SURFACES SATISFYING R (X,Y).H=0

Bengü KILIÇ Balikesir University Faculty of Art and Sciences Department of Mathematics Balikesir, TURKEY E-mail:benguklc@yahoo.com

Abstract

In this study we consider the surfaces M^n in IE^5 satisfying the condition R(X,Y).H=0 where H is the mean curvature vector of M. **Keywords:** Semi-parallel, Semi-symmetric space,

Özet

Bu çalışmada, *H* ortalama eğrilik vektörü olmak üzere, R(X,Y).*H*=0 şartını sağlayan IE^5 deki M^n yüzeyleri gözönüne alındı.

Anahtar Kelimeler: Semi-paralel, Semi-simetrik uzay.

1- INTRODUCTION

Let $x: M^n \to E^m$ be an isometric immersion of an n-dimensional Riemannian manifold M^n into m-dimensional Euclidean space IE^m . Denote by \overline{R} the curvature tensor of the van der Waerden-Bortolotti connection ∇ of x and by h the second fundamental form of x. x is called *semi-parallel* if $\overline{R}.h = 0$, i.e. $\overline{R}(X,Y).h = 0$ for all tangent vectors X and Y to M, where $\overline{R}(X,Y)$ acts as a derivation on h. This notion is an extrinsic analogue for semi-symmetric spaces, i.e. Riemannian manifolds for which R.R=0, and a direct generalization of parallel immersions, i.e. isometric immersions for which $\nabla h = 0$. In [1], J. Deprez showed the fact that $x: M \to E^m$ is semi-parallel implies that M is semi-symmetric. For references on semi-symmetric space, see [2]; for references on parallel

For references on semi-symmetric space, see [2]; for references on parallel immersions, see [3]. In [1], J. Deprez gave a local classification of semi-parallel hypersurfaces in Euclidean space. It is easily seen that all surfaces are semi-symmetric. In [4] J. Deprez gave a full classification of semi-parallel surfaces in IE^m .

In the present study we consider the surfaces M^n in IE^5 satisfying the condition

$$R(X,Y).H = 0 \tag{1}$$

where *H* is the mean curvature vector of *M*. We have shown that surfaces in IE^5 satisfying the property (1) are minimal or totally umbilic or has trivial normal connections.

2-BASIC RESULTS

Let $x: M^n \to E^m$ be an isometric immersion of an n-dimensional (connected) Riemannian manifold M^n into m-dimensional Euclidean space IE^m . Let ν be a local unit normal section on M. In the sequel X, Y, Z, U, V denote vector fields which are tangent to M^n . Then the formulas of Gauss and Weingarten are given by

$$\widetilde{\nabla}_{X}Y = \nabla_{X}Y + h(X,Y) \tag{2}$$

and

$$\widetilde{\nabla}_{X} \nu = -A_{\nu} X + D_{X} \nu \tag{3}$$

respectively, where $\widetilde{\nabla}$ is the Levi Civita connection on IE^m , ∇ the Levi Civita connection on M^n and D the normal connection of x. The second fundamental tensor A_{ν} is related to the second fundamental form h by

$$\langle A_{\nu}X, Y \rangle = \langle h(X,Y), \nu \rangle \tag{4}$$

where <, > is a standart metric of IE^{m} .

If *M* is a surface, the Gaussian curvature of *M* at $x \in M$ becomes

$$K(x) = \langle R(X,Y)X, Y \rangle \tag{5}$$

where X and Y form an orthonormal basis for $T_x M$. The mean curvature vector H of x is given by

$$H = \frac{1}{n} \sum_{i=1}^{n} h(e_i, e_i)$$
(6)

where $e_1, e_2, ..., e_n$ is the orthonormal basis of $T_x M$. The mean curvature α of x becomes

 $\alpha = \sqrt{\langle H, H \rangle}$.

