SURFACES SATISFYING $R(X, Y) . H=\mathbf{O}$

Bengü KILIÇ
Balikesir University
Faculty of Art and Sciences
Department of Mathematics
Balikesir, TURKEY
E-mail:benguklc@yahoo.com

Abstract

In this study we consider the surfaces M^{n} in $I E^{5}$ satisfying the condition $\bar{R}(X, Y) \cdot H=0$ where H is the mean curvature vector of M.

Keywords: Semi-parallel, Semi-symmetric space,

Özet

Bu çalışmada, H ortalama eğrilik vektörü olmak üzere, $R(X, Y) \cdot H=0$ şartını sağlayan $I E^{5}$ deki M^{n} yüzeyleri gözönüne alındı.
Anahtar Kelimeler:Semi-paralel, Semi-simetrik uzay.

1- INTRODUCTION

Let $x: M^{n} \rightarrow E^{m}$ be an isometric immersion of an n-dimensional Riemannian manifold M^{n} into m-dimensional Euclidean space $I E^{m}$. Denote by R the curvature tensor of the van der Waerden-Bortolotti connection ∇ of x and by h the second fundamental form of $x . x$ is called semi-parallel if $\bar{R} \cdot h=0$, i.e. $\bar{R}(X, Y) . h=0$ for all tangent vectors X and Y to M, where $\bar{R}(X, Y)$ acts as a derivation on h. This notion is an extrinsic analogue for semi-symmetric spaces, i.e. Riemannian manifolds for which $R . R=0$, and a direct generalization of parallel immersions, i.e. isometric immersions for which $\bar{\nabla} h=0$. In [1], J. Deprez showed the fact that $x: M \rightarrow E^{m}$ is semi-parallel implies that M is semi-symmetric.

For references on semi-symmetric space, see [2]; for references on parallel immersions, see [3]. In [1], J. Deprez gave a local classification of semi-parallel hypersurfaces in Euclidean space. It is easily seen that all surfaces are semi-symmetric. In [4] J. Deprez gave a full classification of semi-parallel surfaces in $I E^{m}$.

In the present study we consider the surfaces M^{n} in $I E^{5}$ satisfying the condition

$$
\begin{equation*}
\bar{R}(X, Y) \cdot H=0 \tag{1}
\end{equation*}
$$

where H is the mean curvature vector of M. We have shown that surfaces in $I E^{5}$ satisfying the property (1) are minimal or totally umbilic or has trivial normal connections.

2-BASIC RESULTS

Let $x: M^{n} \rightarrow E^{m}$ be an isometric immersion of an n-dimensional (connected) Riemannian manifold M^{n} into m-dimensional Euclidean space $I E^{m}$. Let v be a local unit normal section on M. In the sequel X, Y, Z, U, V denote vector fields which are tangent to M^{n}. Then the formulas of Gauss and Weingarten are given by

$$
\begin{equation*}
\widetilde{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\widetilde{\nabla}_{X} v=-A_{v} X+D_{X} v \tag{3}
\end{equation*}
$$

respectively, where $\widetilde{\nabla}$ is the Levi Civita connection on $I E^{m}, \nabla$ the Levi Civita connection on M^{n} and D the normal connection of x. The second fundamental tensor A_{v} is related to the second fundamental form h by

$$
\begin{equation*}
\left\langle A_{v} X, Y>=<h(X, Y), v>\right. \tag{4}
\end{equation*}
$$

where $<,>$ is a standart metric of $I E^{m}$.
If M is a surface, the Gaussian curvature of M at $x \in M$ becomes

$$
\begin{equation*}
K(x)=<R(X, Y) X, Y> \tag{5}
\end{equation*}
$$

where X and Y form an orthonormal basis for $T_{x} M$. The mean curvature vector H of x is given by

$$
\begin{equation*}
H=\frac{1}{n} \sum_{i=1}^{n} h\left(e_{i}, e_{i}\right) \tag{6}
\end{equation*}
$$

where $e_{1}, e_{2}, \ldots, e_{n}$ is the orthonormal basis of $T_{x} M$. The mean curvature α of x becomes

$$
\alpha=\sqrt{\langle H, H\rangle} .
$$

A totaly geodesic immersion x is an isometric immersion for which $h=0$. If $H=0$ then x is called minimal and x is called totally umbilical if

$$
h(X, Y)=<X, Y>H
$$

where X, Y is an orthonormal basis of M. The immersion x is called isotropic (in the sense of O'Neill [5]) if for each x in $M\|h(X, X)\|$ is independent of the choice of a unit vector X in $T_{x} M$.

