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Abstract. In this paper, we examine 3-dimensional quasi-Sasakian manifold admitting conformal Ricci soliton.
We give some theorems for W∗

0 flat, ξ −W∗
0 flat and ϕ−W∗

0 semisymmetric 3-dimensional quasi-Sasakian manifold
admitting conformal Ricci soliton. Also we study conformal Ricci soliton on a 3-dimensional quasi-Sasakian
manifold satisfying the conditions W∗

0 (ξ, X).S = 0 and R(ξ, X).W∗
0 = 0.
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1. Introduction

Quasi-Sasakian manifold is a natural generalization of Sasakian manifold whose notion was introduced by Blair [4]
to unify Sasakian and cosympletic structures. The properties of quasi-Sasakian manifolds have been studied by various
authors such as Gonzalez and Chinea [15], Kanemaki [18, 19], De and Sarkar [9], De et al. [10], Turan et al. [26] and
many others. On a 3-dimensional quasi-Sasakian manifold, the structure function β was defined by Olszak [21] and
with the help of this function he has obtained necessary and sufficient conditions for the manifold to be conformally
flat [22].

A Ricci soliton (g,V, λ) on a Riemannian manifold (M, g) is a generalization of an Einstein metric such that

£Vg + 2S + 2λg = 0,

where S is the Ricci tensor, £V is the Lie derivative operator along the vector field V on M and λ is a real number. The
Ricci soliton is said to be shrinking, steady or expanding according to λ being negative, zero or positive, respectively.

The concept of conformal Ricci flow [12] was developed by Fischer during 2003-2004 which is a variation of the
classical Ricci flow equation that modifies the unit volume constraint of that equation to a scalar curvature constraint.
The conformal Ricci flow on M is defined by the equation [12]

∂g
∂t
+ 2(S +

g
n

) = −pg

and r(g) = −1, where M is considered as a smooth closed connected oriented n−manifold, p is a scalar non-dynamical
field (time dependent scalar field), r(g) is the scalar curvature of the manifold and n is the dimension of manifold.
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The notion of conformal Ricci soliton equation was introduced by Basu and Bhattacharyya [1] in 2015 and the
equation is given by

£Vg + 2S =
(
2λ −

(
p +

2
n

))
g, (1.1)

where λ is constant. The equation is the generalization of the Ricci soliton equation and it also satisfies the conformal
Ricci flow equation.

Also, W∗0 curvature tensor with respect to Levi-Civita connection is defined by [23]

W∗0 (X,Y)Z = R(X,Y)Z +
1
2

(S (Y,Z)X − g(X,Z)QY) . (1.2)

The authors studied to improve the topic of solitons in [2, 3, 5–8, 13, 14, 16, 24, 27, 28]. Some recent studies about
this topic are given in [11, 17, 25].

This paper is organized as follows: After preliminaries, we give some basic information about the conformal Ricci
soliton and quasi-Sasakian manifolds. Then, we give some theorems for W∗0 flat, ξ−W∗0 flat and ϕ−W∗0 semisymmetric
3-dimensional quasi-Sasakian manifold admitting conformal Ricci soliton in the following sections. Finally we give
conformal Ricci soliton on a 3-dimensional quasi-Sasakian manifold satisfying the conditions W∗0 (ξ, X) · S = 0 and
R(ξ, X) ·W∗0 = 0.

2. Preliminaries

Let M be a connected almost contact metric manifold of dimension (2n+ 1) with an almost contact metric structure
(ϕ, ξ, η, g) and g is a Riemannian metric such that

ϕ2(X) = −X + η(X)ξ, η(ξ) = 1, η(ϕX) = 0, ϕξ = 0, (2.1)

g(ϕX, ϕY) = g(X,Y) − η(X)η(Y),

for all vector fields X,Y on M. M is said to be quasi-Sasakian if the almost contact structure (ϕ, ξ, η) is normal and the
fundamental 2-form Φ is closed (dΦ = 0). A three dimensional almost contact metric manifold M is quasi-Sasakian if
and only if [20]

∇Xξ = −βϕX.

for a certain function β on M, such that ξβ = 0 where ∇ is the Levi-Civita connection of M. Clearly, a 3-dimensional
quasi-Sasakian manifold is cosymplectic if and only if β = 0. If β = constant, then the manifold reduces to a β-Sasakian
manifold and β = 1 gives the Sasakian structure. Throughout in the paper, we are using the fact that β = constant.
In a 3-dimensional quasi-Sasakian manifold, we have [21]

(∇Xϕ) Y = −β (g(X,Y)ξ − η(Y)X) ,

(∇Xη) Y = −βg(ϕX,Y),

R(X,Y)Z =

( r
2
− 2β2

)
(g(Y,Z)X − g(X,Z)Y)

+

(
3β2 −

r
2

) ( g(Y,Z)η(X)ξ − g(X,Z)η(Y)ξ
+η(Y)η(Z)X − η(X)η(Z)Y

)
, (2.2)

S (X,Y) =
( r
2
− β2

)
g(X,Y) −

(
3β2 −

r
2

)
η(X)η(Y),

for all X,Y,Z on M.