A totaly geodesic immersion x is an isometric immersion for which h=0. If H=0 then x is called *minimal* and x is called *totally umbilical* if

h(X,Y) = < X, Y > H

where X, Y is an orthonormal basis of M. The immersion x is called *isotropic* (in the sense of O'Neill [5]) if for each x in M ||h(X, X)|| is independent of the choice of a unit vector X in $T_x M$.

Let $X \wedge Y$ denote the endomorphism $Z \rightarrow \langle Z, Y \rangle X - \langle Z, X \rangle Y$. Then the curvature tensor *R* of *M* is given by the equation of Gauss:

$$R(X,Y) = \sum_{i=1}^{p} A_i X \wedge A_i Y$$
(7)

where $A_i = A_{\nu_i}$ and $\{\nu_1, ..., \nu_p\}$ is a local orthonormal basis for $T_x^{\perp}M$. The equation of Ricci becomes

$$\langle R^{\perp}(X,Y)\nu,\eta \rangle = \langle [A_{\nu},A_{n}]X,Y \rangle \tag{8}$$

for v and η normal vectors to M. An isometric immersion x is said to have trivial normal connection if $R^{\perp} = 0$. (8) shows that triviality of the normal connection of x is equivalent to the fact that all second fundamental tensors mutually commute and they are simultaneous diagonalizable.

Let M be an n-dimensional Riemannian manifold and T be a (0, k)-type tensor on M. The tensor R.T is defined by

$$(R.T)(X_1, X_2, X_3, X_4; X, Y) = (R(X, Y).T)(X_1, X_2, X_3, X_4)$$

= $-T(\widetilde{R}(X, Y)X_1, X_2, X_3, X_4) - T(X_1, \widetilde{R}(X, Y)X_2, X_3, X_4)$
 $-T(X_1, X_2, \widetilde{R}(X, Y)X_3, X_4) - T(X_1, X_2, X_3, \widetilde{R}(X, Y)X_4)$
(9)

where $X_1, X_2, X_3, X_4, X, Y \in \chi(M)$.

Let ∇ be the connection of van der Waerden-Bortolotti of x, denote the curvature tensor of $\overline{\nabla}$ by \overline{R} then

$$(R(X,Y).h)(U,V) = R^{\perp}(X,Y)h(U,V) - h(R(X,Y)U,V) - h(U,R(X,Y)V)$$
(10)

Lemma 1. Let M be a surface in IE^5 then

$$(R(e_1, e_2).h)(e_1, e_1) = (\lambda - \mu)(a_2b_2 + a_3b_3)v_1 + [-\lambda(\lambda - \mu)b_2 + 2\beta a_3 + 2Kb_2]v_2$$
(11)
+ [-\lambda(\lambda - \mu)b_3 - 2\beta a_2 + 2Kb_3]v_3

and

$$(R(e_1, e_2).h)(e_2, e_2) = -(\lambda - \mu)(a_2b_2 + a_3b_3)v_1 + [-\mu(\lambda - \mu)b_2 - 2\beta a_3 - 2Kb_2]v_2$$
(12)
+ [-\mu(\lambda - \mu)b_3 + 2\beta a_2 - 2Kb_3]v_3

where *K* is the Gaussian curvature of $M \subset IE^5$ and $\beta = a_2b_3 - a_3b_2$. **Proof.** (see [6]).

3-SURFACES SATISFYING R(X,Y).H=0

Definition 2. Let *M* be a surface in *IE*⁵ then we define *R*.*H* by $\bar{R}(e_1, e_2).H = \frac{1}{2} \{ (\bar{R}.h)(e_1, e_1) + (\bar{R}.h)(e_2, e_2) \}$ (13)

where e_1, e_2 is an orthonormal basis of the surface M.

Corollary 3.

$$\bar{R}(e_1, e_2)H = \frac{1}{2} \{ [-\lambda(\lambda - \mu)b_2 - \mu(\lambda - \mu)b_2]v_2 + [-\lambda(\lambda - \mu)b_3 - \mu(\lambda - \mu)b_3]v_3 \}$$

$$= \frac{1}{2} \{ -b_2(\lambda - \mu)(\lambda + \mu)v_2 - b_3(\lambda - \mu)(\lambda + \mu)v_3 \}$$
(14)

Proof. By Lemma 1 and (6) we get the result.

