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Abstract 

In this study we consider the surfaces nM  in 5IE satisfying the condition (X,Y).H=0 
−
R

where H is the mean curvature vector of M. 
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Özet 

 Bu çalışmada, H ortalama eğrilik vektörü olmak üzere, 
−
R (X,Y).H=0 şartını sağlayan  5IE  deki 

nM  yüzeyleri gözönüne alındı. 
Anahtar Kelimeler:Semi-paralel, Semi-simetrik uzay. 
 

1- INTRODUCTION 
 

Let x:  be an isometric immersion of an n-dimensional Riemannian 

manifold 

mn EM →
nM  into m-dimensional Euclidean space mIE . Denote by 

−

R  the curvature 

tensor of the van der Waerden-Bortolotti connection  of x and by h the second 

fundamental form of x. x is called semi-parallel if , i.e.  for all 

tangent vectors X and Y to M, where  acts as a derivation on h. This notion is an 
extrinsic analogue for semi-symmetric spaces, i.e. Riemannian manifolds for which 
R.R=0, and a direct generalization of parallel immersions, i.e. isometric immersions for 

which . In [1], J. Deprez showed the fact that x:  is semi-parallel 
implies that M is semi-symmetric. 

−

∇

0. =
−

hR 0).,( =
−

hYXR

),( YXR
−

0=∇
−

h mEM →

For references on semi-symmetric space, see [2]; for references on parallel 
immersions, see [3]. In [1], J. Deprez gave a local classification of semi-parallel 
hypersurfaces in Euclidean space. It is easily seen that all surfaces are semi-symmetric. 
In [4] J. Deprez gave a full classification of semi-parallel surfaces in mIE . 

In the present study we consider the surfaces nM  in 5IE satisfying the condition 

0).,( =
−

HYXR                                                                    (1) 
where H is the mean curvature vector of M. We have shown that surfaces in 5IE  
satisfying the property (1) are minimal or totally umbilic or has trivial normal 
connections. 
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 2-BASIC RESULTS 
  

Let x:  be an isometric immersion of an n-dimensional (connected) 
Riemannian manifold 

mn EM →
nM  into m-dimensional Euclidean space mIE . Let ν  be a local 

unit normal section on M. In the sequel X, Y, Z, U, V denote vector fields which are 
tangent to nM . Then the formulas of Gauss and Weingarten are given by 

),(~ YXhYY XX +∇=∇                                                                 (2) 
and  

νν ν XX DXA +−=∇~              (3) 

respectively, where ∇~  is the Levi Civita connection on mIE ,  the Levi Civita 
connection on 

∇
nM  and D the normal connection of x. The second fundamental tensor 

 is related to the second fundamental form h by  νA
>>=<< νν ),,(, YXhYXA             (4) 

where < , > is a standart metric of  mIE . 
 If M is a surface, the Gaussian curvature of M at x∈M  becomes 

>=< YXYXRxK ,),()(             (5) 
where X and Y form an orthonormal basis for . The mean curvature vector H of x is 
given by  

MTx

∑
=

=
n

i
ii eeh

n
H

1
),(1              (6)  

where  is the orthonormal basis of . The mean curvature α of x 
becomes 

neee ,...,, 21 MTx

><= HH ,α . 
A totaly geodesic immersion x is an isometric immersion for which h=0. If H=0 

then x is called minimal and x is called totally umbilical if  
HYXYXh >=< ,),(  

where X, Y is an orthonormal basis of M. The immersion x is called isotropic (in the 
sense of O'Neill [5] ) if for each x in M ),( XXh  is independent of the choice of a unit 
vector X  in . MTx

Let YXΛ  denote the endomorphism YXZXYZZ ><−>→< ,, . Then the  
curvature tensor R of M is given by the equation of Gauss:  

∑
=

Λ=
p

i
ii YAXAYXR

1

  ),(             (7) 

 
where  and 

i
AAi ν= },...,{ 1 pνν  is a local orthonormal basis for . The equation of 

Ricci becomes  
MTx

⊥

>>=<< ⊥ YXAAYXR ,],[,),( ηνην            (8)  
for ν  and η  normal vectors to M . An isometric immersion x is said to have trivial 
normal connection if  . (8) shows that triviality of the normal connection of x is 
equivalent to the fact that all second fundamental tensors mutually commute and they 
are simultaneous diagonalizable. 

