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ABSTRACT

In the present study we consider curves and surfaces of AW(k) ( k=1, 2 or 3 ) type. We also give
related examples of curves and surfaces satisfying AW(K) type conditions.
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OZET

Bu ¢aligmada, AW(K) ( k=1, 2 yada 3 ) tipindeki egri ve yiizeyler g6zoniine alindi. AW(K) sartini
saglayan egri ve yiizeylere 6rnekler verildi.
Anahtar Kelimeler: Frenet egrisi, AW(K) tipinde egri ve yiizey.

1- INTRODUCTION

Let f : M —M be an isometric immersion of an n-dimensional connected
Riemannian manifold M into an m-dimensional Riemannian manifold M . Letters X, Y
and Z (resp.C, u and & ) vector fields tangent (resp. normal) to M. We denote the tangent
bundle of M (resp. M ) by TM (resp. TM ) , unit tangent bundle of M by UM and the

normal bundle by T*M. Let V and V be the Levi-Civita connections of M and M ,
resp. Then the Gauss formula is given by

V.Y =V,Y +h(X,Y) (1)
where h denotes the second fundamental form. The Weingarten formula is given by
Vi&=-AX+D,¢ (2)

where A denotes the shape operator and D the normal connection. Clearly h(X,Y) =
h(Y,X) and A is related to h as <A§X,Y>:<h(X,Y),§>, where <,> denotes the

Riemannian metrics of M and M [1].
Let {e,e,,...,e,.€ .., } be an local orthonormal frame field on M where

no>~n+loe

{e,,e,,...,e, } are tangent vector and {e e,, yare normal vector. The connection

n+loeee

form w/ are defined by

V., =>wle, ;w/=-wj, I<i,j<m 3)

Veiej :ZWIj((ei)ek > 4)
k=1

D.e, = > W/(e)e, . )
P=n+1

The covariant derivations of h is defined by
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(Vxh)(Y,Z) = Dyh(Y,Z) -h(V,Y,Z)-h(Y,V,Z) , (6)
where X, Y, Z tangent vector fields over M and V is the van der Waerden Bortolotti
connection. Then we have

(Vh)(Y.Z) = (V,h)(X,Z) = (V,h)(Y, X) (7)
which is called codazzi equations.

If Vh=0 then M is said to have parallel second fundamental form ( i.e.1-
parallel ) [2].

It is well known that Vh is a normal bundle valued tensor of type (0,3).We
define the second covariant derivative of h by

(vax h)(Y,Z) = DW ((Vx h)(Y,Z)) - (Vx h)(VWY,Z) -

— — ()
- (Vx h)(Y:VWZ) - (Vv X h)(Y Z)
For the orthonormal frame {e ,e,,...,e,} of T;M the mean curvature vector H of
f is defined by
H=—>hee,e,) ©)
N5
2.CURVES OF AW(k) TYPE

Let y =y(s): 1 < IE — IE™ be a unit speed curve in IE™ . The curve 7 is called
Frenet curve of osculating order d if its higher order derivatives »'(s), 7'(s),
7'"(8),...,7 Y (s) are linearly independent and »'(s), 7"(s), 7'"(S),...,y" """ (s) are
linearly dependent for all sel. For each Frenet curve of order d one can associate an
orthonormal d-frame v, v;,...,vqg along v (such that T = y'(s) = v, ) called the Frenet

frame and d-1 functions «, x,,...,k,_: | >IR called the Frenet curvatures, such that
the Frenet formulas are defined in the usual way;

T'(8)=v,"=k,(S)V,(5) (10)
V,'(8) = =K, (S)T(S) + &, (S)v5(S) (11)
Vi'(8) = =k, (S)viy (8) + & (S, (S) (12)
Vin'(8) = =K (S)vi (8). (13)

A regular curve y =y(s): 1 < IE — IE" is called a W-curve of rank d, if yisa
Frenet curve of osculating order d and the Frenet curvatures x;, 1 <i<d-1 are non zero
constant and ', =0. In particular, a W-curve y(S) of rank 2 is called a geodesic circle.

A W-curves of rank 3 is a right circular helix.

Let M be a smooth n-dimensional submanifold in (n+d)-dimensional Euclidean
space IE™ *d For xe M and a unit vector X e T,M, the vector X and the normal space
NM determine a (d+1)-dimensional affine subspace 1E(x,X) of IE™Y. The intersection
of M and IE(X,X) gives rise to a curve y(s) (in a neighborhood of X) called the normal

section of M at x in the direction of X, where s denotes the arc length of y [1].
Definition 1. If each normal section y of M is a Frenet curve of osculating order d then

M is said to have d-planar normal sections (d-PNS). For every normal sections y of M if
v is a W-curve of rank d in M then M is called weak helical submanifold of order d.
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Definition 2. If each d-planar normal section is y a geodesic of M then M is said to have
geodesic d-planar normal sections (Gd-PNS). For every geodesic normal sections y of
M if vy is a W-curve of rank d in M then M is called weak geodesic helical submanifold
of order d.