Proposition 4. [7] Let *M* be a surfaces in IE^5 and $v_1, ..., v_p$ orthonormal vectors in N(M) such that v_1 is in the direction of the mean curvature vector and such that

 $A_{\nu_4} = \dots = A_{\nu_p} = 0$. If we choose an orthonormal basis of *TM* of eigenvectors of $A_1 = A_{\nu_1}$. Identifying linear transformations and their matrices in this basis, we obtain

$$A_{1} = A_{\nu_{1}} = \begin{bmatrix} \lambda & 0 \\ 0 & \mu \end{bmatrix}, A_{2} = A_{\nu_{2}} = \begin{bmatrix} a_{2} & b_{2} \\ b_{2} & -a_{2} \end{bmatrix}, A_{3} = A_{\nu_{3}} = \begin{bmatrix} a_{3} & b_{3} \\ b_{3} & -a_{3} \end{bmatrix}.$$
 (15)

Theorem 5. Let *M* be a surface in IE^5 satisfying the property $R \cdot H = 0$ then *M* is one of the following surfaces:

- 1) a totally umbilic surface with $\lambda = \mu$, or
- 2) a surfaces with trivial normal connection and $H = 2\lambda$, or
- 3) a minimal surface.

Proof. If $R \cdot H = 0$ then by previous Corollary we get

$$-b_{2}(\lambda - \mu)(\lambda + \mu)v_{2} - b_{3}(\lambda - \mu)(\lambda + \mu)v_{3} = 0.$$
 (16)

Thus, we have

$$b_2(\lambda - \mu)(\lambda + \mu) = 0$$
 and $b_3(\lambda - \mu)(\lambda + \mu) = 0$. (17)

Therefore we have three possibilities

1) If $b_2 = b_3 = 0$, $a_2 = a_3 = 0$ then the equations (16) and (17) are automatically satisfied. Therefore *M* is totally umbilic.

2) If $b_2 = b_3 = 0$, $a_2 \neq 0$, $a_3 \neq 0$ then by (15) we get

$$A_1 = \begin{bmatrix} \lambda & 0 \\ 0 & \mu \end{bmatrix}, A_2 = \begin{bmatrix} a_2 & 0 \\ 0 & -a_2 \end{bmatrix}, A_3 = \begin{bmatrix} a_3 & 0 \\ 0 & -a_3 \end{bmatrix}$$

which implies that $R^{\perp} = 0$ i.e. *M* has trivial normal connection.

If $\lambda = \mu$ then the equations (16) and (17) are automatically satisfied and by (15) we get $H=2\lambda$.

3) If $\lambda = -\mu$ then the equations (16) and (17) are automatically satisfied and by (15) we get H=0 (i.e. *M* is minimal).

REFERENCES

- [1] J. Deprez, "Semi-parallel Hypersurfaces", Rend. Sem. Mat. Univers. Politechn. Torino (1986) 44, 2, 303-316.
- [2] Z. I. Szabo, "Structure Theorems on Riemannian Spaces Satisfying R(X,Y).R=0", I. The local version, J. Differential Geometry (1982) 17, 531-582.
- [3] D. Ferus, "Symmetric Submanifolds of Euclidean Space", Math. Ann. (1980) 247, 81-93.
- [4] J. Deprez, "Semi-parallel Surfaces in Euclidean Space", Journal of Geometry (1985) vol 25, 192-200.
- [5] B. O' Neill, "Isotropic and Kaehler Immersions", Canad. J. Math. (1976) 17, 909-915.
- [6] C. Özgür, "Pseudo Simetrik Manifoldlar", PhD. Thesis, Uludag University, Bursa (2001).
- U. Lumiste, "Small Dimensional Irreducible Submanifolds with Parallel Third Fundamental Form", Tartu Ulikooli Toimetised Acta et comm. Univ. Tartuensis (1986), 734, 50-62.