s) = -3\kappa_1\kappa_1'\nu_1 + (-\kappa_1^3 + \kappa_1'' - \kappa_1\kappa_2^2)\nu_2 + (2\kappa_1'\kappa_2 + \kappa_1\kappa_2')\nu_3.$$
 (15)

Notation: Let us write

$$N_{1}(s) = \kappa_{1} \nu_{2}$$

$$N_{2}(s) = \kappa_{1}' \nu_{2} + \kappa_{1} \kappa_{2} \nu_{3}$$

$$N_{3}(s) = (-\kappa_{1}^{3} + \kappa_{1}'' - \kappa_{1} \kappa_{2}^{2}) \nu_{2} + (2\kappa_{1}' \kappa_{2} + \kappa_{1} \kappa_{2}') \nu_{3}.$$

Corollary 4. $\gamma'(s)$, $\gamma''(s)$, $\gamma'''(s)$ and $\gamma'''(s)$ are linearly dependent if and only if $N_I(s)$, $N_2(s)$ and $N_3(s)$ are linearly dependent.

Theorem 5. Let γ be a Frenet curve of IE^m of osculating order 3 then

$$N_3(s) = \langle N_3(s), N_1^*(s) \rangle N_1^*(s) + \langle N_3(s), N_2^*(s) \rangle N_2^*(s)$$

where

$$N_{1}^{*}(s) = \frac{N_{1}(s)}{\|N_{1}(s)\|}, \qquad N_{2}^{*}(s) = \frac{N_{2}(s) - \left\langle N_{2}(s), N_{1}^{*}(s) \right\rangle N_{1}^{*}(s)}{\|N_{2}(s) - \left\langle N_{2}(s), N_{1}^{*}(s) \right\rangle N_{1}^{*}(s)\|}$$
[3].

Definition 6. Frenet curves (of osculating order 3) are

i) of type weak AW(2) if they satisfy

$$N_3(s) = \langle N_3(s), N_2^*(s) \rangle N_2^*(s),$$

ii) of type weak AW(3) if they satisfy

$$N_3(s) = \langle N_3(s), N_1^*(s) \rangle N_1^*(s)$$
 [3].

Corollary 7. Let γ be a Frenet curve of type weak AW(2). If γ is a plane curve then $\kappa_1''(s) - \kappa_1^3(s) = 0$, and the solution of this differential equation is

$$\kappa_1 = \pm \frac{\sqrt{2}}{s+c}, \quad c = \text{Const.}$$
[3].

The curvature vector field of $\,\gamma$ (the mean curvature vector field of $\,\gamma$) is defined by

$$h(T,T)=H(s)=\gamma''(s)=\kappa_1(s)\nu_2(s).$$
 (16)

One can use the Frenet equations (15) to compute

$$\gamma^{1\nu\perp}(s) = (-\kappa_1^3 + \kappa_1^{"} - \kappa_1 \kappa_2^2) v_2 + (2\kappa_1^{"} \kappa_2 + \kappa_1 \kappa_2^{"}) v_3$$
 (17)

Definition 8.Curves are of type AW(1) if they satisfy

$$\gamma^{i\nu\perp}(s) = 0, \tag{18}$$

of type AW(2) if they satisfy

$$\gamma^{\mathsf{I}^{\mathsf{V}^{\perp}}}(s)\Lambda\gamma^{\mathsf{I}^{\mathsf{I}^{\mathsf{V}^{\perp}}}}(s) = 0 \tag{19}$$

and of type AW(3) if they satisfy

$$\gamma^{\prime\prime\perp}(s)\Lambda\gamma^{\prime\prime}(s) = 0. \tag{20}$$

Proposition 9. Let γ be a Frenet curve of type AW(1) if and only if

$$-\kappa_1^3 + \kappa_1'' - \kappa_1 \kappa_2^2 = 0 \tag{21}$$

$$2\kappa_1'\kappa_2 + \kappa_1\kappa_2' = 0. \tag{22}$$

Proof. Substituting (17) into (18) we get the result.

Corollary 10. Let γ be a Frenet curve of type AW(1).

i)If $\kappa_1 = 0$ then γ is a straight line.

ii) If $\kappa_1 \neq 0$, $\kappa_2 = 0$ then $\kappa_1'' - \kappa_1^3 = 0$. That is

$$\kappa_1 = \pm \frac{\sqrt{2}}{s+c}$$
, c=Const.