Definition 2.1. A quasi-Sasakian manifold is said to be an η−Einstein manifold if its non-vanishing Ricci tensor S is
of the form

S (X,Y) = ag(X,Y) + bη(X)η(Y), (2.3)

where a and b are smooth functions on the manifold. If b = 0, then the manifold is said to be an Einstein manifold.
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Now from the definition of Lie derivative, we get(
£ξg

)
(X,Y) = g(∇Xξ,Y) + g(X,∇Yξ).

In view of the equation g(X, ξ) = η(X) with g(X, ϕY) = −g(ϕX,Y) , we find(
£ξg

)
(X,Y) = 0.

Using above equation in (1.1), we obtain
S (X,Y) = wg(X,Y), (2.4)

where w = 1
2

[
2λ −

(
p + 2

3

)]
.

From (2.4), we arrive at
QX = wX,

S (X, ξ) = wη(X), (2.5)

S (ξ, ξ) = w. (2.6)

Thus, we can state the following.

Proposition 2.2. If a 3-dimensional quasi-Sasakian manifold admits conformal Ricci soliton, then the manifold be-
comes an Einstein manifold.

3. W∗0−Flat 3-Dimensional Quasi-SasakianManifold Admitting Conformal Ricci Soliton

In view of (1.2), if M is a W∗0−flat 3-dimensional quasi-Sasakian manifold admitting conformal Ricci soliton, we
have

R(X,Y)Z =
1
2

(g(X,Z)QY − S (Y,Z)X) . (3.1)

Taking inner product of (3.1) with ξ and in view of the equation g(X, ϕY) = −g(ϕX,Y) , we get

g(R(X,Y)Z, ξ) =
1
2

(S (Y, ξ)g(X,Z) − S (Y,Z)η(X)) .

From the equation (2.2), we find

2β2 (g(Y,Z)η(X) − g(X,Z)η(Y)) = g(X,Z)η(Y) − S (Y,Z)η(X).

Taking X = ξ in the above equation and using (2.6) with (2.1), we arrive at

S (Y,Z) = −2β2g(Y,Z) +
(
2β2 + w

)
η(Y)η(Z).

So, by virtue of (2.3), we can state the following theorem.

Theorem 3.1. A W∗0−flat 3-dimensional quasi-Sasakian manifold admitting conformal Ricci soliton is an η−Einstein
manifold.

4. ϕ −W∗0 Semi-Symmetric 3-Dimensional Quasi-SasakianManifold Admitting Conformal Ricci Soliton

Firstly we give the following definition:

Definition 4.1. A quasi-Sasakian manifold is said to be ϕ −W∗0 semi-symmetric if [7]

W∗0 (X,Y) · ϕ = 0 (4.1)

for all X,Y on M.

Let M be a ϕ −W∗0 semi-symmetric quasi-Sasakian manifold admitting conformal Ricci soliton, the from (4.1) we
have (

W∗0 (X,Y) · ϕ
)

Z = W∗0 (X,Y)ϕZ − ϕW∗0 (X,Y)Z.

From (1.2), we get

R(X,Y)ϕZ − ϕR(X,Y)Z +
1
2

(
S (Y, ϕZ)X − g(X, ϕZ)QY
−S (Y,Z)ϕX + g(X,Z)ϕQY

)
= 0. (4.2)
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By using of (2.2) with (2.4) in (4.2), we obtain(
τ

2
− 2β2

) ( g(Y, ϕZ)X − g(X, ϕZ)Y
−g(Y,Z)ϕX + g(X,Z)ϕY

)
+

(
3β2 −

τ

2

) ( g(Y, ϕZ)η(X)ξ − g(X, ϕZ)η(Y)ξ
+η(Y)η(Z)ϕX − η(X)η(Z)ϕY

)
+

1
2

(
wg(Y, ϕZ)X − wg(X, ϕZ)Y
−wg(Y,Z)ϕX + wg(X,Z)ϕY

)
= 0. (4.3)

Putting Y = ξ in (4.3) and by use of (2.1), we find(
β2 + w

)
(g(X, ϕZ)ξ + η(Z)ϕX) = 0. (4.4)

Again, taking Z = ξ in (4.4), we obtain (
β2 + w

)
ϕX = 0.

So, we get the following.