Let $X \Lambda Y$ denote the endomorphism $Z \rightarrow<Z, Y>X-<Z, X>Y$. Then the curvature tensor R of M is given by the equation of Gauss:

$$
\begin{equation*}
R(X, Y)=\sum_{i=1}^{p} A_{i} X \Lambda A_{i} Y \tag{7}
\end{equation*}
$$

where $A_{i}=A_{v_{i}}$ and $\left\{v_{1}, \ldots, v_{p}\right\}$ is a local orthonormal basis for $T_{x}^{\perp} M$. The equation of Ricci becomes

$$
\begin{equation*}
<R^{\perp}(X, Y) v, \eta>=<\left[A_{v}, A_{\eta}\right] X, Y> \tag{8}
\end{equation*}
$$

for v and η normal vectors to M. An isometric immersion x is said to have trivial normal connection if $R^{\perp}=0$. (8) shows that triviality of the normal connection of x is equivalent to the fact that all second fundamental tensors mutually commute and they are simultaneous diagonalizable.

Let M be an n -dimensional Riemannian manifold and T be a ($0, \mathrm{k}$)-type tensor on M. The tensor $R . T$ is defined by

$$
\begin{align*}
(R . T)\left(X_{1}, X_{2}, X_{3}, X_{4} ; X, Y\right)= & (\widetilde{R}(X, Y) \cdot T)\left(X_{1}, X_{2}, X_{3}, X_{4}\right) \\
= & -T\left(\widetilde{R}(X, Y) X_{1}, X_{2}, X_{3}, X_{4}\right)-T\left(X_{1}, \widetilde{R}(X, Y) X_{2}, X_{3}, X_{4}\right) \\
& -T\left(X_{1}, X_{2}, \widetilde{R}(X, Y) X_{3}, X_{4}\right)-T\left(X_{1}, X_{2}, X_{3}, \widetilde{R}(X, Y) X_{4}\right) \tag{9}
\end{align*}
$$

where $X_{1}, X_{2}, X_{3}, X_{4}, X, Y \in \chi(M)$.
Let $\bar{\nabla}$ be the connection of van der Waerden-Bortolotti of x, denote the curvature tensor of $\bar{\nabla}$ by \bar{R} then

$$
\begin{equation*}
(\bar{R}(X, Y) \cdot h)(U, V)=R^{\perp}(X, Y) h(U, V)-h(R(X, Y) U, V)-h(U, R(X, Y) V) \tag{10}
\end{equation*}
$$

Lemma 1. Let M be a surface in $I E^{5}$ then

$$
\begin{align*}
\left(\bar{R}\left(e_{1}, e_{2}\right) \cdot h\right)\left(e_{1}, e_{1}\right)= & (\lambda-\mu)\left(a_{2} b_{2}+a_{3} b_{3}\right) v_{1}+\left[-\lambda(\lambda-\mu) b_{2}+2 \beta a_{3}+2 K b_{2}\right] v_{2} \tag{11}\\
& +\left[-\lambda(\lambda-\mu) b_{3}-2 \beta a_{2}+2 K b_{3}\right] v_{3}
\end{align*}
$$

and

$$
\begin{align*}
\left(\bar{R}\left(e_{1}, e_{2}\right) \cdot h\right)\left(e_{2}, e_{2}\right)= & -(\lambda-\mu)\left(a_{2} b_{2}+a_{3} b_{3}\right) v_{1}+\left[-\mu(\lambda-\mu) b_{2}-2 \beta a_{3}-2 K b_{2}\right] v_{2} \tag{12}\\
& +\left[-\mu(\lambda-\mu) b_{3}+2 \beta a_{2}-2 K b_{3}\right] v_{3}
\end{align*}
$$

where K is the Gaussian curvature of $M \subset I E^{5}$ and $\beta=a_{2} b_{3}-a_{3} b_{2}$.
Proof. (see [6]).

3-SURFACES SATISFYING $R(X, Y) . \boldsymbol{H}=\mathbf{0}$

Definition 2. Let M be a surface in $I E^{5}$ then we define $\bar{R} . H$ by

$$
\begin{equation*}
\bar{R}\left(e_{1}, e_{2}\right) \cdot H=\frac{1}{2}\left\{(\bar{R} \cdot h)\left(e_{1}, e_{1}\right)+(\bar{R} \cdot h)\left(e_{2}, e_{2}\right)\right\} \tag{13}
\end{equation*}
$$

where e_{1}, e_{2} is an orthonormal basis of the surface M.