[3].

iii) If $\kappa_1, \kappa_2 \neq 0$ then by (21) and (22) we obtain

$$\kappa_2 = \frac{c}{\kappa_1^2}, \quad \kappa_1'' - \kappa_1^3 - \frac{c^2}{\kappa_1^3} = 0.$$
(23)

Putting $\kappa_1 = y$ into (23) we get

$$y'' - y^3 - \frac{c^2}{v^3} = 0. {(24)}$$

Thus solving the differential equation (24) one gets

$$\int_{0}^{y(x)} \frac{2_{-}a}{\sqrt{2_{-}a^{6}-4c^{2}+4_{-}C1_{-}a^{2}}} d_{-}a - x - C2 = 0,$$

$$\int_{0}^{y(x)} -\frac{2_{a}}{\sqrt{2_{a}a^{6}-4c^{2}+4_{c}C_{1}a^{2}}} d_{a}a - x - C_{2} = 0.$$

Using $\kappa_1 = y$, $\kappa_2 = \frac{c}{\kappa_1^2}$, we get the result.

Corollary 11. Every plane curve of AW(1) type is also of weak AW(2) type [3].

Proposition 12. Let γ be a Frenet curve of type AW(2) if and only if

$$-\kappa_1^3 + \kappa_1^{"} - \kappa_1 \kappa_2^2 = \delta_1 \kappa_1^{"} \tag{25}$$

$$2\kappa_1'\kappa_2 + \kappa_1\kappa_2' = \delta_1\kappa_1\kappa_2. \tag{26}$$

Proof. Substituting (14) and (17) into (19) we get the result.

Corollary 13. Let γ be a Frenet curve of type AW(2).

i)If $\kappa_1 = 0$ then γ is a straight line.

ii)If $\kappa_1 \neq 0$, $\kappa_2 = 0$ then by (25) we obtain

$$\kappa_1'' - \kappa_1^3 - \delta_1 \kappa_1' = 0 \tag{27}$$

Putting $\kappa_1 = y$ into (27) we get

$$y'' - y^3 - \delta_1 y' = 0 (28)$$

Thus solving the differential equation (28) one gets

$$y = c_1 e^{\frac{\delta_1 + \sqrt{4 + \delta_1^2}}{2}x} + c_2 e^{\frac{\delta_1 - \sqrt{4 + \delta_1^2}}{2}x}.$$

Using $\kappa_1 = y$ we get the result.

iii) If $\kappa_1, \kappa_2 \neq 0$ then by (25) and (26) we obtain

$$\kappa_{1}^{""}\kappa_{1} + \kappa_{1}^{"}(3\kappa_{1}^{"} - 3\delta_{1}\kappa_{1}) + \kappa_{1}^{"}(-3\delta_{1}\kappa_{1}^{"} - 6\kappa_{1}^{3} + 2\delta_{1}^{2}\kappa_{1}) + 2\delta_{1}\kappa_{1}^{4} = 0$$
 (29)

Putting $\kappa_1 = y$ and $\delta_1 = c$ into (29) we get

$$y'''y + y''(3y'-3cy) + y'(-3cy'-6y^3 + 2c^2y) + 2cy^4 = 0.(30)$$

Thus solving the differential equation (30) one gets

$$y(x) = 0, y(x) = b(a) \text{ where } [\{-b(a)^6 e^{(-2c_a)} - b(a)^3 e^{(-2c_a)} c(\frac{d}{da} b(a))\}$$

$$+_b(a)^3 e^{(-2c_a)} (\frac{d^2}{d_a a^2} b(a)) +_C C1 = 0$$

$$\{a = x, b(a) = y(x)\}, \{x = a, y(x) = b(a)\}.$$

Using $\kappa_1 = y$ we get the result.

Proposition 14. Let γ be a Frenet curve of type AW(3) if and only if

$$-\kappa_1^3 + \kappa_1'' - \kappa_1 \kappa_2^2 = \delta_2 \kappa_1 \tag{31}$$

$$2\kappa_1'\kappa_2 + \kappa_1\kappa_2' = 0. \tag{32}$$

Proof. Substituting (16) and (17) into (20) we get the result.