Theorem 4.2. If a 3-dimensional quasi-Sasakian manifold satisfies W∗0 · ϕ = 0 and admits conformal Ricci soliton,
then

i) If p = − 2
3 + β

2, then λ = 0 and Ricci soliton is steady,
ii) If p > − 2

3 + β
2, then λ > 0 and Ricci soliton is shrinking,

iii) If p < − 2
3 + β

2, then λ < 0 and Ricci soliton is expanding.

5. Conformal Ricci soliton on a 3-dimensional quasi-Sasakian manifold satisfying W∗0 (ξ, X) · S = 0

Assume that M is a 3-dimensional quasi-Sasakian manifold admitting conformal Ricci soliton satisfying W∗0 (ξ, X) ·
S = 0. From this equation, we can write

S (W∗0 (ξ, X)Y,Z) + S (Y,W∗0 (ξ, X)Z) = 0.

Using (1.2) with (2.2), we have

2β2
(

g(X,Y)S (ξ,Z) − S (X,Z)η(Y)
+g(X,Z)S (Y, ξ) − S (Y, X)η(Z)

)
+

1
2

(
S (X,Y)S (ξ,Z) − wS (X,Z)η(Y)
+S (X,Z)S (Y, ξ) − wS (Y, X)η(Z)

)
= 0. (5.1)

By use of (2.4) in (5.1), we arrive at
2β2 (S (X,Y) − wg(X,Y)) = 0.

Thus, we can state the following.

Theorem 5.1. If a 3-dimensional quasi-Sasakian manifold satisfies W∗0 (ξ, X) · S = 0 and admits conformal Ricci
soliton, then the manifold is an Einstein manifold.

6. Conformal Ricci Soliton on a 3-Dimensional Quasi-SasakianManifold Satisfying R(ξ, X) ·W∗0 = 0

In this section, we consider a 3-dimensional quasi-Sasakian manifold admits conformal Ricci soliton and M is
W∗0−semisymmetric, i.e., R(ξ, X) ·W∗0 = 0 holds on M. Thus, we have for all X,Y,Z,V on M

R(ξ, X)W∗0 (Y,Z)V −W∗0 (R(ξ, X)Y,Z)V −W∗0 (Y,R(ξ, X)Z)V −W∗0 (Y,Z)R(ξ, X)V = 0. (6.1)

Using (2.2) in (6.1), we get

β2


g(X,W∗0 (Y,Z)V)ξ − η(W∗0 (Y,Z)V)X
−g(X,Y)W∗0 (ξ,Z)V + η(Y)W∗0 (X,Z)V
−g(X,Z)W∗0 (Y, ξ)V + η(Z)W∗0 (Y, X)V
−g(X,V)W∗0 (Y,Z)ξ + η(V)W∗0 (Y,Z)X

 = 0. (6.2)

Putting V = ξ in (6.2) and using (2.1), we have

β2


g(X,W∗0 (Y,Z)ξ)ξ − η(W∗0 (Y,Z)ξ)X
−g(X,Y)W∗0 (ξ,Z)ξ + η(Y)W∗0 (X,Z)ξ
−g(X,Z)W∗0 (Y, ξ)ξ + η(Z)W∗0 (Y, X)ξ
−η(X)W∗0 (Y,Z)ξ +W∗0 (Y,Z)X

 = 0. (6.3)
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Taking inner product with ξ in (6.3) and using (2.1), we obtain

β2


g(X,W∗0 (Y,Z)ξ) − η(W∗0 (Y,Z)ξ)η(X)

−g(X,Y)η(W∗0 (ξ,Z)ξ) + η(Y)η(W∗0 (X,Z)ξ)
−g(X,Z)η(W∗0 (Y, ξ)ξ) + η(Z)η(W∗0 (Y, X)ξ)
−η(X)η(W∗0 (Y,Z)ξ) − η(W∗0 (Y,Z)X)

 = 0.

Now, using (1.2) in above equation, we arrive at

β2


(
β2 + w

2

)
(g(X,Y)η(Z) − g(X,Z)η(Y))

+β2 (g(X,Z)η(Y) − g(Y,Z)η(X))
+ 1

2 (S (X,Z)η(Y) − wg(X,Y)η(Z))

 = 0. (6.4)

Finally, putting Y = ξ in (6.4) and using (1.2), we obtain

S (X,Z) = wg(X,Z).

Thus, we give the following theorem.

Theorem 6.1. If a 3-dimensional quasi-Sasakian manifold satisfies R(ξ, X) · W∗0 = 0 and admits conformal Ricci
soliton, then the manifold is an Einstein manifold.