From now on we consider the Frenet curve of osculating order 3 of IE™.

Proposition 3. Let y be a Frenet curve of IE™ of osculating order 3 then we have
y'(S)=Kv,, 7'(8)=v(5)
7'"(8) =~k KV, KKV, (14)
7" (8) = 3K,V +(—K] +x,"—K KW, +(2K,"K, + KK, )W,. (15)
Notation: Let us write
Ni(s)=x,v,
No(S)=x,'v, + K ,K,V,

N3(s)= (—Kl3 + K, "—K‘lez)Vz +(2x,'K, + KK, )V,

Corollary 4. »'(s), 7" (s), y'"(s)and y" (s) are linearly dependent if and only if
N1(s), N2o(s ) and N3(S) are linearly dependent.

Theorem 5. Let y be a Frenet curve of IE™ of osculating order 3 then
NS (5) = (N (), N (8))N; (8) + (N (), NS (5))N3 (S)
where
N9~ (N, (8), N (S)N/ (5)
IN.(9) = (N, (81N )N, (5

+ o~ N(5) .
NI(S)_”NI(S) s NZ(S)

[3].

Definition 6. Frenet curves ( of osculating order 3 ) are
i)of type weak AW(2) if they satisfy

N, (5) = (N5(5), N3 ())N3(s),
i) of type weak AW(3) if they satisfy

N, (8) = (N (8).N; ())N; (5) [3].
Corollary 7. Let y be a Frenet curve of type weak AW(2). If y is a plane curve then
Kx,"(s)— &, (s) = 0, and the solution of this differential equation is

K, = iﬁ, c= Const. [3].
S+C

The curvature vector field of y ( the mean curvature vector field of y ) is defined
by
h(T. T)=H(s)=7"(s) = &, (S)v,(9). (16)
One can use the Frenet equations (15) to compute
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7/'\/l ()= (_K13 +K1”_K1K22)V2 + 2k, 'x, + x5, vy (17)

Definition 8.Curves are of type AW(1) if they satisfy

7" (s)=0, (18)
of type AW(2) if they satisfy

YA (5)=0 (19)
and of type AW(3) if they satisfy

7" (9)Ay"(s)=0. (20)
Proposition 9. Let y be a Frenet curve of type AW(1) if and only if

K, + K"K,k =0 (21)

2x,'x, +K,k,'=0. (22)

Proof. Substituting (17) into (18) we get the result.

Corollary 10. Let y be a Frenet curve of type AW(1).
DIf x, =0 then vy is a straight line.

ii)If &, #0, x, =0 then x,"—x; =0. That is

NG

Kk, =+ ——, c=Const.
S+C

[3].
ii)If x,,x, #0 then by (21) and (22) we obtain

C " c
K T KK ——5=0. (23)
1 1
Putting x, =y into (23) we get
" C :
y —y3—7=0. (24)
Thus solving the differential equation (24) one gets
y(0
2 a

da-x-_C2=0,

\/27a6 —4c*+4 Cl a?

y(x) 2 a

- da-x- C2=0.
J2 a®—4c’ +4 Cl a°

. c
Using x; =Y, x, =—, we get the result.
K

Corollary 11. Every plane curve of AW(1) type is also of weak AW(2) type [3].

Proposition 12. Let y be a Frenet curve of type AW(2) if and only if

3 2
-k, +K,"-K Kk, =6,k (25)
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2K,'K, +K\K,'= 0K \K,. (26)
Proof. Substituting (14) and (17) into (19) we get the result.

Corollary 13. Let y be a Frenet curve of type AW(2).
)If x, =0 then vy is a straight line.

iIf «, #0, x, =0 then by (25) we obtain

K,"-Kk; —O,k,'=0 (27)
Putting x, =y into (27) we get
y'-y’=6,y'=0 (28)

Thus solving the differential equation (28) one gets
8+ 4+81 . 8= 4+67 .

y=ce * +C,e ?
Using x, =y we get the result.
iii)If x,,x, # 0 then by (25) and (26) we obtain
K,"'x, +x," (BK,'-38,Kk,) + Kk,"(=36,k,'-6K] +25]Kk,)+25,k; =0 (29)
Putting x, =Yy and 0, =C into (29) we get
Y'Y+ y"'(3y'-3cy) + y'(-3cy'-6y’ +2¢y) +2¢cy* = 0.(30)
Thus solving the differential equation (30) one gets
y(X) =0, y(x) =_ b(_a) where[{~_b(_a)°e™**® —_b(_a)’ e””)c(ﬁ _b(_a))

+_ b(_a)’e*¥ (ﬁ b(_a))+_ Cl1=0},
{_a=x _b(Ca)=y(x¥)}, {x=_a, y(x)=_b(_a)}].
Using x, =y we get the result.