Corollary 15. Let γ be a Frenet curve of type AW(3).

i)If $\kappa_1 = 0$ then γ is a straight line.

ii) If $\kappa_1 \neq 0$, $\kappa_2 = 0$ then by (31) we obtain

$$\kappa_1^{"} - \kappa_1^3 - \delta_2 \kappa_1 = 0 \tag{33}$$

Putting $\kappa_1 = y$ and $\delta_2 = c$ into (33) we get

$$y'' - y^3 - cy = 0 (34)$$

Thus solving the differential equation (34) one gets

$$\int_{0}^{y(x)} \frac{2}{\sqrt{2_{-}a^{4} + 4_{-}a^{2}c + 4_{-}C1}} d_{-}a - x - C2 = 0,$$

$$\int_{0}^{y(x)} -\frac{2}{\sqrt{2_{-}a^{4}+4_{-}a^{2}c+4_{-}C1}} d_{-}a - x - C2 = 0.$$

Using $\kappa_1 = y$ we get the result.

iii)If $\kappa_1, \kappa_2 \neq 0$ then by (31) and (32) we obtain

$$\kappa_2 = \frac{c}{\kappa_1^2}, \quad \kappa_1'' - \kappa_1^3 - \frac{c^2}{\kappa_1^3} - \delta_2 \kappa_1 = 0.$$
(35)

Putting $\kappa_1 = y$ and $\delta_2 = d$ into (35) we get

$$y'' - y^3 - \frac{c^2}{y^3} - dy = 0. {36}$$

Thus solving the differential equation (36) one gets

$$\int_{0}^{y(x)} -\frac{2_{-}a}{\sqrt{4_{-}C1_{-}a^{2}+2_{-}a^{6}-4c^{2}+4d_{-}a^{4}}} d_{-}a - x - C2 = 0$$

$$\int_{0}^{y(x)} \frac{2_{a}}{\sqrt{4_{a}C1_{a}^{2}+2_{a}^{6}-4c^{2}+4d_{a}^{4}}} d_{a}a - x - C2 = 0.$$

Using $\kappa_1 = y$, $\kappa_2 = \frac{c}{\kappa_1^2}$, we get the result.

Corollary 16. Every Frenet curve of weak AW(3) type is also of AW(3) type [3].

3. SURFACES OF AW(k) TYPE

In this part we consider surfaces of AW(k) type.

Let us write

$$H(X) = h(X, X) \tag{37}$$

$$\nabla H(X) = (\overline{\nabla}_X h)(X, X) \tag{38}$$

$$J(X) = (\overline{\nabla}_X \overline{\nabla}_X h)(X, X) + 3h(A_{h(X, X)} X, X)$$
(39)

so that $H: T(M) \to N(M)$, $\nabla H: T(M) \to N(M)$ and $J: T(M) \to N(M)$ are fibre maps whose restriction to each fibre $T_X(M)$ is a homogeneous polynomial map, H is of degree 2 and ∇H is of degree 3 and J is of degree 4.

Then

$$J_{1}(\overline{\nabla}_{e_{1}}\overline{\nabla}_{e_{1}}h)(e_{1},e_{1}) + 3h(A_{h(e_{1},e_{1})}e_{1},e_{1})$$

$$\tag{40}$$

$$J_2(\overline{\nabla}_{e_2}\overline{\nabla}_{e_2}h)(e_2,e_2) + 3h(A_{h(e_2,e_2)}e_2,e_2). \tag{41}$$

Definition 17. [4] Submanifolds are of type AW(1) if they satisfy

$$J \equiv 0 \tag{42}$$

submanifolds are of type AW(2) if they satisfy

$$\left\|\nabla H\right\|^2 J \equiv \langle J, \nabla H \rangle \nabla H \tag{43}$$

and of type AW(3) if they satisfy

$$||H||^2 J \equiv \langle J, H \rangle H . \tag{44}$$

Proposition 18. [5] Let M be a connected normally flat surfaces in IE^4 . e_3 is parallel to the mean curvature vector H of M such that

$$A_{e_3} = \begin{bmatrix} \lambda & 0 \\ 0 & \mu \end{bmatrix}, \qquad A_{e_4} = \begin{bmatrix} \beta & 0 \\ 0 & -\beta \end{bmatrix}. \tag{45}$$

We give the following results.