7. ξ −W∗0 Flat 3-dimensional Quasi-Sasakian manifold admitting conformal Ricci soliton

Definition 7.1. A quasi-Sasakian manifold is said to be ξ −W∗0 flat if

W∗0 (X,Y) · ξ = 0

for all X,Y on M.

Assume that M is a ξ−W∗0 flat 3-dimensional quasi-Sasakian manifold admitting conformal Ricci soliton, then from
(1.2) we have

R(X,Y)ξ =
1
2

(g(X, ξ)QY − S (Y, ξ)X) . (7.1)

Taking inner product with Z in (7.1) and using (2.1) with (2.2), we obtain

β2 (g(X,Z)η(Y) − g(Y,Z)η(X)) =
1
2

(S (Y,Z)η(X) − g(X,Z)S (Y, ξ)) . (7.2)

Putting X = ξ in (7.2) and in view of (2.5), we arrive at

S (Y,Z) = −2β2g(Y,Z) +
(
2β2 + w

)
η(Y)η(Z),

which gives the following theorem.

Theorem 7.2. A ξ−W∗0 flat 3-dimensional quasi-Sasakian manifold admitting conformal Ricci soliton is an η−Einstein
manifold.

Now, we will give an example of a three dimensional quasi-Sasakian manifold.

Example 7.3. Let us consider the three-dimensional manifold M =
{
(x, y, z) ∈ R3, (x, y, z) , (0, 0, 0)

}
, where (x, y, z)

are the standard coordinates in R3. The vector fields

E1 =
∂

∂x
− y
∂

∂z
, E2 =

∂

∂y
, E3 =

∂

∂z

are linearly independent of each point of M. Let ḡ be the Riemannian metric tensor defined by

ḡ(E1, E3) = ḡ(E2, E3) = ḡ(E1, E2) = 0, ḡ(E1, E1) = ḡ(E2, E2) = ḡ(E3, E3) = 1.

Let η be the 1-form defined by η(Z) = ḡ(Z, E3) for any Z ∈ Γ(T M). Let φ be the (1,1)-tensor field defined by

φE1 = −E2, φE2 = E1, φE3 = 0.
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Then, using the condition of the linearity of φ and ḡ, we obtain η(E3) = 1,

φ2Z = −Z + η(Z)E3,

ḡ(φZ, φW) = ḡ(Z,W) − η(Z)η(W),

for all Z,W ∈ Γ(T M). Thus, for ξ = E3, M(φ, ξ, η, ḡ) defines an almost contact metric manifold [9].
Now, let ∇ be the Levi-Civita connection with respect to the Riemannian metric ḡ. Then, we obtain

[E1, E2] = E3, [E1, E3] = −E2, [E2, E3] = 0.

The Riemannian connection ∇ of the metric ḡ is given by

2g(∇XY,Z) = Xg(Y,Z) + Yg(Z, X) − Zg(X,Y) + g([X,Y],Z) − g([Y,Z], X) + g([Z, X],Y),

which is known as Kozsul’s formula. Taking E3 = ξ and using the above formula it can be calculated as

∇E1 E1 = 0, ∇E2 E1 = −
1
2

E3, ∇E1 E3 = −
1
2

E2,

∇E2 E3 =
1
2

E1, ∇E2 E2 = 0, ∇E1 E2 =
1
2

E3,

∇E3 E1 = −
1
2

E2, ∇E3 E2 =
1
2

E1, ∇E3 E3 = 0.

From the about represantations, one can easily see that (φ, ξ, η, ḡ) satisfies the formula∇Xξ = −βϕX. Hence, M(φ, ξ, η, ḡ)
is a three dimensional quasi-Sasakian manifold with the structure function with β = − 1

2 .
Using the above relations we have the components of the curvature tensor ass follows

R(E1, E2)E3 = 0, R(E2, E3)E3 = −
1
4

E2, R(E1, E3)E3 = −
1
4

E1,

R(E1, E2)E2 =
3
4

E1, R(E3, E2)E2 = −
1
4

E3, R(E1, E3)E2 = 0,

R(E1, E2)E1 =
3
4

E2, R(E2, E3)E1 = 0, R(E3, E1)E1 =
3
4

E3.

Now, we see that

S (E1, E1) = g(R(E1, E2)E2, E1) + g(R(E1, E3)E3, E1) =
1
2
,

S (E2, E2) = g(R(E2, E1)E1, E2) + g(R(E2, E3)E3, E2) =
1
2
,

S (E3, E3) = g(R(E3, E1)E1, E3) + g(R(E3, E2)E2, E3) =
1
2

and

S (Ei, E j) = 0, (i , j).

Therefore, from (2.4) we obtain

λ =
1
2

(
p +

2
3

)
.

So, one can verify our result from above equations.
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