0=⊥R
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Let M be an n-dimensional Riemannian manifold and T be a (0, k)-type tensor 

on M. The tensor R.T is defined by 

)),(~,,,(),),(~,,(                                               

),,),(~,(),,,),(~(-                                             

),,,)().,(~(),;,,,)(.(

43214321

43214321

43214321

XYXRXXXTXXYXRXXT

XXXYXRXTXXXXYXRT

XXXXTYXRYXXXXXTR

−−

−=

=

                    

                                                                                                                                         (9) 
where )(,,,,, 4321 MYXXXXX χ∈ . 

 Let  be the connection of van der Waerden-Bortolotti of x, denote the 

curvature tensor of   by 

−

∇
−

∇
−

R  then 

)),(,(),),((),(),(),)().,(( VYXRUhVUYXRhVUhYXRVUhYXR −−= ⊥
−

    (10) 
 
Lemma 1. Let M be a surface in 5IE  then 

3323

2232133221121

]22)([-                                 
]22)([))((),)().,((

νβµλλ
νβµλλνµλ

Kbab
KbabbabaeeheeR

+−−+
++−−++−=

−

          (11) 

and 

3323

2232133222221

]22)([-                                 
]22)([))((),)().,((

νβµλµ
νβµλµνµλ

Kbab
KbabbabaeeheeR

−+−+
−−−−++−−=

−

      (12) 

where K is the Gaussian curvature of M⊂ 5IE   and 2332 baba −=β . 
Proof. (see [6]). 
 

3-SURFACES SATISFYING 
−

R (X,Y).H=0 
 

Definition 2. Let M be a surface in 5IE  then we define  by  HR .
−

)},)(.(),)(.{(
2
1).,( 221121 eehReehRHeeR

−−−

+=        (13) 

where  is an orthonormal basis of the surface M. 21 ,ee
 
Corollary 3.   

}))(())(({
2
1                  

}])()([])()({[
2
1),(

3322

33322221

νµλµλνµλµλ

νµλµµλλνµλµµλλ

+−−+−−=

−−−−+−−−−=
−

bb

bbbbHeeR
      (14) 

Proof. By Lemma 1 and (6) we get the result. 
  
Proposition 4. [7] Let M be a surfaces in 5IE  and pνν ,...,1  orthonormal vectors in 
N(M) such that 1ν  is in the direction of the mean curvature vector and such that 
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.0...
4

===
p

AA νν  If we choose an orthonormal basis of TM of eigenvectors of 

. Identifying linear transformations and their matrices in this basis, we obtain  
11 νAA =

⎥
⎦

⎤
⎢
⎣

⎡
==

µ
λ

ν 0
0

11 AA , , .      (15) ⎥
⎦

⎤
⎢
⎣

⎡
−

==
22

22
2 2 ab

ba
AA ν ⎥

⎦

⎤
⎢
⎣

⎡
−

==
33

33
3 3 ab

ba
AA ν

  

Theorem 5. Let M be a surface in 5IE  satisfying the property  then M is one 
of the following surfaces: 

0. =
−

HR

1) a totally umbilic surface with µλ = , or 
2) a surfaces with trivial normal connection and λ2=H , or 
3) a minimal surface. 

Proof. If   then by previous Corollary we get 0. =
−

HR
0))(())(( 3322 =+−−+−− νµλµλνµλµλ bb .       (16) 

Thus, we have  
    0))((2 =+− µλµλb   and  0))((3 =+− µλµλb .       (17) 
Therefore we have three possibilities  
 1) If   b2 = b3 = 0, a2 = a3 = 0 then the equations (16) and (17) are automatically 
satisfied. Therefore M is totally umbilic. 
 2) If  b2 = b3 = 0, a2  ≠ 0, a3 ≠ 0 then by (15) we get  

⎥
⎦

⎤
⎢
⎣

⎡
=

µ
λ
0

0
1A , ,  ⎥

⎦

⎤
⎢
⎣

⎡
−

=
2

2
2 0

0
a

a
A ⎥

⎦

⎤
⎢
⎣

⎡
−

=
3

3
3 0

0
a

a
A

which implies that  i.e. M has trivial normal connection. 0=⊥R
 If  µλ =  then the equations (16) and (17) are automatically satisfied and by 
(15) we get H=2λ. 
 3) If  µλ −=  then the equations (16) and (17) are automatically satisfied and by 
(15) we get H=0 (i.e. M  is minimal). 
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