Lemma 19. From the Codazzi equations and using (4), (5) and (45)

$$(\lambda - \mu)w_1^2(e_2) = e_1(\mu) + \beta w_3^4(e_1)$$
(46)

$$2\beta w_1^2(e_2) = -e_1(\beta) + \mu w_3^4(e_1)$$
(47)

$$(\lambda - \mu)w_1^2(e_1) = e_2(\lambda) - \beta w_3^4(e_2)$$
 (48)

$$2\beta w_1^2(e_1) = e_2(\beta) + \lambda w_3^4(e_2). \tag{49}$$

Lemma 20. If $M \subset IE^4$ is normally flat surfaces then

$$J_{1} = \{e_{1}^{2}(\lambda) - \lambda (w_{3}^{4}(e_{1}))^{2} - 2e_{1}(\beta)w_{3}^{4}(e_{1}) - \beta e_{1}(w_{3}^{4}(e_{1})) - 3w_{1}^{2}(e_{1})e_{2}(\lambda) (50)$$

$$+ 3\beta w_{1}^{2}(e_{1})w_{3}^{4}(e_{2}) + 3\lambda (\lambda^{2} + \beta^{2})\}e_{3}$$

$$+ \{e_{1}^{2}(\beta) - \beta (w_{3}^{4}(e_{1}))^{2} + 2e_{1}(\lambda)w_{3}^{4}(e_{1}) + \lambda e_{1}(w_{3}^{4}(e_{1})) - 3w_{1}^{2}(e_{1})e_{2}(\beta)$$

$$- 3\lambda w_{1}^{2}(e_{1})w_{3}^{4}(e_{2}) + 3\beta (\lambda^{2} + \beta^{2})\}e_{4}$$

and

$$J_{2} = \{e_{2}^{2}(\mu) - \mu (w_{3}^{4}(e_{2}))^{2} + 2e_{2}(\beta)w_{3}^{4}(e_{2}) + \beta e_{2}(w_{3}^{4}(e_{2})) + 3w_{1}^{2}(e_{2})e_{1}(\mu)$$

$$+ 3\beta w_{1}^{2}(e_{2})w_{3}^{4}(e_{1}) + 3\mu (\mu^{2} + \beta^{2})\}e_{3}$$

$$+ \{-e_{2}^{2}(\beta) + \beta (w_{3}^{4}(e_{2}))^{2} + 2e_{2}(\mu)w_{3}^{4}(e_{2}) + \mu e_{2}(w_{3}^{4}(e_{2})) - 3w_{1}^{2}(e_{2})e_{1}(\beta)$$

$$+ 3\mu w_{1}^{2}(e_{2})w_{3}^{4}(e_{1}) - 3\beta (\mu^{2} + \beta^{2})\}e_{4}.$$
(51)

Proof. Substituting (4), (5), (6), (8) and (45) into (40) and (41) we get the result.

Proposition 21. Let $M \subset IE^4$ be a normally flat surfaces. If M is AW(1) type then $J_1 = 0$ and $J_2 = 0$. That is

$$e_1^2(\lambda) - (\lambda + 2\mu) (w_3^4(e_1))^2 + 4\beta w_3^4(e_1)w_1^2(e_2) - \beta e_1(w_3^4(e_1))$$
$$-3(\lambda - \mu)(w_1^2(e_1))^2 + 3\lambda(\lambda^2 + \beta^2) = 0,$$

$$2e_{1}(\lambda)w_{3}^{4}(e_{1}) + (\lambda + \mu)e_{1}(w_{3}^{4}(e_{1})) + (\lambda - 3\mu)w_{3}^{4}(e_{1})w_{1}^{2}(e_{2})$$

$$-\beta\{2(w_{3}^{4}(e_{1}))^{2} - 4(w_{1}^{2}(e_{2}))^{2} + 2e_{1}(w_{1}^{2}(e_{2})) + 6(w_{1}^{2}(e_{1}))^{2} - 3(\lambda^{2} + \beta^{2})\} = 0,$$

$$e_{2}^{2}(\mu) - (\mu + 2\lambda)(w_{3}^{4}(e_{2}))^{2} + 4\beta w_{3}^{4}(e_{2})w_{1}^{2}(e_{1}) + \beta e_{2}(w_{3}^{4}(e_{2}))$$

$$+3(\lambda - \mu)(w_{1}^{2}(e_{2}))^{2} + 3\mu(\mu^{2} + \beta^{2}) = 0,$$

$$2e_{2}(\mu)w_{3}^{4}(e_{2}) + (\lambda + \mu)e_{2}(w_{3}^{4}(e_{2})) + (3\lambda - \mu)w_{3}^{4}(e_{2})w_{1}^{2}(e_{1})$$
$$-\beta\{-2(w_{3}^{4}(e_{2}))^{2} + 4(w_{1}^{2}(e_{1}))^{2} + 2e_{2}(w_{1}^{2}(e_{1})) - 6(w_{1}^{2}(e_{2}))^{2} + 3(\mu^{2} + \beta^{2})\} = 0.$$