Proposition 14. Let y be a Frenet curve of type AW(3) if and only if
—K‘13 +K‘1"—K‘1K22 =0,k (31)
2x,'x, +K,k,"'=0. (32)
Proof. Substituting (16) and (17) into (20) we get the result.

Corollary 15. Let y be a Frenet curve of type AW(3).
NIf x, =0 then vy is a straight line.

If «, #0, x, =0 then by (31) we obtain

K"k, —5,x, =0 (33)
Putting x, =y and J, =Cinto (33) we get
y'-y’—cy=0 (34)
Thus solving the differential equation (34) one gets
y(0) 2

da-x—-_C2=0,

J2 a'+4 a’c+4 Cl
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y(x)
2 da-x— C2=0.

J2.a*+4 a’c+4 Cl

Using x, =y we get the result.
iii)If x,,x, # 0 then by (31) and (32) we obtain

c N c’
K, =—, K'-Kk —— -6k =0. (35)
K K
Putting k&, =y and J, =d into (35) we get

2

Y-y’ —%—dyzo. (36)
Thus solving the differential equation (36) one gets
T 2.2 da-x— C2=0
J4 Cla*+2 a’—4c’+4d a*
y(0 2 a

da-x— C2=0.

\/47C17a2 +2 a®—4c*+4d a*

. c
Using x, =Y, k, =—, we get the result.
Kl

Corollary 16. Every Frenet curve of weak AW(3) type is also of AW(3) type [3].
3. SURFACES OF AW(K) TYPE

In this part we consider surfaces of AW(K) type.
Let us write

H(X)=h(X,X) (37)
VH(X) = (V, (X, X) (38)
J(X) = (Vx V)X, X) + 30(Ay ) X, X) (39)

so that H : T(M) - N(M), VH : T(M) — N(M) and J : T(M) — N(M) are fibre maps
whose restriction to each fibre Tx(M) is a homogeneous polynomial map, H is of degree
2 and VH is of degree 3 and J is of degree 4.

Then
31 (Ve Ve h)ey,e) +30(Ay o858) (40)
3,(V,, V. h)e,.e,) +3n(A . &.8,). (41)

Definition 17. [4] Submanifolds are of type AW(1) if they satisfy

J=0 (42)
submanifolds are of type AW(2) if they satisfy

[VH|"3 =(3,VH)VH (43)
and of type AW(3) if they satisfy

HP3=(3,H)H . (44)
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Proposition 18. [5] Let M be a connected normally flat surfaces in IE* . e5is parallel to
the mean curvature vector H of M such that

[2 0 [B o 45
T e

We give the following results.

Lemma 19. From the Codazzi equations and using (4), (5) and (45)

(A=W (&) =e,(u)+ Bw;(e) (46)
28w/ (8,) = —&,(B)+ 1 W; (&) (47)
(A= p)w; (&) = ,(4) =~ S W, (e,) (48)
28w (&) =e,(f)+ AW (e,). (49)

Lemma 20. If M < IE* is normally flat surfaces then
I ={e/ (D) - A (W (e))” —2e,(BIW; (&) — B e, (w5 (&) 3w/ (e))e, (1) (50)
+38 W (e)W; (8,) +34 (4 + B7)le,
+ {612 (:8) - ﬂ (W§ (el ))2 + 2e1 (ﬂ,)W? (el ) + /161 (W; (el )) - 3Wl2 (el )ez (IB)

—3AW/ (e )W, (e,) +38 (4 + f)}e,

and

Iy =18 (1) — 1 (WS (8,)) + 26, (B)W; (&) + B &, (W; (&;)) + 3wy ()6, (1) (S1)

+3 W (e,)Wy (8) +3u (4 + B7)le,
+ {_ezz B+ P (W§ (e, ))2 +2e, (,U)W? (&) +ue, (W; (e))— 3W12 (e,)e,(B)

+3pu W] (8,)W5 (8,) =35 (u” + )}e, .

Proof. Substituting (4), (5), (6), (8) and (45) into (40) and (41) we get the result.

Proposition 21. Let M = IE* be a normally flat surfaces. If M is AW(1) type then J; = 0
and J, = 0. That is

& (4) = (A +24) (W (8))" +48W; (&)W (e,) — B e, (W (&)
=32 (W (&) + 344 + f7) =0,

2¢, (AW (&) + (4 + )e, (W5 (&) + (A = 3wy (&, )W/ (&,)
= BL2(W (8)))" — AW/ (6,))" +2€, (W} (8,)) + 6(W; (€)))” =3(4" + )} =0,
&y (1) = (u+22) (W (8,)) + 48 W (&)W, (&) + B &, (W (8,))
+3(A = )Wy (8,))” +3u(u’” + B7) =0,

2e, (,U)W; (€,)+ (A + e, (W34 (€,)+(BA- /U)W; (e, )W12 ()
— B{=2(W; (8,))° +4(W/ (g)))” +2e, (W, (8)) — 6(W/ (&,))” +3(u” + )} = 0.
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Proof. Substituting (46), (47), (48), (49) into (50) and (51) and from AW(1) type
definition we get the result.

