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Abstract

In this study we consider the surfaces M " in IE5 satisfying the condition R (X,Y).H=0
where H is the mean curvature vector of M.
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Ozet

Bu ¢aligmada, H ortalama egrilik vektorii olmak tizere, R (X,Y).H=0 sartin1 saglayan IE5 deki

m" ylizeyleri g6zoniine alindi.
Anahtar Kelimeler:Semi-paralel, Semi-simetrik uzay.

1- INTRODUCTION

Let X:M" — E™ be an isometric immersion of an n-dimensional Riemannian
manifold M" into m-dimensional Euclidean space IE™. Denote by R the curvature
tensor of the van der Waerden-Bortolotti connection V of x and by h the second

fundamental form of X. X is called semi-parallel if R.h= 0, ie. é(X,Y).h =0 for all

tangent vectors X and Y to M, where R(X,Y) acts as a derivation on h. This notion is an

extrinsic analogue for semi-symmetric spaces, i.e. Riemannian manifolds for which
R.R=0, and a direct generalization of parallel immersions, i.e. isometric immersions for

which Vh=0. In [1], J. Deprez showed the fact that x: M — E™ is semi-parallel
implies that M is semi-symmetric.

For references on semi-symmetric space, see [2]; for references on parallel
immersions, see [3]. In [1], J. Deprez gave a local classification of semi-parallel
hypersurfaces in Euclidean space. It is easily seen that all surfaces are semi-symmetric.

In [4] J. Deprez gave a full classification of semi-parallel surfaces in IE™.
In the present study we consider the surfaces M " in |E’satisfying the condition

R(X,Y).H =0 (1)

where H is the mean curvature vector of M. We have shown that surfaces in IE’
satisfying the property (1) are minimal or totally umbilic or has trivial normal
connections.
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2-BASIC RESULTS

Let :M" — E™ be an isometric immersion of an n-dimensional (connected)

Riemannian manifold M" into m-dimensional Euclidean space IE™. Let v be a local
unit normal section on M. In the sequel X, Y, Z, U, V denote vector fields which are

tangent to M " . Then the formulas of Gauss and Weingarten are given by

V.Y =V,Y +h(X,Y) )
and

Vyv=-AX+Dyv 3)
respectively, where V is the Levi Civita connection on IE™, V the Levi Civita

connection on M" and D the normal connection of X. The second fundamental tensor
A, is related to the second fundamental form h by

<A X,Y >=<h(X,Y),v > 4)

where <, > is a standart metric of 1E™.
If M is a surface, the Gaussian curvature of M at Xxe M becomes
K(x) =< R(X,Y)X,Y > (5)
where X and Y form an orthonormal basis for T, M . The mean curvature vector H of X is
given by

H =23 hee,e) ©)

is the orthonormal basis of T,M . The mean curvature o of X

a=+<H,H>.

A totaly geodesic immersion X is an isometric immersion for which h=0. If H=0
then X is called minimal and X is called totally umbilical if
h(X,Y)=<X,Y >H

where X, Y is an orthonormal basis of M. The immersion X is called isotropic (in the
sense of O'Neill [5] ) if for each X in M ||h(X, X)|| is independent of the choice of a unit

vector X in T,M .
Let XAY denote the endomorphism Z < Z,Y > X—<Z,X >Y . Then the
curvature tensor R of M is given by the equation of Gauss:

mxw:iAXAAY (7)

where ¢€,,e,,...,€,

becomes

where A, =A, and {v,,...,v,} is alocal orthonormal basis for T."M . The equation of
Ricci becomes

<RL(X,Y)V,7]>=<[AV,A,7]X,Y > (8)
for v and 7 normal vectors to M . An isometric immersion X is said to have trivial

normal connection if R* = 0. (8) shows that triviality of the normal connection of X is
equivalent to the fact that all second fundamental tensors mutually commute and they
are simultaneous diagonalizable.
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Let M be an n-dimensional Riemannian manifold and T be a (0, k)-type tensor
on M. The tensor R.T is defined by

(RT)(X}, X5, X5, X3 X,Y) = (ROGY)TX,, X4, X5, X,)
= T(R(X,Y)X,, X0, X5, X)) =T(X,, R(X,Y)X,, X5, X,)
—T(X,, X5, R(X,Y)X,, X)) =T(X,, X,, X5, R(X,Y)X,)

)
where X, X,, X, X, X,Y e y(M).

Let V be the connection of van der Waerden-Bortolotti of X, denote the

curvature tensor of V by R then

(Ii(X,Y).h)(U,V) =R*(X,Y)hU,V)-h(R(X,Y)U,V)—hU,R(X,Y)V) (10)

Lemma 1. Let M be a surface in IE° then
(R(e1 ,€, )'h)(el > e1) =(A- ,u)(azbz + a3b3 )Vl +[-A(A - ,u)bz + 2ﬂ33 + 2Kb2 ]Vz
+[-A(A—w)b, -2, +2Kb, v,

(11)
and

(R(e,e,).n)(e,.8,) = —(4 — w)(@,b, + @by )v, +[-u(A - )b, —2fa; - 2Kb, Jv, (12)
+[-p(A = )by +2 52, - 2Kb; v,

where K is the Gaussian curvature of Mc IE® and B =a,b, —a,b,.

Proof. (see [6]).

3-SURFACES SATISFYING R (X,Y).H=0

Definition 2. Let M be a surface in IE® then we define R.H by
— 1 — —
R(el ve2)~H = E{(R 'h)(el sel) +(R -h)(ezoez)} (13)

where €,,€, is an orthonormal basis of the surface M.

Corollary 3.
- 1
R(e;,€,)H = {[=A(2 = )b, = u(A = )b, v, +[=A(A = )bs = (A = gy s}

- %{—bz (A= 1)+ i), —b, (A= @A+ v}

Proof. By Lemma 1 and (6) we get the result.

(14)

Proposition 4. [7] Let M be a surfaces in IE° and Vi,...,v, orthonormal vectors in

N(M) such that v, is in the direction of the mean curvature vector and such that
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A, == AVp =0. If we choose an orthonormal basis of TM of eigenvectors of

A = A, . Identifying linear transformations and their matrices in this basis, we obtain

U . la b . _|a; b s
AI_AI/I_{O IU:|’A2_AVZ_|:b :|’A3_Av3_{b _a3:|' ( )

, — &, 3

Theorem 5. Let M be a surface in IE’ satisfying the property R.H =0 then M is one
of the following surfaces:

1) atotally umbilic surface with 4 = u, or

2) a surfaces with trivial normal connection and H =24, or

3) aminimal surface.

Proof. If R.H =0 then by previous Corollary we get
b, (A= )(A+ p)v, by (= i)(A+ v, = 0. (16)
Thus, we have
b,(A—u)(A+u)=0 and b,(1—p)(A+wr)=0. (17)
Therefore we have three possibilities
1) If b, =b3=0, a, = az= 0 then the equations (16) and (17) are automatically
satisfied. Therefore M is totally umbilic.
2) If b,=hb3=0, a; #0, az =0 then by (15) we get

P O L I
l{o y}’AQ_ 0 -a, A=l - a,

which implies that R* = 0 i.e. M has trivial normal connection.

If A= pu then the equations (16) and (17) are automatically satisfied and by
(15) we get H=2A.

3) If A =—u then the equations (16) and (17) are automatically satisfied and by
(15) we get H=0 (i.e. M is minimal).
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