Proof. Substituting (46), (47), (48), (49) into (50) and (51) and from AW(1) type definition we get the result.

Proposition 22.Let M be a normally flat and has got constant principal curvature submanifold. Then

$$J_{1} = \{-\lambda (w_{3}^{4}(e_{1}))^{2} - \beta e_{1}(w_{3}^{4}(e_{1})) + 3\beta w_{1}^{2}(e_{1})w_{3}^{4}(e_{2}) + 3\lambda(\lambda^{2} + \beta^{2})\}e_{3}$$
(52)
+\{-\beta(w_{3}^{4}(e_{1}))^{2} + \lambda e_{1}(w_{3}^{4}(e_{1})) - 3\lambda w_{1}^{2}(e_{1})w_{3}^{4}(e_{2}) + 3\beta(\lambda^{2} + \beta^{2})\}e_{4},\]
$$J_{2} = \{-\lambda (w_{3}^{4}(e_{2}))^{2} + \beta e_{2}(w_{3}^{4}(e_{2})) + 3\beta w_{1}^{2}(e_{2})w_{3}^{4}(e_{1}) + 3\lambda(\lambda^{2} + \beta^{2})\}e_{3}$$
(53)
+\{\beta(w_{3}^{4}(e_{2}))^{2} + \lambda e_{2}(w_{3}^{4}(e_{2})) + 3\lambda w_{1}^{2}(e_{2})w_{3}^{4}(e_{1}) - 3\beta(\lambda^{2} + \beta^{2})\}e_{4}.

Lemma 23. Let M be a normally flat and has got constant principal curvature submanifold of AW(1) type

- i) If $\lambda = \beta = 0$ then M is a plane,
- ii) If $\lambda = -\beta$ then M has got vanishing Gaussian curvature (K = 0), mean curvature $H = \lambda$ or $(w_3^4(e_2))^2 = 3(\lambda^2 + \beta^2)$,
- iii) If $\lambda = \beta$ then M has got vanishing Gaussian curvature (K = 0), mean curvature $H = \lambda$ or $e_2(w_3^4(e_2)) = -3w_1^2(e_2)w_3^4(e_1)$.

Theorem 24. [3] Let γ be a Frenet curve of order 3 and of type AW(k) then the cylinder over γ is of type AW(k), where k=1,2,3.

Example 25. Let $\gamma(s) = (\int_0^s \cos(P_k(t))dt, \int_0^s \sin(P_k(t))dt)$ be a polinomial spiral with $\kappa_{\gamma}(s) = P_k'(t) = \pm \frac{\sqrt{2}}{s+c}$, c = Const. The Riemannian product of $\gamma(s)$ with the helicoid

 $x(w, t) = (w\cos t, w\sin t, at)$ is of AW(1) type.

Example 26. We define helical cylinder \mathbf{H}^2 embedded in IE^4 by

$$x(u, v) = \{(u, a\cos v, a\sin v, bv) : a, b \in IR\}$$

and we show that \mathbf{H}^2 is of type AW(3).

For

$$p=(u, a\cos v, a\sin v, bv)$$

 $T_p(\mathbf{H}^2)$ is spanned by

$$x_u = (1, 0, 0, 0)$$

 $x_v = (0, -a\sin v, a\cos v, b)$

and $N_p(\mathbf{H}^2)$ is spanned by

$$n_1$$
=(0, cos v , sin v , 0)

$$n_2 = (0, \frac{b}{a} \sin v, -\frac{b}{a} \cos v, 1)$$
.