Proposition 22.Let M be a normally flat and has got constant principal curvature
submanifold. Then

I ={=A(w; ()" — Be(wy(e))+38w; (e)ws(e,) +34(A" + B7)je;  (52)
+{=BW; (8)" + A (W (8)) —3A W/ (e)Wy (8,) +3B(X + B7)le,,

3, =AWy ()" + Be,(wy(e) + 38 W (6,)Wy (8) +34(4" + f*)}ey  (53)
+{BW; ()" + A e, (Wi (e)) +3A W, (8,)W; (6) —3B(A" + 7)}e,.

Lemma 23. Let M be a normally flat and has got constant principal curvature
submanifold of AW(1) type

i) If A= =0 then M is a plane,

i) If 4 =- fBthen M has got vanishing Gaussian curvature (K = 0), mean curvature
H=Zdor (W (e,))’ =34 + %),

iii) If A = fthen M has got vanishing Gaussian curvature (K = 0), mean curvature H =
Aor e, (W; (e,)) = —3W12(62 )W;(el ) -

Theorem 24. [3] Let y be a Frenet curve of order 3 and of type AW(K) then the cylinder
over v is of type AW(K), where k=1,2,3.

Example 25. Let y(s):(j cos(P, (t))dt,jsin(Pk (t))dt) be a polinomial spiral with
0 0

NG

k,(s)=PR'(t)=+——, c=Const. The Riemannian product of y(s) with the helicoid
S+C

X(w, t) = (wcost, wsint, at) is of AW(1) type.

Example 26. We define helical cylinder H? embedded in IE* by
x(u, v)={(u, acosv, asinv, bv) : a, b €IR}
and we show that H? is of type AW(3).
For
p=( u, acosv, asinv, bv)
Tp(HZ) is spanned by
X=(1, 0, 0, 0)
xy=(0, -asinv, acosv, b)
and Np(Hz) 1s spanned by
n;=(0, cosv, sinv, 0)

ny=(0, E sin V,—E cosV,1).
a a
We have the orthonormal frame X, Y, vy, V, where

X = 2 (1,0,0,0)

[
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Y = X _ ! (0,—asinv,acosV,b)
x| a2 +b2
Vv, = U (0,cosV,sinV,0)
I
n, a b . b
vV, = = (0,—sinv,——cosV,l).
“on) Vai+p? a a

Differentiating these we have

~ ~ ~ ~ -a
VXX :VXY :VYX :O, VYY :mvl
- - ~ a b = b
Vv, =Vyv, =0, Vyv, = RS Y - RS V,, Vv, :mvl.
Combining these with (1) and (2) we get
ViX=V, Y=V, X=V,Y=0 (54)
h(X,X)=h(X,Y)=h(Y,X)=0, h(Y,Y)=——v, (55)
a +b
-a
X=A X=AY=0, Y = Y 56
A‘/l AVz AVz AVl a2+b2 ( )
-b b

Dxvi= Dxv,=0, D,v, = v,, Dyv, :mv1 (57)

a’+b’
Substituting (6), (8), (54), (55), (56) and (57) into (40) and (41) we have
L a(b’ -3a%)
J(X)—Jl—o, J (Y) = J2 = W 1- (58)
Substituting (37) and (58) into (44) we get the result.
Example 27. We define surfaces embedded in 1E* by
x(u, v) = (u, v, Ucosv, Usinv)
and we show that surfaces is of type AW(3).
After some calculations we get
—+2u
J(X):leo, \](Y) = ‘]2 = m L- (59)
Substituting (37) and (59) into (44) we get the result.
Example 28. We define surfaces embedded in 1E* by
X(u, v) = {(ucosv, usinv, cosbv, sinbv) : b €IR}
and we show that surfaces is of type AW(3).
After some calculations we get
2(112h2 2 Ap4
JX)=01=0, J(y)=], -2 UD +8U =30, )

(u? +b%)° g
Substituting (37) and (60) into (44) we get the result.

Example 29. We define a Mobius band M? embedded in IE* by

. u . u
X(u, v) = (cosu, sinu, VCOSE, Vs1n5)
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and we show that M? is of type AW(3).
After some calculations we get

—144
J(X)=J, =——=v,,
(4+v7)

Substituting (37) and (61) into (44) we get the result.

J(Y)=3,=0. (61)
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