Corollary 3.

$$
\begin{align*}
\bar{R}\left(e_{1}, e_{2}\right) H & =\frac{1}{2}\left\{\left[-\lambda(\lambda-\mu) b_{2}-\mu(\lambda-\mu) b_{2}\right] v_{2}+\left[-\lambda(\lambda-\mu) b_{3}-\mu(\lambda-\mu) b_{3}\right] v_{3}\right\} \tag{14}\\
& =\frac{1}{2}\left\{-b_{2}(\lambda-\mu)(\lambda+\mu) v_{2}-b_{3}(\lambda-\mu)(\lambda+\mu) v_{3}\right\}
\end{align*}
$$

Proof. By Lemma 1 and (6) we get the result.
Proposition 4. [7] Let M be a surfaces in $I E^{5}$ and v_{1}, \ldots, v_{p} orthonormal vectors in $N(M)$ such that v_{1} is in the direction of the mean curvature vector and such that
$A_{r_{4}}=\ldots=A_{v_{p}}=0$. If we choose an orthonormal basis of $T M$ of eigenvectors of $A_{1}=A_{v_{1}}$. Identifying linear transformations and their matrices in this basis, we obtain

$$
A_{1}=A_{v_{1}}=\left[\begin{array}{ll}
\lambda & 0 \tag{15}\\
0 & \mu
\end{array}\right], A_{2}=A_{v_{2}}=\left[\begin{array}{cc}
a_{2} & b_{2} \\
b_{2} & -a_{2}
\end{array}\right], A_{3}=A_{v_{3}}=\left[\begin{array}{cc}
a_{3} & b_{3} \\
b_{3} & -a_{3}
\end{array}\right] .
$$

Theorem 5. Let M be a surface in $I E^{5}$ satisfying the property $\bar{R} \cdot H=0$ then M is one of the following surfaces:

1) a totally umbilic surface with $\lambda=\mu$, or
2) a surfaces with trivial normal connection and $H=2 \lambda$, or
3) a minimal surface.

Proof. If R.H $=0$ then by previous Corollary we get

$$
\begin{equation*}
-b_{2}(\lambda-\mu)(\lambda+\mu) \nu_{2}-b_{3}(\lambda-\mu)(\lambda+\mu) v_{3}=0 . \tag{16}
\end{equation*}
$$

Thus, we have

$$
\begin{equation*}
b_{2}(\lambda-\mu)(\lambda+\mu)=0 \text { and } b_{3}(\lambda-\mu)(\lambda+\mu)=0 . \tag{17}
\end{equation*}
$$

Therefore we have three possibilities

1) If $b_{2}=b_{3}=0, a_{2}=a_{3}=0$ then the equations (16) and (17) are automatically satisfied. Therefore M is totally umbilic.
2) If $b_{2}=b_{3}=0, a_{2} \neq 0, a_{3} \neq 0$ then by (15) we get

$$
A_{1}=\left[\begin{array}{ll}
\lambda & 0 \\
0 & \mu
\end{array}\right], A_{2}=\left[\begin{array}{cc}
a_{2} & 0 \\
0 & -a_{2}
\end{array}\right], A_{3}=\left[\begin{array}{cc}
a_{3} & 0 \\
0 & -a_{3}
\end{array}\right]
$$

which implies that $R^{\perp}=0$ i.e. M has trivial normal connection.
If $\lambda=\mu$ then the equations (16) and (17) are automatically satisfied and by (15) we get $H=2 \lambda$.
3) If $\lambda=-\mu$ then the equations (16) and (17) are automatically satisfied and by (15) we get $H=0$ (i.e. M is minimal).

REFERENCES

[1] J. Deprez, "Semi-parallel Hypersurfaces", Rend. Sem. Mat. Univers. Politechn. Torino (1986) 44, 2, 303-316.
[2] Z. I. Szabo, "Structure Theorems on Riemannian Spaces Satisfying $R(X, Y) . R=0$ ", I. The local version, J. Differential Geometry (1982) 17, 531-582.
[3] D. Ferus, "Symmetric Submanifolds of Euclidean Space", Math. Ann. (1980) 247, 81-93.
[4] J. Deprez, "Semi-parallel Surfaces in Euclidean Space", Journal of Geometry (1985) vol 25, 192-200.
[5] B. O' Neill, "Isotropic and Kaehler Immersions", Canad. J. Math. (1976) 17, 909-915.
[6] C. Özgür, "Pseudo Simetrik Manifoldlar", PhD. Thesis, Uludag University, Bursa (2001).
[7] U. Lumiste, "Small Dimensional Irreducible Submanifolds with Parallel Third Fundamental Form", Tartu Ulikooli Toimetised Acta et comm. Univ.
Tartuensis (1986), 734, 50-62.