We have the orthonormal frame X, Y, v_1 , v_2 where

$$X = \frac{x_u}{\|x_u\|} = (1,0,0,0)$$

$$Y = \frac{x_v}{\|x_v\|} = \frac{1}{\sqrt{a^2 + b^2}} (0, -a\sin v, a\cos v, b)$$

$$v_1 = \frac{n_1}{\|n_1\|} = (0, \cos v, \sin v, 0)$$

$$v_2 = \frac{n_2}{\|n_2\|} = \frac{a}{\sqrt{a^2 + b^2}} (0, \frac{b}{a}\sin v, -\frac{b}{a}\cos v, 1).$$

Differentiating these we have

$$\begin{split} \widetilde{\nabla}_X X &= \widetilde{\nabla}_X Y = \widetilde{\nabla}_Y X = 0, \quad \widetilde{\nabla}_Y Y = \frac{-a}{a^2 + b^2} v_1 \\ \widetilde{\nabla}_X v_1 &= \widetilde{\nabla}_X v_2 = 0 \,, \quad \widetilde{\nabla}_Y v_1 = \frac{a}{a^2 + b^2} Y - \frac{b}{a^2 + b^2} v_2 \,, \quad \widetilde{\nabla}_Y v_2 = \frac{b}{a^2 + b^2} v_1 \,. \end{split}$$

Combining these with (1) and (2) we get

$$\nabla_X X = \nabla_X Y = \nabla_Y X = \nabla_Y Y = 0 \tag{54}$$

$$h(X,X)=h(X,Y)=h(Y,X)=0, h(Y,Y)=\frac{-a}{a^2+b^2}v_1$$
 (55)

$$A_{\nu_1}X = A_{\nu_2}X = A_{\nu_2}Y = 0, \quad A_{\nu_1}Y = \frac{-a}{a^2 + b^2}Y$$
 (56)

$$D_X v_I = D_X v_2 = 0$$
, $D_Y v_1 = \frac{-b}{a^2 + b^2} v_2$, $D_Y v_2 = \frac{b}{a^2 + b^2} v_1$.(57)

Substituting (6), (8), (54), (55), (56) and (57) into (40) and (41) we have

$$J(X)=J_1=0, \quad J(Y)=J_2=\frac{a(b^2-3a^2)}{(a^2+b^2)^3}v_1.$$
 (58)

Substituting (37) and (58) into (44) we get the result.

Example 27. We define surfaces embedded in IE^4 by

$$x(u, v) = (u, v, u\cos v, u\sin v)$$

and we show that surfaces is of type AW(3).

After some calculations we get

$$J(X)=J_1=0, \quad J(Y)=J_2=\frac{-\sqrt{2}u}{(1+u^2)^3}v_1.$$
 (59)

Substituting (37) and (59) into (44) we get the result.

Example 28. We define surfaces embedded in IE^4 by

$$x(u, v) = \{(u\cos v, u\sin v, \cos bv, \sin bv) : b \in IR\}$$

and we show that surfaces is of type AW(3).

After some calculations we get

$$J(X)=J_1=0$$
, $J(Y)=J_2=\frac{b^2(u^2b^2+8u^2-3b^4)}{(u^2+b^2)^3}v_1$. (60)

Substituting (37) and (60) into (44) we get the result

Example 29. We define a Mobius band M^2 embedded in IE^4 by

$$x(u, v) = (\cos u, \sin u, v \cos \frac{u}{2}, v \sin \frac{u}{2})$$

and we show that M^2 is of type AW(3).

After some calculations we get

$$J(X) = J_1 = \frac{-144}{(4+v^2)^3} v_1, \quad J(Y) = J_2 = 0.$$
 (61)

Substituting (37) and (61) into (44) we get the result.

REFERENCES

- [1] B.Y. Chen, "Geometry of Submanifolds", **Dekker** (1973).
- [2] U. Lumiste, "Submanifolds with Parallel Fundamental Form", *Handbook of Differential Geometry* (1999) Vol 1, Chapter 7, 86.
- [3] K. Arslan, C. Ozgur, "Curves and Surfaces of *AW(k)* Type", *Geometry and Topology of Submanifolds IX* (Valenciennes/Lyon/Leuven, 1997) World Sci. Publishing, River Edge, NJ, (1999) 21-26.
- [4] K. Arslan, "Isoparametric Submanifolds With Pointwise k-Planar Normal Sections", **PhD. Thesis**, The University of Leeds, (1993).
- [5] J. Deprez, "Semi-parallel Surfaces in Euclidean Spaces", *Journal of Geometry*, (1985) Vol 25, 192-200.